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Chapter 16

Automated Structure Determination from NMR Spectra

Elena Schmidt and Peter Güntert

Abstract

Three-dimensional structures of proteins in solution can be calculated on the basis of conformational 
restraints derived from NMR measurements. This chapter gives an overview of the computational methods 
for NMR protein structure analysis highlighting recent automated methods for the assignment of NMR 
spectra, the collection of conformational restraints, and the structure calculation.
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1 Introduction

Until some years ago NMR protein structure determination was a 
laborious undertaking that occupied a trained spectroscopist over 
several months for each new protein structure. It was then recog-
nized that many of the time-consuming manual steps carried out 
by an expert during the process of spectral analysis could be accom-
plished by automated, computational approaches [1]. Today auto-
mated methods for NMR structure determination are playing an 
ever more prominent role and are superseding the conventional 
manual approaches to solving three-dimensional protein structures 
in solution. This chapter gives an introduction to automated NMR 
assignment and structure calculation methods. Parts of this chapter 
were first published in the doctoral thesis of Elena Schmidt [2] and 
in [3, 4].

In most cases, protein structure determination is performed by 
a standard sequence of steps that are illustrated in Fig. 1. In the 
following, this standard procedure [5–8] is described with empha-
sis on peak picking, chemical shift assignment, nuclear Overhauser 
effect (NOE) assignment, and structure calculation.
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The first step in the process of protein structure determination 
is the preparation of the protein sample [9]. The protein to be 
studied is in most cases overexpressed in a bacterial system, which 
is usually grown on a 13C/15N isotopically enriched minimal 
medium. The protein is purified in order to obtain a sample of a 
few hundred microliters with a concentration in the (sub)milli-
molar range (>0.05 mM is sufficient using certain techniques).

The second step is the measurement of the atom signals with 
an NMR spectrometer, in which the protein sample is exposed to 
a strong magnetic field and a sequence of radiofrequency pulses. 
A set of different NMR experiments that differ from one another 
with respect to the pulse sequence are performed with the same 
sample. They result in experiment-specific signals that reveal the 

Fig. 1 Standard steps of NMR protein structure determination. The steps which are described in detail and can 
be applied iteratively are shown in black boxes. The utilization of structural information for the improvement of 
peak picking and chemical shift assignment is indicated with dashed lines
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covalent and spatial connectivities of the protein atoms. The third 
protein structure determination step is data processing. In order to 
obtain the NMR spectra, the measured time domain data is converted 
to frequency domain data using Fourier transformation and other 
techniques. In the fourth step “real” signals, which result from 
protein atoms, must be identified in the spectra and distinguished 
from noise and artifacts, which is referred to as peak picking.

The resulting peak lists are the basis for the next step, chemical 
shift assignment. The chemical shift values that are observed in the 
spectra are assigned to the corresponding protein atoms, since the 
relationship of the measured signals and the protein atoms is not 
known from the beginning.

The sixth step is NOE assignment. The cross peaks in NOESY 
spectra, which hold information about atom–atom distances in the 
3D structure of the protein, are assigned to the respective atoms 
based on the chemical shift assignment. Distance restraints are 
deduced from the volumes of these peaks. In the seventh step the 
3D structure is calculated based on distance restraints. The dis-
tance information can be complemented with angular restraints 
from chemical shifts or J-couplings, orientational restraints from 
RDCs, and hydrogen bond restraints. As soon as a preliminary 
structure is obtained, the structural information is used to improve 
the NOE assignment. This is done in several cycles.

Peak picking, chemical shift assignment, and NOE assignment 
are error-prone methods, especially when done with automated 
procedures. One possibility to reduce errors in automated proce-
dures and to improve the structural quality is to apply these steps 
iteratively and to incorporate the structural information obtained 
from structure determination into peak picking and chemical shift 
assignment. This can be done by comparison of simulated spectra 
with real spectra in case of peak picking and structure-based chemi-
cal shift prediction and expected peak prediction in case of chemi-
cal shift assignment. Finally, the last structure determination step is 
to refine the structure using force fields adapted from molecular 
dynamics simulation packages.

2 Peak Picking

Peak picking is the procedure of extracting the positions of “real” 
peaks that result from molecule atoms from NMR spectra usually 
with several attributes like volume and shape. Resulting peak lists 
provide the basis for successful automated chemical shift and NOE 
assignment. Like chemical shift assignment, peak picking is a criti-
cal step in automated structure determination, since it is very prone 
to errors. Various automated programs exist for this task, but it is 
still common to pick peak lists manually or to refine them with 
manual intervention. Popular programs that can be used for peak 
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picking are CAPP [10], GIFA [11], AUTOPSY [12], ATNOS 
[13], SPARKY [14], NMRVIEW [15, 16], AURELIA [17], 
CcpNmr Analysis [18], and XEASY [19].

