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ABSTRACT: The new FLYA automated resonance assign-
ment algorithm determines NMR chemical shift assignments
on the basis of peak lists from any combination of
multidimensional through-bond or through-space NMR
experiments for proteins. Backbone and side-chain assign-
ments can be determined. All experimental data are used
simultaneously, thereby exploiting optimally the redundancy
present in the input peak lists and circumventing potential
pitfalls of assignment strategies in which results obtained in a
given step remain fixed input data for subsequent steps. Instead of prescribing a specific assignment strategy, the FLYA resonance
assignment algorithm requires only experimental peak lists and the primary structure of the protein, from which the peaks
expected in a given spectrum can be generated by applying a set of rules, defined in a straightforward way by specifying through-
bond or through-space magnetization transfer pathways. The algorithm determines the resonance assignment by finding an
optimal mapping between the set of expected peaks that are assigned by definition but have unknown positions and the set of
measured peaks in the input peak lists that are initially unassigned but have a known position in the spectrum. Using peak lists
obtained by purely automated peak picking from the experimental spectra of three proteins, FLYA assigned correctly 96−99% of
the backbone and 90−91% of all resonances that could be assigned manually. Systematic studies quantified the impact of various
factors on the assignment accuracy, namely the extent of missing real peaks and the amount of additional artifact peaks in the
input peak lists, as well as the accuracy of the peak positions. Comparing the resonance assignments from FLYA with those
obtained from two other existing algorithms showed that using identical experimental input data these other algorithms yielded
significantly (40−142%) more erroneous assignments than FLYA. The FLYA resonance assignment algorithm thus has the
reliability and flexibility to replace most manual and semi-automatic assignment procedures for NMR studies of proteins.

■ INTRODUCTION

The chemical shift assignment of 1H, 13C, and 15N nuclei is an
essential prerequisite for protein structure determinations and
studies of protein interactions and dynamics by NMR
spectroscopy.1 Despite of the development of methods for
automating the chemical shift assignment of proteins that have
been reviewed recently,2−7 the resonance assignments are in
most cases still determined manually or by semi-automated
methods that require a considerable amount of time by an
experienced spectroscopist. Many automated approaches target
the question of assigning the backbone and Cβ chemical shifts,
usually on the basis of triple-resonance experiments that
delineate the protein backbone through one- and two-bond
scalar couplings. Other algorithms are concerned with the more
demanding problem of assigning the backbone and side-chain
chemical shifts. Most of these algorithms require peak lists from
a specific set of NMR spectra, and possibly other data, as input
and produce lists of chemical shifts of varying completeness and
correctness, depending on the quality and information content
of the input data and the capabilities of the algorithm.

A recent review by Guerry and Herrmann7 lists 44
publications of programs performing automated chemical shift
assignment published in the past 15 years. Of those, 19 work
exclusively on peak lists, while the others require additional
input information, e.g., grouping of resonances into spin
systems, partial input assignments, three-dimensional (3D)
structures, or residual dipolar couplings. Seven of those
publications,8−14 describing five distinct algorithms, apply to
the automated assignment of all (backbone and side-chain)
resonances exclusively from peak lists. In addition, Guerry and
Herrmann7 showed that only for two of the purely peak list-
based algorithms for complete resonance assignment, PINE8

and GARANT,9 has their use been reported in protein structure
files in the Protein Data Bank (PDB). These algorithms are
potentially applicable to enable fully automated NMR structure
determination by the classical nuclear Overhauser effect
(NOE)-based method that requires extensive side-chain
assignments. On the other hand, considering algorithms for
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the automated backbone assignment, only the program
AutoAssign15 has been used extensively in a structural genomics
project16 and reported in more than 200 PDB depositions.7

This situation calls for new computational approaches that
are sufficiently general and reliable to replace most of the
diverse manual and semi-automatic assignment strategies with
enough accuracy to make extensive manual checking and
corrections of the assignments unnecessary.
Here we present in detail the new FLYA automated

resonance assignment algorithm that is applicable with a wide
variety of NMR spectra and yields more accurate results than
other automated assignment methods for all chemical shifts.
We show applications of the FLYA resonance assignment
algorithm using automatically prepared experimental peak lists,
compare its results to those of existing algorithms, and
systematically evaluate its performance with simulated data of
varying quality.
The new FLYA automated resonance assignment algorithm

must be distinguished from the recently introduced FLYA fully
automated structure determination algorithm that combined
peak picking, resonance assignment with the existing GARANT
algorithm,9 NOESY assignment,17 and the structure calculation
with CYANA into a fully automated procedure.18 A limitation
of this approach was the use of the GARANT program for the
resonance assignment because erroneous resonance assign-
ments have a significant impact on the subsequent combined
NOESY assignment and structure calculation step.19 The FLYA
automated resonance assignment algorithm replaces the
functionality of GARANT within the more comprehensive
FLYA fully automated structure determination algorithm18 but
can also be used independent from the other parts of the FLYA
fully automated structure determination algorithm.

■ ALGORITHM
The FLYA resonance assignment algorithm generates a
network of expected peaks from the protein sequence and
the magnetization transfer pathways of a set of NMR
experiments. It then computes a mapping from this network
to the measured peaks, which implies an assignment of the
measured chemical shifts to atoms. This idea had first been
implemented in the assignment program GARANT.9 The
optimization algorithm in FLYA is a reimplementation of the
procedure that had been developed for GARANT. It is
combined with a more flexible network representation and a
new scoring scheme for assignments. The FLYA resonance
assignment algorithm has been implemented from scratch using
the Fortran programming language. It will become available
with the next release of the CYANA software.6,20

Network Model of the Resonance Assignment. An
NMR measurement provides the chemical shifts of a set of
atoms that lead to a signal in the measured frequency range.
(We use the terms “chemical shift” and “frequency”
interchangeably in this paper.) For further use of the data
these chemical shifts have to be assigned to the respective
atoms of the protein. To facilitate this process a set of different
multi-dimensional spectra is used, each combining in its peaks
the chemical shifts of atoms matching a specific connectivity
pattern. The set of all patterns should provide a contiguous
network that represents the connectivity of the atoms in the
protein and allows for an unambiguous assignment of the
measured frequencies to the atoms.
The network is constructed as follows. Every match of a

given connectivity pattern (Figure 1a) to the protein structure

is expected to lead to a peak in the corresponding experiment
that connects the chemical shifts of d atoms, and therefore it is
called an “expected peak” (Figure 1b). The expected peaks are
labeled with the name of the spectrum in which they are
expected to occur. The set of all measurable atoms A and all
expected peaks N are the nodes in the network. Connections in
the network are added between an expected peak and the

