FLYA

From GuentertWiki
Revision as of 14:00, 16 November 2015 by GuentertWiki (Talk | contribs)
Jump to: navigation, search

Fully automated structure determination of proteins in solution


Fully automated structure determination of proteins in solution (FLYA) yields, without human intervention, three-dimensional protein structures starting from a set of multidimensional NMR spectra. Integrating existing and new software, automated peak picking over all spectra is followed by peak list filtering, the generation of an ensemble of initial chemical shift assignments, the determination of consensus chemical shift assignments for all 1H, 13C, and 15N nuclei, the assignment of NOESY cross-peaks, the generation of distance restraints, and the calculation of the three-dimensional structure by torsion angle dynamics. The resulting, preliminary structure serves as additional input to the second stage of the procedure, in which a new ensemble of chemical shift assignments and a refined structure are calculated. The purely computational FLYA method is suitable for substituting all manual spectra analysis and thus overcomes a main efficiency limitation of the NMR method for protein structure determination.

Availability

  • FLYA calculations are carried out with the program CYANA. FLYA is not available as a separate program.

References

FLYA algorithm:

FLYA applications:

  • Schmidt, E., Gath, J., Habenstein, B., Ravotti, F., Székely, K., Huber, M., Buchner, L., Böckmann, A., Meier, B. H. & Güntert, P. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids. J. Biomol. NMR 56, 243–254 (2013)
  • Schmidt, E. & Güntert, P. Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. J. Biomol. NMR 57, 193-204 (2013)
  • Aeschbacher, T., Schmidt, E., Blatter, M., Maris, C., Duss, O., Allain, F. H.-T., Güntert, P. & Schubert, M. Automated and assisted RNA resonance assignment using NMR chemical shift statistics. Nucl. Acids Res. 41, e172 (2013)
  • Krähenbühl, B., El Bakkali, I., Schmidt, E., Güntert, P. & Wider, G. Automated NMR resonance assignment strategy for RNA via the phosphodiester backbone based on high-dimensional through-bond APSY experiments. J. Biomol. NMR 59, 87-93 (2014)
  • Schmidt, E., Ikeya, T., Takeda, M., Löhr, F., Buchner, L., Ito, Y., Kainosho, M. & Güntert, P. Automated resonance assignment of the 21 kDa stereo-array isotope labeled thioldisulfide oxidoreductase DsbA. J. Magn. Reson. 249, 88–93 (2014)
Personal tools
Intranet
Create Account