The challenge of peak picking is to identify all peaks even in 
overlapped regions and to distinguish between real peaks that are 
atom signals and noise or artifacts. The quality of the resulting 
peak lists has a large impact on chemical shift assignment, since real 
peaks that have not been included into the peak list can make it 
impossible to assign the respective atoms. On the other hand, addi-
tional peaks in the peak list may be confused with real peaks and 
can therefore lead to erroneous assignments.

Automated methods use several criteria to identify the set of 
real peaks in a spectrum. The most straightforward criteria are local 
maxima and the peak intensity. To identify also low-intensity peaks, 
the peak shape is considered. Simple shape attributes like line width 
are used, but also more advanced methods are applied to compare 
measured line shapes to ideal line shapes. Such procedures are 
implemented in AUTOPSY, CAPP, or ATNOS. Apart from just 
taking attributes of a specific peak into consideration, information 
about the experiment and, if available, about the assignment of the 
atoms and the protein structure can be included, e.g., in 
ATNOS. Peaks observed in other experiments or the symmetric 
properties of some spectra can help to distinguish between real 
peaks and artifacts, by providing the information whether or not a 
peak is expected at a specific position. This information can also be 
obtained from chemical shift assignments and the protein struc-
ture, which makes it possible to use peak picking, chemical shift 
assignment, and structure determination iteratively to refine a pro-
tein structure after the initial structure calculation.

3 Resonance Assignment

Every measured atom in a macromolecule has a specific chemical 
shift value, which depends on the chemical environment of this 
nucleus. The problem is that it is unknown from the start which 
atom leads to which chemical shift value. Revealing the relationship 
between atoms and chemical shifts is denoted as chemical shift 
assignment. Chemical shift assignment is necessary not only to eval-
uate the distance information in NOESY spectra for standard pro-
tein structure determination by NMR, but also in all cases in which 
atom-specific information has to be obtained from an NMR experi-
ment. Examples are molecular interaction studies or alternative 
approaches for protein structure determination that are based on 
chemical shifts or RDCs, and investigations of protein dynamics.

To enable chemical shift assignment, several NMR experiments 
have to be performed that complement each other such that the 
connectivity of the atoms in a protein is represented. Based on the 
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knowledge about the covalent structure that can be deduced from 
the protein sequence, it is possible to establish the relationship 
between chemical shifts and atoms. Usually, a set of standard 
experiments are used to reveal the covalent atom connectivities.

Since the general strategy for chemical shift assignment has 
been described in the 1980s [20], there have been many attempts 
to establish an automated procedure for this process [1, 6, 21]. 
The published programs are based on various different optimiza-
tion techniques including exhaustive search, best first approaches, 
genetic algorithms, and Monte Carlo methods. Some programs 
incorporate the whole chemical shift assignment process shown in 
Fig. 2, starting with peak lists or NMR spectra as input data and 
ending with the complete assignment of backbone and side chain 
atoms. Others are specialized in single steps of the process, usually 
sequence-specific assignment, in which the spin systems are 
assigned to the correct positions in the amino acid sequence of the 
protein. A selection of different programs for automated chemical 
shift assignment is listed in Table 1.

To date, none of these automatic approaches has been able to 
completely replace the procedure of manually assigning chemical 
shifts, since the completeness and reliability of the assignment 
results is often too low or the programs are only tested with 

Fig. 2 Common steps of chemical shift assignment
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 simulated data sets and fail when they are applied to real data of 
standard quality. The reason is that the human strategies that are 
used for manual assignment are difficult to convert into algorithms. 
Human experts follow the scheme for chemical shift assignment 
depicted in Fig. 2, but verify their decisions made in previous steps 
or complete intermediate results during the whole process, using 