Figure 1. Network model of the resonance assignment, illustrated with
the simplest through-bond experiment, 2D homonuclear COSY. (a)
H-X-X-H pattern that gives rise to a COSY cross-peak, and schematic
view of the matching of patterns with common atoms. (b) Matching of
two expected peaks (ellipses labeled “COSY” connected by lines to
their corresponding atom assignments) with measured peaks. For one
expected peak the search space, obtained from the chemical shift
statistics of the BMRB, for matching measured peaks is indicated by
the gray rectangle in the spectrum, and the statistical mean values of
the chemical shifts are shown in a box adjacent to each atom. (c) After
mapping (dotted line) an expected peak to a measured peak, the
chemical shifts given by the position of the measured peak are
transferred to the lists of measured frequencies of the corresponding
atoms (dark gray rectangles).
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atoms that the expected peak connects in the experiment.
Hence an expected peak is always connected to d atoms (its
“adjacent atoms”), where d is the dimensionality of the
experiment, and an atom is connected to all expected peaks
that result from that atom in the various experiments (its
“adjacent peaks”). Na ⊆ N denotes the set of expected peaks
that are connected to atom a. Every atom is labeled with its
atom-specific statistical chemical shift range in which it is most
likely to be observed. This range is defined by the statistical
mean f(a) and the standard deviationσ(a) (Figure 1b) that can
be obtained, for instance, from the Biological Magnetic
Resonance Data Bank (BMRB).21

The measured data consist of the set of measured peaks M.
During the calculation expected peaks of the network are
mapped to measured peaks. If an expected peak n is mapped to
a measured peak m, the chemical shifts of the measured peak in
the corresponding dimensions give one measured chemical shift
for each of the adjacent atoms (Figure 1c). The chemical shift
of atom a obtained from mapping the expected peak n to a
measured peak m is f(a, n). Each atom saves a list of all its
measured chemical shifts. For atom a the average of all entries
in this list is the frequency of the atom, f(̅a). Similarly, f ̅(k)(a) is
the average frequency value of atom a resulting from mappings
in experiment k.
A mapping g of the elements in the set of expected peaks N

to the elements of the set of measured peaks M is defined by
g(n) = m if the expected peak n is mapped to the measured
peak m. The mapping gives one possible assignment of the
measured chemical shifts to the atoms of the protein. A
mapping g is valid if the following conditions are fulfilled: (1)
An expected peak can only be mapped to one measured peak.
(2) Expected peaks are mapped to measured peaks of the same
spectrum. (3) The variation of the chemical shifts f(a, n) for an
atom a does not exceed a given tolerance ε(a) representing the
accuracy of the measurement.
To ensure that only mappings fulfilling these conditions are

generated, expected peaks are mapped to measured peaks one
after another as described below. The search space of an
expected peak is defined via the statistical chemical shift ranges
of the adjacent atoms that correspond to the respective
dimensions of the spectrum. Initially, the search space in each
dimension is based on the statistical frequency range for the
atom, and one measured peak is selected from within that area.
After a measured peak has been selected, the expected peak is

mapped to it and the measured chemical shifts of the peak are
added to the chemical shift lists of the adjacent atoms (Figure
1c). As soon as a chemical shift list contains at least one entry,
the search space of the atom is limited to the range f(̅a) ± ε(a)
around the average of the list entries, f(̅a). This procedure
assures that the next expected peak to be mapped leads to a list
entry that is consistent with the previous ones.
In principle it is possible that several expected peaks are

mapped to the same measured peak, but a particular expected
peak is only mapped to one measured peak (see condition 1
above). Some expected peaks as well as measured peaks may
remain unmapped at the end of the mapping procedure. If no
adjacent expected peak of an atom could be mapped to a
measured peak, the chemical shift of the respective atom is not
defined.
During one run of the algorithm several mappings are

generated, improved and combined until the best solution is
given as the final output. All these assignment solutions are
generated in the way described above. The construction of the

individual mappings differs only in the way of selecting among
several measured peaks for a mapping as well as in the order in
which the expected peaks are mapped.

Expected Peaks. An NMR experiment is set up such that
one peak is expected to be measured for each match of an
experiment-specific connectivity pattern of atoms to the
structure of the protein. These patterns describe covalent
bond connectivities mediated by scalar couplings as well as
connectivities defined by short distances through space
observable via NOEs or corresponding solid-state NMR
experiments. Patterns that describe covalent bond connectiv-
ities can easily be matched against the covalent protein
structure. Each match results in an expected peak n that is
expected to be observed in the spectrum with probability
prob(n). The connectivity patterns and the respective
probabilities are stored in the CYANA library file as linear
paths of bonds for each experiment. Examples are shown in
Figure 2, and the complete magnetization transfer pathways for
all spectra used in this paper are given in Table S1 in the
Supporting Information.

The full set of expected peaks for through-space (e.g.,
NOESY) experiments can only be defined by the correct 3D
structure of the protein because they depend on distances
between atoms through space. If the 3D structure is available,
distances between atoms are determined and expected peaks
are generated for every match of the connectivity patterns. To
allow for an expected peak generation for NOE-based
experiments in cases in which the 3D structure is not available,
matches of the respective connectivity patterns can be obtained
for short-range NOEs by analyzing the atom distances in a set
of random 3D structures of the protein. This was done for all
calculations in this paper. Alternatively, since short-range NOEs
can be observed only for atoms within a certain sequential
range, they can also be described via covalent bonds and bond
paths for the respective connectivity patterns can be added to
the library.

Figure 2. Connectivity patterns in the CYANA library for the 2D
[15N,1H]-HSQC, 3D HCCH−COSY, and 3D HNCA experiments.
For each spectrum, the first line gives the spectrum name and the atom
labels that will be used to identify the respective columns in the peaks
lists. The number of atom labels defines the dimensionality d of the
spectrum. Each of the following lines specifies a (formal) magnet-
ization transfer pathway, characterized by the probability prob(n) of
the resulting expected peak followed by a series of atom types
(H_AMI, amide hydrogen; N_AMI, amide nitrogen, C_ALI, aliphatic
carbon, C_BYL, carbonyl carbon, etc., as used in the CYANA residue
library; “*” matches anything) that define a molecular pattern of atoms
linked by direct covalent bonds. In each pathway the d atoms whose
shifts will determine the position of the resulting peak are identified by
their corresponding atom labels, followed by “:”. Note that in the case
of the HNCA spectrum, the pathways include a “detour” through the
carbonyl carbon (C_BYL) to exclude peaks originating from Hε-Nε-Cδ

in Arg and Hζ-Nζ-Cε in Lys.
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For a given structure bundle there are two parameters that
affect the generation of expected peaks for through-space
connectivity patterns. The first parameter gives the maximum
distance between the atoms that match the pattern. The second
parameter gives the minimum number of conformers in the
structure bundle for which this distance criterion has to be
fulfilled.
Optimization Strategy. The combinatorial optimization of

the mappings uses an evolutionary algorithm in combination
with a local optimization routine.9 Evolutionary algorithms
work with a population of solutions and the evolutionary
principles of recombination, mutation, and selection.22 During
the calculation several generations of solutions are created one
after another. In our algorithm one generation comprises, by
default, 50 individuals. Each new generation inherits the best
properties of the previous one and introduces new properties
called mutations. Early generations have a large amount of
mutations. The percentage of allowed mutations is reduced
during the optimization procedure according to a temperature
schedule. To select good parent solutions for the creation of a
new generation, a global scoring scheme is used for the
validation of assignment solutions. The assignment that was
scored best among all solutions during the optimization is given
as the final assignment at the end of the calculation. The local
optimization routine is applied to every newly generated
solution. It identifies bad parts of an assignment solution on the
basis of a local scoring scheme and improves the assignment of
these parts if possible.
Global Optimization. Improving a mapping with the local

optimization procedure only allows for small changes at a time
and the solution would most likely be trapped in a local
optimum. The evolutionary algorithm works around this
problem.
For every new individual a selection of solutions from the

previous generation is marked as parent solutions before the
mapping of the expected peaks to the measured peaks is started.
The individuals in the previous generation are ranked according
to their global score and 30 independent selections are done
based on this ranking. For a population of size n a particular
solution of rank r is selected with a probability of (r/n)1/2 −
((r − 1)/n)1/2.9 The new solution is constructed as a
combination of the best partial solutions out of the set of its
parental solutions. It adopts expected peak mappings that can
be found in the parent solutions as follows. To compare the
quality of partial solutions, the residue-specific part of the global
score (see below) is calculated for all parental solutions (Figure
3a). The combination of the parental solutions is started by
selecting randomly one expected peak as starting point for the
mapping. The expected peak adopts the mapping from a
parental solution selected based on the global score for the
respective residue. All n possible mappings are weighted
according to their residue-specific score values S1, ... Sn, and a
mapping possibility m is selected with probability pm = Sm

10/∑i=1
n

Si
10. The expected peak adopts the mapping from the parental
solution with the best global score for the respective residue. In
order to obtain a consistent assignment, the neighboring
expected peaks (the peaks that are connected to at least one
atom that is also connected to the starting peak) are mapped
next, if it is possible to fulfill the three criteria for a valid
assignment, followed by the second shell of neighboring
expected peaks and so on (Figure 4). As soon as it is not
possible to extend the mapping any further, a new starting peak
is determined among the remaining unmapped expected peaks.

The mapping of the expected peaks follows the general
procedure as described above. An expected peak is mapped to
the measured peak that was given in a parental solution and the
chemical shift values of the respective measured peak are added
to the chemical shift lists of the adjacent atoms, thereby
reducing the search space of all unmapped expected peaks that
are connected to these atoms.
The selection of a parental solution for an expected peak is

done in the same way for all expected peaks, but since an
expected peak can only be mapped to a measured peak that fits
its search space (Figure 3b), there is not always a valid solution
among the parental solutions. When the mapping starts, the
search space of an expected peak has its maximum size defined
by its statistical distribution and every measured peak it is
mapped to in a parental solution will fit to that search space. As
soon as some expected peaks are mapped to measured peaks,
the search space of the neighboring expected peaks is reduced
and it might happen that some or all parental solutions are
invalid. Reasons for this are that the correct measured peak
might not exist, the mappings of the neighboring expected
peaks might be incorrect or, especially in the early stages of the
optimization, the correct mapping for an expected peak might

Figure 3. Global optimization of resonance assignments by the
evolutionary algorithm. Generation of peak mappings on the basis of
parent solutions. (a) Parent solutions 1, 2, and 4 are selected before a
new mapping is generated. From those parent solutions that fit the
search space (marked in light gray) one solution is selected according
to the residue-specific score. (b) Only peaks that fit the search space
and can be found in one of the active parent solutions (black peaks)
are selected for the mapping.
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not yet be present in the set of its parental solutions. In the
latter case it is necessary to consider peak mappings that are not
part of a parental solution of the expected peak of question.
This is done in two ways.
The first method takes advantage of the fact that the correct

mapping of so-called “equivalent expected peaks” that have a
similar network vicinity can be interchanged easily in the
parental solutions. For instance, two leucines will lead to exactly
the same network structure with the same statistical mean
values for the chemical shifts and hence the same search space
for the intraresidual expected peaks. Therefore, the parental
solutions of the equivalent expected peaks are also considered
for the mapping of an expected peak. This is done by dividing
the set of expected peaks into equivalence classes before the
calculation starts. Whenever no parental solution of the
expected peak fits its current search space, the parental
solutions of the equivalent expected peaks are considered
with a probability of exp(−0.7/T) that decreases depending on
the temperature schedule of the optimization (see below). One
of the mappings that fit the search space of the expected peak is
selected randomly. If still no valid mapping was found, all
remaining peaks that fit the search space of the expected peak
are checked with a probability of exp(−1.2/T).
The temperature schedule of the optimization starts with a

(dimensionless) temperature value of T = 1.8, drops to T = 1.0
in the next stage, and decreases the temperature during several
stages until it reaches T = 0.0. For the present calculations the
temperature is decreased in steps of 0.2. Finally the temperature
is kept constant for another two stages. The changes between
the stages are controlled by the average global score of the
population. As soon as no further improvement of the average
global score can be achieved, the schedule proceeds with the
next stage.

Local Optimization. The local optimization routine
improves the assignment by taking back the mapping of a
small part of the network which is likely to be wrong in order to
find a better mapping. The challenge is to identify the incorrect
parts of a mapping.
In an ideal mapping each expected peak would be mapped to

one measured peak. Since normally many of the peaks that are
expected to be observed in a spectrum are missing or
overlapped, some expected peaks cannot be mapped to a
measured peak, or several expected peaks, in the following
called “degenerate expected peaks”, have to be mapped to the
same measured peak. The correct chemical shift assignment is
considered to refer to a mapping in which more expected peaks
can be mapped to measured peaks than in other mapping
solutions. Hence atoms that are connected to degenerate
expected peaks and expected peaks that could not be mapped
are likely to be assigned incorrectly. A local scoring scheme (see
below) is used to check the quality of the assignment of these
atoms. The basic idea is that only a fixed percentage, the worst
part, out of the set of all atom assignments that are checked
during the local optimization are classified as wrong. The
assignments of these atoms are reverted in the following way.
The mappings of all adjacent expected peaks of the atom are
removed in order to clear completely the list of frequencies of
the atom and to allow for a new assignment of the atom.
Subsequently, these neighboring expected peaks are mapped
again.
The procedure of selecting an expected peak as a starting

point for an improvement, removing the assignment of the
adjacent atoms that are classified as wrong, and remapping the
respective expected peaks is repeated for a fixed number of
times, the default setting is 15 000.