Table 1 
Selected automated assignment programs

Program Side chain Spin systems Input peak lists and notes

FLYA [39] Yes Yes Any

GARANT [30, 31] Yes Yes Standard 2D/3D through-
bond,  
NOESY

PINE [24] Yes Yes Standard 2D/3D through-
bond,  
NOESY for RNA

AUTOASSIGN [22] No Yes Standard 2D/3D through-bond

Moseley et al. [67] No Yes 3 3D/4D solid state

Li Sanctuary [68, 69] Yes Yes Any general data set

ADAPT-NMR [25] No Yes Integrated data collection

MARS [28] No No Grouped chemical shifts

MATCH [26] No Yes Designed for APSY [27];  
possible with 3D

PASTA [70] No Yes Any 2D/3D

PACES [71] No Assisted Any triple resonance; 
user-assisted

MAPPER [72] No No Shifts for amino acid stretches

DYNASSIGN [42] Yes Yes Any

ASCAN [73] Only No NOESY; backbone shifts

MONTE [74] Yes No Grouped chemical shifts

TATAPRO [75] No Yes Standard through-bond

Llinas et al. [76] Yes Yes NOESY

Lukin et al. [77] No Yes Standard through-bond

MCASSIGN2 [78] Yes Yes 2D/3D solid state; needs typing

The column “Side chain” gives information about what kind of assignment is done. “Yes” refers to assignment of back-
bone and side chains, “no” refers to assignment of the backbone, and “only” refers to assignment of the side chains. 
The column “Spin systems” gives information about whether the grouping of peaks into spin systems is done by the 
program. “yes” means that spin systems are generated automatically, “no” means that the peaks have to be grouped by 
the user, and “assisted” means that the grouping is done by the program but requires manual intervention
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the information that they gained in the current step. It might be 
impossible, for example, to group some peaks correctly into two 
spin systems based solely on the information in the respective 
spectrum in cases in which the root resonances overlap. Later in 
the process these ambiguities can be resolved as soon as neighbor-
ing residues are sequence-specifically assigned.

Often, programs for automated assignment follow the standard 
steps for chemical shift assignment, but do not improve intermedi-
ate results that were obtained in previous steps. This can lead to 
erroneous assignments since not all information available was used. 
The same problem holds true if an automated procedure only 
performs single steps of the assignment process. The remaining 
steps have to be done manually by the user. Especially spin system 
identification, which is sometimes omitted by automated procedures, 
is time-consuming if done accurately and can in some cases only be 
completed during later steps of the manual assignment process. 
This is not possible if the results obtained in one step are not used 
to improve previous results. The situation is similar for peak pick-
ing. Peak lists are often updated during the assignment process, 
when chemical shift assignments can help to distinguish between 
noise or artifacts and real peaks. Automated assignment programs 
often use peak lists as input. Hence, the results produced by these 
programs strongly depend on the quality of these peak lists.

Another reason why programs for automated chemical shift 
assignment are not frequently used is that they are often restricted 
to a specific application. Many programs just allow for input from 
standard through-bond triple resonance spectra. In this case infor-
mation from NOESY experiments, which is useful for side chain 
assignment, cannot be used and they cannot be applied whenever 
the measured data is different from the typical pattern.

In the next sections, a number of programs for automated 
chemical shift assignment are presented in more detail as 
examples for different optimization strategies and applications. 
AUTOASSIGN is the most popular program for automated chem-
ical shift assignment of backbone atoms. PINE is able to perform 
all chemical shift assignment steps given standard peak lists obtained 
from through-bond spectra as input. ADAPT-NMR does not 
assign chemical shifts based on peak lists or NMR spectra, but 
directly controls the measurement of the data. MATCH is special-
ized on the assignment of high-dimensional APSY spectra. MARS 
can incorporate RDCs into the assignment process. The algorithm 
implemented in GARANT provided the bases for the FLYA auto-
mated assignment procedure, since it is not restricted to specific 
input spectra while providing complete chemical shift assignment 
and good results.

AUTOASSIGN [22] performs backbone assignment (HN, Hα, C, 
Cα, N, and Cβ) based on a best-first approach using peak lists from 
the [15N,1H]-HSQC experiment and standard 3D triple-resonance 

3.1 AUTOASSIGN
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experiments that are commonly used for manual backbone 
assignment.

The program starts with filtering of peak lists based on the 
N-H dimensions that are common in all lists and aligning the lists 
according to the resonances of isolated peaks. Root resonances for 
the grouping of peaks into spin systems are obtained from all peaks 
in the [15N,1H]-HSQC spectrum, and completed by HNCO peaks 
for resonances that were not included in the [15N,1H]-HSQC.

In the next step the peaks from the other lists are assigned to 
these generic spin system roots if their N and H frequencies match 
those of the root peak. The peaks of a generic spin system are 
grouped into two lists of chemical shifts, the Cα and the C′ ladder, 
containing the chemical shifts of the respective amino acid itself 
and the previous one. According to the completeness, intensity, 
and degeneracy, the generic spin systems are categorized into dis-
tinct, overlapped, and weak. Based on the general chemical shift 
statistics of the BMRB and using Bayesian statistics for the Cα and 
Cβ chemical shifts, possible amino acid type lists are created for the 
Cα and C′ ladders of the generic spin systems. From these two lists 
a number of possible positions in the sequence of the respective 
dipeptide are deduced.

The following steps of linking different generic spin systems 
and assigning them to a position in the sequence are done using a 
constraint propagation method [23]. The principle is that these 
steps are first done with the category of distinct spin systems, fol-
lowed by the overlapped and finally weak ones. The assignment of 
spin systems in the first category reduces the remaining assignment 
possibilities for all other spin systems and thereby simplifies assign-
ment decisions for these spin systems. One cycle works as follows. 
All Cα and C′ ladders are compared and a list of possible nearest 
neighbor links between the spin systems is created. The list is first 
ranked by the number of matching frequencies, and then by a 
match value. Links between neighbors are established if they build 
a unique one-to-one match within the group of the same number 
of matching frequencies (best-first approach). In the next step 
these spin system neighbor pairs are assigned to the sequence if 
there is a unique one-to-one match.

PINE (Probabilistic Interaction Network of Evidence algorithm) 
[24] performs probabilistic chemical shift assignment of backbone 
and side chain atoms and determines the secondary structure of 
the respective protein. It uses the protein sequence and two- and 
three-dimensional peak lists obtained from through-bond experi-
ments as input. The method can in principle be extended to other 
experiments. Prior information about atom assignments can be 
included in the calculation.

3.2  PINE
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The first step is to build up a network connecting the measured 
chemical shifts to all labeling possibilities, i.e., the atom names in 
the protein. This network is built up as follows. In order to group 
measured peaks into spin systems, similarity scores between peaks 
are determined based on the distances of peaks in common 
dimensions.

Starting with peaks of the most sensitive experiments, normally 
[15N,1H]-HSQC or HNCO, spin systems are initialized and peaks 
with similarity scores greater than zero are added with a distance- 
dependent probability. Resulting spin systems cover peaks of spin 
system i and i − 1. Connectivity scores between spin systems are 
calculated following the same scheme that was used for the calcula-
tion of similarity scores. According to the connectivity scores, the 
spin systems are grouped into triplet spin systems, since the usage 
of these triplet spin systems for assignment instead of single spin 
systems reduces the complexity of the network.

Amino acid typing is done by calculating a score for each com-
bination of spin system and amino acid triplet that can be assigned 
to each other. The respective scoring of a single atom takes into 
account the BMRB chemical shift statistics and the secondary 
structure prediction with respect to the atom in the sequence. The 
score for a triplet is obtained by calculating the product of the 
respective atom scores in the triplet spin system.

The assignment is done in several iterations. The backbone 
assignment probabilities in the network are determined based on 
the amino acid scoring, connectivity experiments, backbone assign-
ment in the previous iteration, and outlier detection. The topology 
and the probabilities of this network are changed during several 
iterations until a quasi-stationary state is reached, which means 
that topology and probabilities do not vary significantly. In each 
iteration an energy function is evaluated, and a belief propagation 
algorithm is applied to obtain an updated network and thereby 
probabilistic assignments as well as the probabilities for the second-
ary structure. Rather than a single assignment for each atom, sev-
eral probability-weighted possibilities are obtained.

After the backbone assignment a separate network model for 
each amino acid is generated and the belief propagation algorithm 
is applied to obtain probabilistic side chain assignments.

ADAPT-NMR (Assignment-directed Data collection Algorithm 
utilizing a Probabilistic Toolkit in NMR) [25] provides fully auto-
mated backbone assignment and secondary structure prediction. 
It implements the concept of iterative chemical shift assignment 
and data measurement using a probabilistic network approach.

The algorithm starts with the generation of probabilistic spin 
systems on the basis of the [15N,1H]-HSQC spectrum. A probabi-
listic spin system has different attributes. Each attribute may have 

3.3 ADAPT-NMR
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different assignments at the same time. For example, attributes are 
the measured chemical shifts.

During the optimization cycle, evaluation of the probabilistic 
spin systems leads to the experiment type and the plane to be recorded 
next. The respective peaks are picked automatically and a probability 
based on peak and experiment characteristics is  determined using 
several machine learning techniques. Subsequently, a pseudoenergy 
model is used to update probabilistic spin systems.

For high-probability peaks in 3D spectra that do not match the 
[15N,1H]-HSQC and overlapping regions additional spin systems 
can be introduced during the calculation. If the spin system quality 
is below a specified threshold, it is optimized in a new cycle of data 
collection and probabilistic network update. When the threshold is 
reached, the assignment step is done.

The core part of the assignment step originates from the PINE 
algorithm with some modifications, e.g., a fully probabilistic imple-
mentation. In the assignment step probabilities for chemical shift 
assignments, secondary structure states, and outlier chemical shift 
values are determined. As soon as an initial assignment is available, 
the assignment and the secondary structure are also considered for 
the data collection, i.e., selection of the next experiment and plane. 
At this point data is explicitly collected for spin systems that are 
weakly linked in order to maximize the information gain in the 
data collection step.

MATCH (Mimetic Algorithm and Combinatorial Optimization 
Heuristics) [26] provides chemical shift assignment of the protein 
backbone using peak lists as input. The program was implemented 
for the use with APSY [27] spectra, but can also be used with stan-
dard triple experiments. It combines an evolutionary algorithm 
with a local optimization routine.