Scoring. There are two different scoring schemes. The first
one is a global scoring scheme for the evaluation of residue-
specific and complete assignment solutions, which is used by
the evolutionary optimization procedure. The second one is a
local scoring scheme for the evaluation of the assignment of
single atoms, which is used by the local optimization routine.
The global score evaluates four attributes of an assignment

solution, the frequency of an assigned atom, the ambiguity of
the assignment, the difference between several frequencies that
are assigned to the same atom, and, implicitly, the number of
assigned peaks. The residue-specific part of the global score for
residue i is determined by summing up the contributions of all
atoms in residues i− 1, i, and i + 1.
The global score G is defined by

=
∑ + ∑

∑ + ∑
∈ ∈ ′

∈ ∈
G

w a Q a w a n Q a n b n

w a w a n

[ ( ) ( ) ( , ) ( , )/ ( )]

[ ( ) ( , )]
a A n N

a A n N

1 1 2 2

1 2

a

a0

(1)

A0 denotes the set of all atoms for which expected peaks exist,
A⊆ A0 the set of assigned atoms, Na the set of expected peaks
for atom a, and N′a⊆Na the subset of expected peaks that are
mapped to a measured peak. b(n) refers to the ambiguity of the
assignment and equals the number of expected peaks that are
assigned to the same measured peak as expected peak n.
Unassigned atoms and unmapped peaks contribute only to the
normalization by the denominator in eq 1. As defined below,
the term Q1(a) measures the agreement of the average
frequency f(̅a) in the chemical shift list of atom a with the
corresponding general chemical shift statistics. Similarly,
Q2(a,n) measures the agreement between the frequency

Figure 4. Consistent mapping of expected peaks during global
optimization. The scheme shows a network of expected peaks
(ellipses) and atoms (circles). (a) A first expected peak (black) is
mapped to a measured peak. The adjacent atoms obtain a chemical
shift entry (dark gray). All other expected peaks (light gray) are not
mapped yet, and the atoms have no chemical shift entries (light gray).
(b) The first shell of neighboring peaks (black) is mapped. (c) The
second shell of neighboring peaks (black) is mapped.
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f(a,n) of atom a obtained from the measured peak to which the
expected peak n is mapped and the average frequency of the
atom in the assigned peaks of the corresponding spectrum.
Relative weights of the individual contributions are given by
w1(a) and w2(a,n). We used w1(a) = 4 and w2(a,n) = 1 for all
calculations in this paper.
The quality measures Q are designed such that a perfect

match corresponds to Q = 1, Q < 1 in all other cases, a deviation
that is considered “as bad as no assignment” yields Q = 0, and
an infinitely large deviation Q =−∞. To define the quality
measures, we consider the logarithm of the probability that the
deviation of a frequency from the underlying distribution
exceeds the given value by chance. For a normal distribution
with average value 0 and standard deviation 1, this quantity is
given by

∫ π
= −

= − | |

−| |

| |
−⎛
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⎞
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⎛
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⎛
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2
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x
t /22
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with the error function erf(x) = (2/π1/2)∫ 0
x e−t

2

dt. For a perfect
match eq 2 gives q(0) = 0, and in all cases q(x)≤ 0. Hence, we
define for i = 1, 2
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Qi defined by eqs 3−5 has the aforementioned desired
properties. In eq 4, f(a) and σ(a) are the mean and standard
deviation of the chemical shift of atom a from the general
chemical shift statistics for atom a. Similarly, f ̅(k)(a) is the
average chemical shift for atom a obtained from assigned peaks
in the respective spectrum k. ε(a) denotes the tolerance limit
for the alignment of peak positions for atom a. Since ε(a) is the
maximal deviation limit for tolerable assignments, eq 5 uses
ε(a)/4 as the standard deviation for the assigned frequencies of
atom a. The quantities x1

(0) and x2
(0) determine the deviation

that is considered equally bad as the absence of the assignment.
An assignment with deviation |xi| < xi

(0) will contribute
positively to the score, i.e. is advantageous, whereas an
assignment with deviation |xi| > xi

(0) will contribute negatively
to the score and is thus a disadvantage compared to not making
the assignment at all. We used x1

(0) = 1.5 and x2
(0) = 2 standard

deviations for all calculations in this paper.
The global score G of eq 1 is normalized such that G = 1 for a

perfect assignment, G < 1 in all other cases, G = 0 if there are
either no assignments at all or if all assignments have deviations
“as bad as no assignment”. In principle, negative scores G < 0
are possible for bad assignments. The theoretically possible
maximal global score value G = 1 cannot be reached in practice
because this would require all assigned chemical shifts to be
equal to the corresponding mean value of the general chemical
shift statistics. Instead, one expects for atoms with chemical
shifts that follow the same normal distribution as is assumed for

their general chemical shift statistics an average Q1 value of
0.73.
The scoring scheme for the local optimization considers only

the mapping of the expected peaks adjacent to the atom to be
scored. The local score L(a) of an atom a is equal to the
weighted number of expected peaks that are adjacent to the
atom and mapped to a measured peak divided by the weighted
total number of expected peaks adjacent to the respective atom:

=
∑

∑
∈ ′

∈
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Since a mapping of an expected peak with a high probability
prob(n) that the expected peak can actually be observed in the
measurement is considered more reliable and hence more
important than a mapping of an expected peak with a low
probability, the expected peaks are weighted by prob(n). The
local score takes values between 0 and 1. A local score of 0
means that no expected peaks adjacent to the atom are mapped,
and 1 means that all expected peaks are mapped.

Chemical Shift Consolidation. The accuracy of the
assignment can be assessed and improved by performing
multiple runs of the algorithm using different seeds for the
random number generator, and computing for each atom a
consensus chemical shift from the values obtained in the
individual runs.18,23 The consensus chemical shift f(̃a) for an
atom a is the value f that maximizes the function
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where r is the number of runs, and fj̅(a) is the average chemical
shift value for atom a in run j. To determine the maximum, the
function μ( f) is evaluated on a fine grid with spacing ε(a)/100
or 0.001 ppm, whichever is larger. For all calculations in this
paper, r = 20 runs were performed.

Assignment Validation. The spread of the distribution of
the chemical shift values for an atom in several runs of the
algorithm gives an indication of the reliability of the assignment
of an atom. This can be quantified the μ( f ̃(a)) value, which is a
measure of the self-consistency of the chemical shift values
obtained in the individual runs of the algorithm. This quantity
can be calculated without knowledge of reference assignments.
The value of μ( f ̃(a)) is approximately equal to the fraction of
runs that yielded a chemical shift value within the tolerance
ε(a) from the consensus value, f ̃(a). If all chemical shift values
are identical, then μ( f ̃(a)) = 1. In this paper we consider
assignments with μ( f ̃(a)) ≥ 0.8 as “safe”, and others as
“unsafe” or “tentative”. The latter were, however, in many
cases still correct.

■ MATERIALS AND METHODS
Proteins and Experimental Data. Automated chemical shift

assignment was performed with the NMR data sets of three proteins
for which the assignment and the structure determination had been
done earlier by conventional techniques, i.e. the 140-residue ENTH-
VHS domain At3g16270(9−135) from Arabidopsis thaliana (ENTH)
with a seven-α-helix superhelical fold,24 the 134-residue rhodanese
homology domain At4g01050(175−295) from Arabidopsis thaliana
(RHO) with a central five-stranded parallel β-sheet flanked by four α-
helices and two small 310-helices,

25,26 and the 114-residue Src
homology domain 2 from the human feline sarcoma oncogene Fes
(SH2) with a central three-stranded anti-parallel β-sheet flanked on
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either side by an α-helix, and three short anti-parallel β-strands that
pack against the second α-helix.27,28