During the initialization process, the measured frequencies are 
grouped into spin systems and these are assembled into bigger 
fragments of a given maximum size. Therefore, connectivities 
between spin systems are identified based on a scoring function. 
Each spin system obtains the list of all possible fragments it is part 
of and finally, isolated spin systems are removed and control param-
eters for the calculation are set according to the degree of ambigu-
ity of the data.

To start with, an initial population of assignment solutions is 
generated. Each assignment solution is obtained by randomly 
selecting a fragment of maximum length and mapping it to the 
position in the sequence with the highest sequence-specific score. 
The sequence-specific score evaluates the agreement of the mea-
sured chemical shifts with the chemical shifts statistics of the 
BMRB. The process is repeated first with the remaining fragments 
of the same length. Afterwards the length of the fragments to be 
mapped is decremented. Fragments including spin systems that are 

3.4  MATCH
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already mapped are not considered in further selections. During 
the local optimization, pairs of fragments that could be mapped to 
the sequence but have not yet been assigned permanently are 
selected randomly and tested for compatibility of spin systems and 
matching adjacent spin systems and possibly they are interchanged. 
If the sequence-specific score exceeds a given threshold, a tempo-
rary assignment is created, which means that the assignment will 
not be changed by the local optimization anymore. Permanent 
assignments are established if a specific assignment can be found in 
more than a given fraction of the population.

In the global optimization routine the solutions of several indi-
viduals are combined into new assignment solutions. The individu-
als are ranked according to their sequence-specific score and the 
best-scored solutions are used to build up the next generation. The 
optimization ends when all atoms have permanently been assigned.

If the calculation does not converge, the whole process is 
repeated with modified control parameters. The optimization is 
repeated several times to obtain independent results. An assignment 
is output if it is present in at least 50 % of the independent runs.

The program MARS [28, 29] performs backbone chemical shift 
assignment using intra- and inter-residue chemical shifts, which 
have to be grouped into “pseudoresidues” by the user. The 
program can include RDCs into the assignment process if a 3D 
protein structure is available.

The first step of the algorithm is the generation of all possible 
sequential connections between pseudoresidues. Connections that 
do not agree with the experimental data are removed at later stages. 
Distances between the experimental chemical shifts of the pseudo-
residues and chemical shift predictions for possible sequence 
assignments are calculated. These predictions are obtained based 
on the standard BMRB statistics, correcting for neighbor residue 
effects and secondary structure effects. According to these 
distances, the sequence positions are ranked and a pseudoenergy is 
determined.

The optimization starts with a random assignment of the peu-
doresidues to positions in the amino acid sequence. Starting from 
a random pseudoresidue, segments of five residues including this 
residue are assembled based on the connectivity information. The 
segments are mapped onto all possible positions of the sequence. 
The probability for an assignment is calculated using the pseu-
doenergy and the solutions are ranked, the minimum representing 
the best solution. If starting with the last pseudoresidue of the 
respective segments leads to the same assignment solution, the 
solution is considered reliable and a penalty for all other possibilities 
is included into the pseudoenergy function. The procedure is 
repeated with all pseudoresidues as starting points for the assembly. 
In subsequent steps the segment size is decreased. The procedure 

3.5  MARS
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is further repeated adding varying noise to the predicted chemical 
shifts. Consistent solutions are considered as reliable. If RDC mea-
surements and a 3D protein structure are available for the respec-
tive protein, the agreement between the measured RDCs and 
RDCs calculated from the provided protein structure is included 
into the distance function.

GARANT (General Algorithm for Resonance AssignmeNT) [30] 
is a program for automatic chemical shift assignment of backbone 
and side chain atoms. It can be used for chemical shift assignment 
solely based on a set of peak lists and the protein amino acid 
sequence, but can also assign chemical shifts based on a given 3D 
protein structure [31].

The general concept of GARANT is that the connectivities 
between the atoms of a protein that can be revealed with different 
NMR experiments are represented by a network of expected peaks 
and protein atoms. The mapping of this network to the network of 
measured peaks and their chemical shifts leads to an assignment of 
the atoms to the respective chemical shifts. The optimization prob-
lem of finding the mapping possibility that corresponds to the cor-
rect assignment solution is solved using an evolutionary algorithm 
in combination with a local optimization routine.

Both optimization routines use a scoring scheme based on the 
concept of mutual information. The different terms of the scoring 
function for the evolutionary optimization evaluate the assignment 
of a chemical shift to an atom, based on the agreement with general 
chemical shift statistics, the mapping of an expected peak to a 
measured peak, and the agreement of the chemical shifts of single 
signals and the respective atom chemical shift. Ambiguous peak 
mappings lead to a reduced score. The global score results from the 
sum over the terms resulting from all atom and peak mappings.

The evolutionary optimization routine is controlled by a simu-
lated annealing temperature schedule. It uses a population of 50 
assignment solutions by default. For the construction of a new 
generation, parent solutions with a high global score are favored. 
Mappings for a specific residue are adapted from parent solutions 
as far as possible. If no parent solution is available, those of residues 
with similar spin systems are considered. If no mapping solution 
could be determined that way, new mappings are generated.

The local optimization routine selects unmapped or ambigu-
ously mapped expected peaks and evaluates the assignment of 
neighboring atoms based on a local score and reassigns these atoms, 
if necessary. The local optimization routine also uses the mutual 
information-based scoring scheme, except that for the scoring of 
an atom only contributions that are directly related to the atom are 
included.

An advantage of the GARANT algorithm compared to many 
other methods is that in principle it can solve the assignment 

3.6 GARANT
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problem using every combination of spectra that contain sufficient 
information for the assignment. Even though the algorithm is 
generally applicable to any kind of common NMR spectrum, the 
 specification of a given set of spectra is done within the program 
and can only be extended by changes of the C++ source code.

The fully automated chemical shift assignment program 
GARANT was introduced in 1996. In the respective publications 
[30, 31] the application of GARANT was demonstrated by assign-
ing different proteins up to a sequence length of 165 amino acids, 
based on data sets that consisted solely of homonuclear 2D spectra 
as well as data sets consisting of 3D spectra. GARANT has been 
used in various other projects, and has also been adapted for calcu-
lations with APSY [27] spectra and applied to the assignment of 
4–7D APSY spectra in different applications [32, 33].

To obtain full automation of chemical shift assignment starting 
from NMR spectra, GARANT was combined with the automated 
peak picking program AUTOPSY [12] and a program for calibra-
tion and filtering, PICS [34]. GARANT was combined with 
AUTOPSY, the structure calculation program CYANA, and the 
molecular dynamics simulation package OPALp to achieve fully 
automated structure determination, including peak picking, chem-
ical shift assignment, NOE assignment, structure calculation, and 
energy refinement [35]. It has been shown that this strategy is in 
principle also applicable to sparse data [36, 37]. Even structure 
determination based solely on NOESY data was successful [38].

The new FLYA automated chemical shift assignment procedure 
has been implemented and applied to several targets [4, 39]. 
As described above, various programs for automated chemical shift 
assignment have been developed before, but none of these 
approaches has become a standard procedure. The main reasons 
for this are the generally low accuracy of the assignment results and 
restrictions to specific applications.

The aforementioned GARANT program for automated chemical 
shift assignment is based on an optimization strategy that can in 
principle be applied to every kind of NMR spectrum and provides 
good assignment results compared to other programs. However, 
assignment calculations with GARANT take relatively long, i.e., 
several hours in some cases, the application to nonstandard data sets 
is not straightforward and the accuracy of the results leaves room for 
improvement. This situation led to the development of a new algo-
rithm, FLYA, with the following objectives: (1) improving the accu-
racy of the chemical shift assignment, (2) improving the flexibility of 
the method in order to address a wider range of problems, (3) short-
ening the run time of the algorithm, and (4) incorporating auto-
mated resonance assignment into the CYANA software in order to 
simplify the application of the algorithm in conjunction with other 
CYANA modules, e.g., NOE distance restraint assignment and 
structure calculation by torsion angle dynamics.

3.7  FLYA
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The resulting implementation of the FLYA automated 
 assignment algorithm [39] in the CYANA software package 
includes a modified expected peak generation procedure, a new 
scoring scheme, and various further improvements of the opti-
mization algorithm over the earlier GARANT approach.

NMR resonance assignment is based on experiments that 
correlate nuclear spins such that they give rise to cross peaks in mul-
tidimensional spectra. Assignment experiments are chosen to com-
plement each other in such a way that the connectivity of the atoms 
in a protein can be represented by a network of peaks that are 
expected to be observed. Mapping this network of expected peaks 
with unknown positions to the unassigned measured peaks with 
known positions provides an assignment of the frequencies to the 
spins [30, 31]. The FLYA algorithm for automated backbone and 
side chain resonance assignment uses this general approach to assign 
all kinds of NMR spectra. It is implemented in the software package 
CYANA [40, 41]. As input, FLYA uses exclusively the sequence of 
the protein and unassigned peak lists from any combination of mul-
tidimensional solution-state or solid-state NMR spectra.

All experimental data is used simultaneously in order to exploit 
optimally the redundancy present in the input peak lists and to 
avoid potential pitfalls of assignment strategies in which results 
obtained in a given step remain fixed input data for subsequent 
steps. Instead of prescribing a specific assignment strategy, the 
FLYA resonance assignment algorithm generates the peaks 
expected in a given spectrum by applying a set of rules for through- 
bond or through-space polarization transfer, and determines the 
resonance assignment by constructing an optimal mapping between 
the expected peaks, assigned by definition but having unknown 
positions, and the measured peaks, initially unassigned but with 
known positions in the spectrum [30, 31, 39, 42].