The manually determined chemical shift assignments, which were
used as reference assignments to evaluate the assignments from
automated procedures, are available from the BMRB with accession
numbers 5928 for ENTH, 5929 for RHO and 6331 for SH2. The first
7 and the last 6 residues of these proteins are largely unstructured,
non-native sequences related to the expression and purification
system.29 Overall, the completeness of the 1H (excluding labile side-
chain protons) reference assignments was 96.4% for ENTH, 98.4% for
RHO, and 97.2% for SH2. Excluding the non-native residues, it
increased to 99.3% for ENTH, 99.4% for RHO, and 99.6% for SH2.
Peak lists were obtained with the automated peak picking algorithm

of the program NMRView30 without manual corrections or
modifications, as reported earlier18 for [15N,1H]-HSQC, [13C,1H]-
HSQC, HNCO, HN(CA)CO, HNCA, HN(CO)CA, CBCANH,
CBCA(CO)NH, HBHA(CO)NH, HCCH-COSY (in the case of
RHO only for the aromatic region), HCCH-TOCSY, (H)CCH-
TOCSY (only for ENTH), H(CCCO)NH, 15N-resolved NOESY, and
13C-resolved NOESY spectra. Peak list statistics are given in Tables
S2−S4 in the Supporting Information. All experimental input data are
available for download from http://www.cyana.org/flyapeaklists.tgz.
Assignment Calculations with Experimental Data. Assign-

ment calculations with the FLYA resonance assignment algorithm
were performed in the same way and with the same parameters for the
three proteins. The tolerance for chemical shift matching was 0.03
ppm for 1H and 0.4 ppm for 13C and 15N for all calculations with
experimental peak lists. The same tolerances were used for the
determination of the assignments and their evaluation by comparison
with the manually determined reference assignments. Expected peaks
in through-bond spectra were generated according to the magnet-
ization transfer rules of the CYANA library (see Table S1 in the
Supporting Information). Expected peaks for the NOESY spectra were
generated on the basis of 20 conformers calculated with CYANA that
fulfill the steric restraints and are otherwise random. Expected NOESY
peaks with probabilities 0.9, 0.8, 0.7, 0.6, and 0.5 were generated for
the 1H−1H distances that were shorter than 4.0, 4.5, 5.0, 5.5, and 6.0
Å, respectively, in all 20 random conformers. The number of measured
peaks was limited in all input peak lists of through-bond spectra to
maximally 150% of the corresponding number of expected peaks by
discarding the peaks with the smallest intensities, if necessary. The
population size for the evolutionary algorithm was 50, except for the
calculations using only backbone assignment spectra, where it was 100,
and those using exclusively NOESY peak lists, where it was 200.
Hydroxyl protons and the side-chain terminal amide groups of Lys and
Arg were excluded from the calculations. Chemical shift assignments
were consolidated from 20 independent runs.
Comparison with Existing Automated Assignment Algo-

rithms. For comparison, we determined chemical shift assignments
also with the programs GARANT9,31 and PINE8 that are capable of
determining backbone and side-chain chemical shifts. GARANT
calculations were performed with the help of the ‘garant.cya’ macro in
CYANA18 using the same chemical shift tolerance values as for FLYA.
We used the PINE web server at http://pine.nmrfam.wisc.edu/. For
all comparisons between algorithms the same peak lists were given to
the different algorithms.
Simulated Data Sets for the Protein SH2. Starting from the

protein sequence, sets of perfect peak lists were simulated by
generating, for the same types of spectra as were used experimentally,
all expected peaks at the positions given by the reference chemical shift
list. Imperfect peak lists were derived from these perfect peak lists by
removing 0, 20, 40, 60, or 80% of randomly selected peaks, by adding
0, 100, 200, 300, 400, or 500% of artifact peaks, and by randomly
changing peak positions within the tolerance range for peak
assignments, ε(a). Artifact peaks were generated at positions selected
randomly from the normal distributions of the general chemical shift
statistics for the atoms involved in randomly selected expected peaks.
Peak position changes were obtained by adding a random number
taken from a normal distribution with mean zero and given standard

deviation to each peak position coordinate. To keep the shifted peaks
correctly assignable, random shifts larger than ε(a) were discarded.

■ RESULTS AND DISCUSSION
Validity of the Global Score As a Measure of

Assignment Correctness. The resonance assignment algo-
rithm strives to maximize the global score G of eq 1. The
resulting assignment can only be as good as the global score
reflects the correctness of the assignment. The latter is not
trivial to evaluate in the absence of independently determined,
correct reference assignments. We therefore studied first the
relationship between the global score values obtained in the
course of assignment calculations with the FLYA resonance
assignment algorithm with the correctness of these assign-
ments, evaluated by comparison with the manually determined
reference assignments. Figure 5 shows the correlation between

Figure 5. Correlation between the global score and the percentage of
correctly assigned atoms. Data points refer to the current best scored
solutions, which were saved during the calculation. (a) Standard
calculation with the full set of available peak lists for SH2 (Table 1).
(b) Calculation with 7 experiments for the backbone assignment for
SH2 (Table 2).
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the global score and the percentage of correctly assigned atoms
for two calculations with the protein SH2. During an
assignment calculation the FLYA resonance assignment
algorithm stores every new assignment that has a better global
score than any previous one. Each of these currently best
scoring assignments is represented by a data point in Figure 5.
As desired, there is a strong linear correlation with correlation
coefficient above 0.98 between the global score values and the
percentage of correct assignments. The correlation improves
for larger global score values, which are most relevant for
reaching an optimal final assignment at the end of the
calculation. There are neither significantly erroneous assign-
ments with high global score nor highly correct assignments
with low global score. The global score defined by eq 1 is thus a
suitable objective function for the optimization algorithm.
Some scatter remains, however, especially for lower global

score values. For instance, Figure 5a shows two assignments,
both with a global score value of about 0.36 but percentages of
correctly assigned atoms of 37% and 58%, respectively. An
analysis of these two assignments showed that in the less
correct assignment a slightly higher number of expected peaks
(7039) could be mapped than in the more correct assignment
(7014). This was due to the HCCH-COSY (+61 assigned
peaks in the less correct assignment), HCCH-TOCSH (+51),
[15N,1H]-HSQC (+5), and [13C,1H]-HSQC (+4) spectra, while
in all other spectra less peaks could be mapped, in particular in
the backbone assignment spectra HNCA (−21) and CBCANH
(−25). This indicates that at this early stage of the assignment
calculation additional peaks were assigned in the less reliable
HCCH-COSY and HCCH-TOCSY peak lists at the expense of
“more valuable” peaks in the less crowded backbone assign-
ment spectra. We also analyzed two backbone assignments in
Figure 5b with high global score values of about 0.765 and
percentages of correctly assigned atoms of 84% and 92%,
respectively. Almost the same number of expected peaks could
be mapped in the two cases (1251 and 1253). The global score
is not only sensitive to the number of mapped peaks, but also
the degeneracy of the assignments. In the present example the
better solution shows a slightly higher degeneracy of the
assignments. This can be explained by several residues whose
assignments are permuted in the worse solution, thereby
avoiding mappings of more than one expected peak to the same
measured peak and keeping the overall degeneracy low. If peak
lists for side-chain assignment were included, at least the
permutation of assignments among different types of amino
acids would most probably lead to a difference in the number of
mapped expected peaks in the side chains. Using only backbone
assignment spectra leads to the same number of peaks for
almost all types of amino acids, allowing for an easier
permutation of residues without loss of mappings. It is
conceivable that a systematic investigation of the relationship
between the global score and the assignment correctness could
lead to future improvements of the scoring and hence the
performance of the algorithm.
The global score values for the calculation with the full data

set are between 0.3 and 0.5 (Figure 5a). On the other hand,
using exclusively through-bond experiments for the backbone
assignment yielded global score values between 0.6 and 0.8
(Figure 5b). This difference is due to the fact that the full data
set includes experiments, e.g., HCCH-TOCSY and NOESY,
with a large number of expected peaks many of which are
missing in the experimental peak lists. This leads to lower
global score values because the global score depends strongly

on the number of expected peaks that are mapped to measured
peaks.