The rules for generating expected peaks have been imple-
mented for many different solution-state and solid-state NMR 
experiments. Expected peaks for experiments like NOESY or 
DARR, which give signals between atoms that are close in space, 
are obtained using random structures of the respective proteins [39]. 
An expected peak is generated for each atom pair up to a given 
cutoff on the maximal distance between the two atoms in the 
ensemble of random structures. This will generate expected peaks 
only if the atoms are close together in the primary structure, e.g., 
for intra-residual and sequential distances. It corresponds to the 
generation of expected peaks for NOE-based experiments in solu-
tion NMR. Expected peaks for all other experiments are obtained 
based on the covalent connections between atoms. For each exper-
iment the covalent bond patterns that hold this information are 
provided to the algorithm in the CYANA library file. It is straight-
forward to add new experiments or to modify the rules for existing 
experiments.
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The best mapping of expected peaks to measured peaks is 
obtained using an evolutionary optimization routine that works 
with a population of individuals, each representing an assignment 
solution for the protein. This evolutionary optimization is comple-
mented by local optimization. Solutions that are produced during 
the optimization are generated such that the search space of an 
expected peak for a mapping is defined by a chemical shift statistics 
(by default from the BMRB [43], or user defined), the deviations 
of the measured frequencies of measured peaks that are assigned to 
the same atom remain within a given tolerance, and an expected 
peak can be mapped to only one measured peak. The first generation 
of solutions is generated randomly, but subject to these conditions. 
In each generation a local optimization algorithm takes small parts 
of a mapping back and reassigns the expected peaks for a defined 
number of iterations, 15,000 is default. Afterwards the different 
solutions of one generation are recombined into a new generation. 
The individuals and the specific parts of an individual that contribute 
to a new individual are selected via a scoring function. The solution 
that maximizes this function is given as the final assignment at the 
end of the calculation.

The global score for complete assignment solutions evaluates 
four attributes of an assignment solution, the distribution of chemical 
shift values with respect to the given shift statistics, the alignment 
of peaks assigned to the same atom, the completeness of the assign-
ment, and a penalty for chemical shift degeneracy. The global score 
G is defined by
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The term A0 denotes the set of all atoms for which expected peaks 
exist, A ⊆ A0 the set of assigned atoms, Na the set of expected peaks 
for atom a, and Na′ ⊆ Na the subset of expected peaks that are 
mapped to a measured peak. b(n) refers to the ambiguity of the 
assignment and equals the number of expected peaks that are 
assigned to the same measured peak as expected peak n. Unassigned 
atoms and unmapped peaks contribute through the normalization 
by the denominator. Relative weights of the individual contribu-
tions are given by w1(a) and w2(a, n) and in [39] these were set to 
w1(a) = 4 and w2(a, n) = 1 for all calculations. The quality measure 
Q1(a) represents the agreement of the average chemical shift w a( )  
in the chemical shift list of atom a with the corresponding general 
chemical shift statistics. Similarly, Q2(a, n) measures the agreement 
between the chemical shift ω(a, n) of atom a obtained from the 
measured peak to which the expected peak n is mapped and the 
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average frequency of the atom in the assigned peaks of the corre-
sponding spectrum [39]. The quality measures Q are designed 
such that a perfect match corresponds to Q = 1, Q < 1 in all other 
cases, a deviation that is considered “as bad as no assignment” 
yields Q = 0, and an infinitely large deviation Q = −∞. Consequently, 
the global score G is normalized such that G = 1 for a (hypotheti-
cal) perfect assignment, and G < 1 in all other cases.

The main difference to solution NMR lies in the rules for gen-
erating expected peaks, which have been implemented for many 
different solid-state NMR experiments (Table 1).

To improve and assess the accuracy of the assignment, m inde-
pendent runs of the algorithm are performed with different ran-
dom seeds. For each atom a consensus chemical shift is computed 
from the values obtained in the individual runs [34, 35, 39]. The 
consensus chemical shift w a( )  for an atom a is the value that maxi-
mizes the function
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where ωj(a) is the chemical shift value obtained for atom a in run 
j, and ϵ(a) is the chemical shift tolerance. The maximum value of 
this function, m w a( )( ) , is a measure of the self-consistency of the 
chemical shift values obtained in the individual runs of the algo-
rithm, since it approximately equals the fraction of runs that yielded 
a chemical shift value within the tolerance ϵ(a) from the consensus 
value w a( ) . This quantity can be calculated without knowledge of 
reference assignments. If all chemical shift values are identical, then 
m w a( )( ) =1 . We consider assignments with m w a( )( ) ³ 0 8.  as 
“strong” or self-consistent, all others as “weak.” Weak assignments 
should be considered as tentative, although they are correct in 
many cases.