Correctness of Assignments. The principal results of
automated assignment calculations with FLYA using all
available, automatically picked peaks lists, 16 for ENTH, and
15 for RHO and SH2, are summarized in the first column of
Table 1. A percentage of correct assignments of 100% would be

obtained for an assignment that reproduces, within the
tolerance, all chemical shifts that could be assigned by
conventional techniques. Atoms that could not be assigned
by conventional techniques were ignored when calculating the
percentage of correct assignments. The correctness of the
FLYA resonance assignments was 95.7−98.8% for the back-
bone atoms N, HN, C′, Cα, and Cβ, and 86.3−86.5% for the
side-chain atoms, resulting in more than 90% correct
assignments for all atoms for the three proteins, which fulfills
the criterion proposed for the successful use of combined
automated NOE assignment and structure calculation with
CYANA.17,19 This shows that the FLYA resonance assignment
algorithm yielded almost complete resonance assignments for
the entire proteins using input peak lists that were far from
perfect, as it is typical for automatically prepared peak lists
(Tables S2−S4 in the Supporting Information).
The individual assignments for these standard FLYA

calculations are visualized in Figure 6 and listed in Tables
S5−S7 in the Supporting Information. Most of the erroneous
assignments occur in side chains, especially in Phe, Lys, and
Leu. Assignments of neighboring atoms in several of these

Table 1. Percentage of Correct Assignmentsa

FLYA GARANT FLYAb PINEb

ENTH
backbone 95.7 95.1 95.1 86.2
side chain 86.5 77.6 70.4 55.3
all atoms 90.3 84.7 80.5 67.9
all atoms, safec 95.3 92.1

RHO
backbone 96.5 95.0 96.1 85.4
side chain 86.3 73.8 69.3 29.6
all atoms 90.8 83.0 80.9 53.7
all atoms, safec 95.3 91.7

SH2
backbone 98.8 96.1 98.6 93.8
side chain 86.3 82.4 76.3 62.8
all atoms 91.4 88.0 85.4 75.3
all atoms, safec 93.8 92.6

aPercentage of chemical shifts that are, within the chemical shift
tolerance of 0.03 ppm for 1H and 0.4 ppm for 13C and 15N, in
agreement with the manually determined assignment. “Backbone”
refers to the atoms that can be assigned using the standard
experiments for backbone assignment, i.e. backbone amide N and
HN, C′, Cα, and Cβ. “Side chain” refers to the other 1H, 13C, and 15N
atoms, including Hα and Hβ. “All atoms” includes both groups. For
these three classes, 100% corresponds to all manually determined
assignments in the class. bCalculations performed without peak lists
from HCCH-COSY,15N-resolved NOESY, and 13C-resolved NOESY
spectra. cPercentage of chemical shifts classified as “safe” by the FLYA
algorithm that are in agreement with the manually determined
assignment. Here, 100% corresponds to all “safe” assignments for
which also a manually determined assignment is available.
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residues were permuted intra-residually. This is due to the fact
that the statistical frequencies of the respective atoms do not
differ much and that there was only one through-bond
experiment in the data set, HCCH-COSY, that could provide
unambiguous information to avoid a permutation of these
assignments. In addition, for RHO, HCCH-COSY data were
available only for the aromatic region. Assignment errors by
intra-residual permutation have in general less severe
consequences than those involving different residues, especially
if the correct and erroneous assignments are far apart in the
sequence, which can, for instance, result in erroneous long-
range distance restraints in a structure calculation.

The FLYA resonance assignment algorithm classified,
without knowledge of the reference assignments, 86% of the
assignments for ENTH, 89% for RHO, and 91% for SH2 as
“safe” by the criterion μ( f ̃(a))≥ 0.8. These numbers are close
to the overall percentages of correct assignments of 90−91%
for the three proteins. Considering only the “safe” assignments
the percentage of correct assignments rises to 94−95% (Table
1), i.e. at the expense of losing about 10% of all assignments
close to half of the assignment errors can be eliminated. On
average, 48% of the erroneous assignments were categorized as
“unsafe”, and 57% of the assignments for which no reference
was present are marked as “unsafe”. The effectiveness of the

Figure 6. Extent, correctness, and reliability of individual assignments obtained with the FLYA automated resonance assignment algorithm using the
full sets of automatically prepared peak lists for three proteins (see Tables S2−S4 in the Supporting Information, and column 1 of Table 1): (a)
ENTH, (b) RHO, and (c) SH2. Each assignment for an atom is represented by a colored rectangle: green, assignment by FLYA agrees with the
manually determined reference chemical shifts within a tolerance of 0.03 ppm; red, assignment differs from reference; blue, assigned by FLYA but no
reference available; black, with reference assignment but not assigned by FLYA. Respective light colors indicate assignments classified as “unsafe” by
the chemical shift consolidation. The row labeled HN/Hα shows for each residue HN on the left and Hα in the center. The N/Cα/C′ row shows for
each residue the N, Cα, and C′ assignments from left to right. The rows β−η show the side-chain assignments for the heavy atoms in the center and
hydrogen atoms to the left and right. In the case of branched side chains, the corresponding row is split into an upper part for one branch and a
lower part for the other branch.
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safe/unsafe classification is apparent from the fact that an
“unsafe” assignment has an 8−12 times higher chance to be
erroneous than a “safe” one.
Comparison with Other Automated Assignment

Algorithms. The accuracy of the automated assignment
calculations was compared to the accuracy obtained with two
other programs for automated assignment, GARANT9,31 and
PINE.8 Results are shown in Table 1. GARANT calculations
were done with the full set of peak lists that were used for the
FLYA calculation. The PINE web server could not use HCCH-
COSY and NOESY-type experiments. The PINE calculations
and the corresponding FLYA calculation were therefore
performed without these spectra. For the backbone atoms the
FLYA automated assignment led to an improvement of the,
already high, percentage of correct assignments by 0.6−2.7
compared to the GARANT calculations with the same input
data. The respective percentages of correct side-chain assign-
ments were improved by 3.9−12.5. Relative to the PINE
results, FLYA increased the percentage of correct assignments
by 4.8−10.7 for the backbone and 13.5−39.7 for the side
chains. Overall, the calculation with GARANT resulted in a
significant 40−85% increase of the number of erroneous
assignments relative to the FLYA result. The corresponding
increase with PINE was even larger, 65−142%. This indicates
that a considerably larger effort for manual verification and
correction would be necessary when working with these
existing algorithms compared to FLYA.
GARANT calculations with the same input data had already

been performed in the context of fully automated structure
calculation, where it was reported that 96−97% of all backbone
and side-chain chemical shifts in the structured regions were
assigned to the correct residues.18 These numbers are not
directly comparable with those in Table 1, because in the
former paper the flexible chain termini (13−20 residues), were
excluded from the analysis, whereas now the complete
sequence was considered, an assignment was counted as
correct if the shift was assigned to the correct residue, whereas
now it has to be assigned to the correct atom to be considered
as correct, and the results reported were obtained after three
cycles of resonance assignments and structure calculation, i.e.,
the three-dimensional structure was used as additional input to
obtain the final resonance assignments, whereas now the
resonance assignments are based only on the peak lists. In
addition, in the former paper 100% corresponded to the total
number of assignments made by the algorithm, whereas now
100% correspond to the total number of reference assignments
available from the manual assignment. The relevant comparison
of the two algorithms is instead given in Table 1 that shows a
significant improvement of the assignment accuracy by the new
FLYA resonance assignment algorithm over both earlier
approaches.
FLYA Calculations with Reduced Data Sets and with

Partial Input Resonance Assignments. Table 2 shows the
results for special assignment applications for the same three
proteins with different combinations of peak lists. The
“backbone” calculation was done using only the peak lists
from spectra that are used for backbone assignment, i.e.,
[15N,1H]-HSQC, HNCO, HN(CA)CO, HNCA, HN(CO)CA,
CBCANH, and CBCA(CO)NH. It yielded 92.2−98.4% correct
assignments, which is slightly lower than the corresponding
percentage for the backbone atoms of 95.7−98.8% obtained in
the calculation with the full data set (Table 1), which reflects

the synergy of using the spectra for backbone and side-chain
assignment simultaneously.
The “NOESY” calculation (Table 2) was done using

exclusively 15N-resolved NOESY and 13C-resolved NOESY
peak lists.32 The percentage of correct assignments was
between 73.4% and 78.3%, which is lower than in the normal
calculation but still considerable given the total absence of
through-bond spectra, and, for instance, higher than the results
obtained with PINE using all through-bond spectra (Table 1).
The “NOESY + backbone shifts” calculation (Table 2) used

as input the 15N- and 13C-resolved NOESY peak lists in
conjunction with the backbone chemical shifts fixed to their
correct values, in order to perform an automated assignment of
the side-chain atoms. It yielded 83.9−84.6% correct assign-
ments, which is higher than the corresponding percentage for
the “NOESY” calculation because in the former calculation the
side-chain assignments can be “anchored” on the given, correct
backbone assignments.

Dependence of Assignments on Data Quality. In order
to analyze how the assignment accuracy depends on the quality
of the input data, a series of assignment calculations were run
using peak lists for SH2 with a defined number of missing
peaks, additional noise peaks, and deviations of the peak
positions compared to an ideal list in which exactly the
expected peaks are present at the exact positions given by the
reference chemical shifts. Calculations that yielded more than
90% correct assignments for all atoms, which is considered
sufficient for the successful use of combined automated NOE
assignment and structure calculation with CYANA,17,19 are
marked in green in Figure 7.
As expected, the correctness of the assignments decreased

with increasing numbers of noise peaks and missing peaks, and
with increasing deviations of the peak positions. With accurate
peak positions the correctness of the assignment is between
77.5% and 99.8% (Figure 7a). It drops below 90% only when
80% of the expected peaks were missing from the input. For a
maximum deviation of 0.04 ppm for hydrogens and 0.4 ppm for
heavy atoms the correctness of the assignments is between
14.6% and 97.9% (Figure 7b). For the calculations with
between 0% and 20% missing peaks additional noise leads to a
variation below 10 percentage points and the correctness of the
assignments is higher than 90% except for one case (88.6%).
With an increasing number of missing peaks the correctness
depends more strongly on the number of noise peaks. It drops
dramatically if the number of noise peaks is increased from 3 to
4 times the number of expected peaks for the case of 40%
missing peaks and if the number of noise peaks is increased

Table 2. Percentage of Correct Assignments in FLYA
Calculations with Different Input Data Sets

protein backbonea NOESYb
NOESY +

backbone shiftsc

ENTH 92.2 73.4 84.6
RHO 97.0 77.1 84.3
SH2 98.4 78.3 83.9

aAssignment of the backbone atoms N, HN, C′, Cα, and Cβ using
[15N,1H]-HSQC, [13C,1H]-HSQC, HNCO, HN(CA)CO, HNCA,
HN(CO)CA, CBCANH, and CBCA(CO)NH peak lists as input.
bAssignment of all atoms, excluding C′, using only 3D 15N-resolved
NOESY and 13C-resolved NOESY peak lists as input. cAssignment of
all atoms using 3D 15N-resolved NOESY and 13C-resolved NOESY
peak lists and the backbone chemical shifts (N, HN, C′, Cα, Cβ) as
input.
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from zero to one time the number of expected peaks for the
case of 60% missing peaks.
The results of Figure 7b obtained with simulated data are

consistent with the results of Table 1 obtained with
experimental data. In the measured data of SH2, 45% of all

expected peaks cannot be mapped to a measured peak and
109% of the number of expected peaks can be identified as
artifacts in the measured peak lists (Table S4). Hence these lists
can be compared to simulated lists with 100% artifacts and 40%
missing peaks. The calculation with experimental peak lists gave
an assignment correctness of 91.4%, which is in good
agreement with the 95.7% for the simulated data, considering
that the experimental peak lists contain slightly more missing
and artifact peaks.
From the test calculations shown in Figure 7b one can draw a

general conclusion on the deleterious effects of missing peaks
and additional artifact peaks. The data from all calculations with
0.04/0.4 ppm chemical shift tolerance can be combined into a
simple relationship between the “data imperfection”, defined
empirically as the percentage of missing peaks plus 0.08 times
the percentage of additional artifact peaks, and the percentage
of correct assignments (Figure S1 in the Supporting
Information). Other weighting factors than 0.08 do not yield
a clear one-parameter relationship. This suggests that on
average an additional artifact peak has about 8% of the negative
impact of a missing peak, or, in other words, missing correct
peaks in a peak list are about 12 times more severe than
additional artifact peaks. It is therefore important that the input
peak lists contain as many of the expected peaks as possible,
even at the expense of picking a considerable number of noise
peaks.
For a maximum deviation of 0.08 ppm for hydrogens and 0.8

ppm for heavy atoms, which is higher than usually required
with solution NMR data of proteins, the correctness of the
assignments is between 24.9% and 97.6% (Figure 7c). The
minimum value of 24.9% is 10.3 percentage points higher than
the respective value for the calculations with a maximum
deviation of 0.04 ppm. This is due to the fact that the
assignment of an atom was considered to be correct if the
difference between the reference value and the assignment
value is below the chemical shift tolerance used for the
calculation. Consequently, with a higher chemical shift
tolerance more chemical shifts fall into the range randomly,
and hence are considered to be correct. For a deviation of 0.08
ppm all calculations with more additional peaks than 3 times
the number of expected peaks result in less than 75% correct
assignments. At this high tolerance, a correctness of at least
90% can be achieved only with less than 200% noise peaks and
no missing peaks, or without noise peaks and less than 60%
missing peaks.
The influence of missing peaks on the correctness of the

assignments during the calculation is shown in Figure 8. The
calculations were done with simulated peak lists. The maximum
deviation of the peaks from the ideal position is 0.04 ppm for
hydrogens and 0.4 ppm for heavy atoms. No noise peaks were
added (first column in Figure 7b). Without missing peaks the
number of correct assignments reached an almost optimal value
quickly, within about three generations of the evolutionary
algorithm. After this point there is only a slight increase in
correct assignments. The 20 individual runs were quite
uniform; the maximal difference between the correctness of
the assignments of the 20 runs at the end of the calculations is
less than one percentage point. The 20 runs terminate within
less than 40 generations. With an increasing number of missing
peaks the slope of the assignment correctness during the
calculation decreases and the best values are reached in about
30, 40, and 50 generations of the evolutionary algorithm for
40%, 60%, and 80% of the peaks missing, respectively. It takes

Figure 7. Relationship between the quality of the input peak lists and
the correctness of the resonance assignments, evaluated using
simulated peak lists for the protein SH2. See text for details. (a)
Accurate peak positions. (b) Maximal peak shift of 0.04 ppm for
hydrogens and 0.4 ppm for heavy atoms. (c) Maximal peak shift of
0.08 ppm for hydrogens and 0.8 ppm for heavy atoms. The number of
artifact peaks was varied between 0 and 5 times the number of
expected peaks (horizontal axis). Between 0% and 80% of the correct
peaks were deleted (vertical axis). Each circle represents a calculation
with input data quality given by the center of the circle. The area of the
circle is proportional to the percentage of correct assignments, which is
also printed as a number. Calculations with at least 90% correct
assignments are shown in green, with 75−90% in yellow, others in red.
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more generations for the calculations to terminate and the
uniformity of the curves decreases. In the extreme case of 80%
missing peaks the maximal difference between the correctness
of assignments at the end of the calculations was 15.6
percentage points.
Computation Time. The computation time depends

mainly on the size of the protein, the number of expected
peaks, and the number of measured peaks. A complete
assignment calculation for SH2 using simulated peak lists for
15 different experiments with 13 775 expected peaks, a
maximum deviation of 0.04 ppm for hydrogens and 0.4 ppm
for heavy atoms, no noise peaks and no missing peaks, took
10.5 min on an Intel Xeon X5680 processor. An analogous
calculation using 7 backbone experiments, with 1348 expected
peaks, took 2.2 min.

■ CONCLUSIONS
The results of this paper show that the new FLYA automated
assignment algorithm can determine resonance assignments for
backbone and side-chain shifts with a significantly higher
accuracy than existing automated methods that use as
experimental input data only peak lists. Provided that the
input peak lists are prepared with care such that they represent
well the signals of the protein under investigation, the algorithm
can yield a similar extent of reliable resonance assignments as
can be determined by an experienced spectroscopist with the
same data at hand.
In contrast to the widely used automated methods for

NOESY cross-peak assignment and the structure calcula-
tion,17,33 automated resonance assignment algorithms that can
also treat side-chain atoms have so far not been used routinely
in practice. Reasons for the scarce use of automated side-chain
resonance assignment algorithms include, presumably, that the
often significant number of erroneous assignments required
extensive checking of the results. Many spectroscopists consider
this as cumbersome as determining the assignments from
scratch by conventional semi-automatic approaches. A second
reason may be the lack of flexibility of the existing algorithms,
which implies that often significant parts of the available
experimental data cannot be used in the automated assignment

process. Many algorithms require a pre-interpretation of the
input data, for instance by assigning the atom type (e.g., Cα, Cβ,
etc.) or grouping chemical shifts into spin systems, or even
short stretches of connected residues, all of which are
equivalent to making partial assignments before starting the
automated algorithm. A third, practical reason may be that
algorithms can be difficult to use, e.g. because of strong
parameter dependence, non-standard format requirements, lack
of documentation, or high computation time demands. The
present FLYA resonance assignment algorithm largely over-
comes these limitations: The accuracy of the assignments is
high, and by consolidating chemical shifts from multiple runs,
FLYA can distinguish reliable from only tentative assignments.
Both features significantly reduce the work for manually
checking the results. The FLYA resonance assignment
algorithm provides high flexibility with regard to the spectra
that can be used for preparing the input peak lists. It can also be
used with solid state NMR data, for structure-based assign-
ment,34,35 resonance assignment based exclusively on NOESY
spectra,32 the assignment of homologous proteins given the
shifts and/or the structure of a related protein,31 and the
resonance assignment of nucleic acids, which will be treated
elsewhere. Using the FLYA resonance assignment algorithm is
straightforward. It requires only the amino acid sequence and
peak lists in which the peak coordinates corresponding to the
same atom are aligned (within each peak list and between
different peak lists) within the chemical shift matching
tolerance, which is the only important parameter that has to
be specified in accordance with the quality of the peak lists. The
computation time requirements of the FLYA resonance
assignment algorithm are also not a limiting factor.
A principal advantage of the FLYA resonance assignment

algorithm is that it integrates all different assignment steps into
one procedure that uses all data simultaneously rather than
sequentially. Therefore it does not rely on the correctness of
earlier preliminary assignment results that can in practice not be
guaranteed. The principal limitation of the present version of
the FLYA resonance assignment algorithm is that it uses peak
lists as input, which furthermore remain invariable throughout
the assignment calculation. Peak lists are analways
imperfectabstraction of the original experimental NMR
spectra. An advantage of manual and semi-automatic
approaches is that while making assignments the original
spectra can be re-inspected in the light of already gained
understanding, which allows the identification of overlapped or
weak signals and/or the elimination also of non-obvious
artifacts, as well as the implicit use of information that is not
contained in peak lists, e.g., peak shapes. We expect that in the
future the FLYA resonance assignment algorithm can be
improved further by directly accessing the spectra or by
automatically refining the peak lists during the assignment
calculation, as it has been done successfully for protein NMR
structure determination with automated NOE identification in
the NOESY spectra.36
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Rules for generating expected peaks, peak list statistics, and
detailed resonance assignment results. This material is available
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Figure 8. Percentage of correct assignments during optimization,
plotted against the generation number of the evolutionary algorithm.
Calculations were done using simulated data sets for SH2 with a
maximum chemical shift deviation of 0.04 ppm for hydrogens, 0.4 ppm
for heavy atoms, and no artifact peaks (leftmost data points in Figure
7b). Results are shown for the data sets without missing peaks, and
with 40%, 60%, and 80% peaks missing. For each calculation the 20
individual runs that were consolidated into the final result are plotted.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja305091n | J. Am. Chem. Soc. 2012, 134, 12817−1282912828

http://pubs.acs.org


■ AUTHOR INFORMATION
Corresponding Author
guentert@em.uni-frankfurt.de
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We gratefully acknowledge financial support by the Lichtenberg
program of the Volkswagen Foundation and by the Deutsche
Forschungsgemeinschaft (DFG).

■ REFERENCES
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■ NOTE ADDED AFTER ASAP PUBLICATION
Due to a production error Figures 7 and 8 were incorrect in the
version published ASAP July 23, 2012. The correct Figures
reposted July 24, 2012.
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