In the following, an example of a CYANA macro for a standard 
chemical shift assignment is shown, which refers to the published 
assignment calculations [39]. Executing this macro leads to a stan-
dard chemical shift assignment of the protein atoms and evaluation 
of the assignment results based on reference shifts. NOE assign-
ment and structure calculation are not done.

 1. assigncs_accH:=0.03
 2. assigncs_accC:=0.4
 3. assigncs_accN:=0.4
 4. assignpeaks:=N15NOESY,C13NOESY,\
 5. C13HSQC,N15HSQC,HCCHTOCSY,HCCHCOSY,HNCA,HNca

CO,HNCO,HNcoCA,\

 6. CBCANH,CBCAcoNH,HBHAcoNH,CcoNH,HCcoNH
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 7. cyanalib
 8. read seq protein.seq
 9. flya shiftreference=protein.prot runs=20 assignpeaks= 

$assignpeaks

Lines 1–3: The tolerances are set for the assignment calculation and 
the comparison with the reference chemical shifts in the file “pro-
tein.prot,” 0.03 ppm for hydrogen atoms and 0.4 ppm for carbon 
and nitrogen atoms.
Line 4: The peak list names of NOESY experiments are specified. 
Expected peaks for all experiments are generated according to the 
entries in the CYANA library file. In case of expected peaks for 
NOESY experiments distances are deduced from a random struc-
ture (“start.pdb”). Alternatively, the user can specify a structure.
Line 5/6: The peak list names of the through-bond experiments 
are specified.
Line 7: The CYANA standard library is read.
Line 8: The protein amino acid sequence is read from the file “pro-
tein.seq”.
Line 9: The command flya, which is specified in the macro “flya.
cya,” is executed. The chemical shifts in file “protein.prot” obtained 
from manual assignment are used as reference for the automated 
assignment. The number of independent assignment runs is set to 
20. The content of the variable “assignpeaks” is given as input for 
the parameter “assignpeaks” of the macro “flya.cya”.

4 NOE Assignment

Structure determination with distance restraints obtained from 
NOESY spectra relies on the fact that 1H nuclei which are 
separated by less than 5 Å in the protein lead to cross-peaks in the 
spectra according to the isolated two-spin approximation. The 
cross-peak volumes are proportional to the inverse sixth power of 
the distance between the nuclei. Since neighbor effects may weaken 
the observed signal, the presence of a cross-peak provides only an 
upper distance limit for the distance between the two hydrogen 
atoms [44]. In order to convert the peak volumes observed in the 
spectra to distance restraints, a spectrum-dependent calibration 
constant has to be determined.

During NOE assignment the observed cross-peaks in a NOESY 
spectrum are assigned to the corresponding atom pairs according 
to the resonance assignment, in order to generate a list of distance 
restraints, which provides the basis for structure calculation. An 
illustration of a protein structure with all distance restraints, which 
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were obtained from NOESY spectra and used for the structure 
calculation, is shown in Fig. 3.

Obtaining a comprehensive set of distance restraints from a 
NOESY spectrum is in practice by no means straightforward. 
Resonance and peak overlap turn NOE assignment into an itera-
tive process in which preliminary structures, calculated from lim-
ited numbers of distance restraints, serve to reduce the ambiguity 
of the cross peak assignments. Additional difficulties may arise 
from spectral artifacts and noise, and from the absence of expected 
signals because of fast relaxation. These inevitable shortcomings of 
NMR data collection are the main reason why laborious interactive 
procedures have dominated this central step of NMR protein 
structure determination for a long time. Automated procedures 
follow the same general scheme as the interactive approach but do 
not require manual intervention during the assignment/structure 
calculation cycles. Two main obstacles have to be overcome by an 
automated method starting without any prior knowledge of the 
structure: First, the number of cross peaks with unique assignment 
based on chemical shift alignment alone is in general not suffi-
cient to define the fold of the protein [7]. An automated method 
must therefore have the capability to use also NOESY cross peaks 
that cannot (yet) be assigned unambiguously. Second, the auto-
mated program must be able to cope with the erroneously picked 

Fig. 3 Distance restraints that were obtained from 13C and 15N-resolved NOESY 
spectra and used as input for the structure calculation of the protein. The protein 
atoms are shown in black. Distance restraints in green connect corresponding 
hydrogen atoms
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or inaccurately positioned peaks and with the incompleteness of 
the chemical shift assignment of typical experimental data sets. An 
automated procedure needs devices to substitute for the intuitive 
decisions made by an experienced spectroscopist in dealing with 
the imperfections of experimental NMR data.

Besides semiautomatic approaches [45–47], several algorithms 
have been developed for the automated analysis of NOESY spectra 
given the chemical shift assignments of the backbone and side 
chain resonances, namely NOAH [48, 49], ARIA [50–53], 
AUTOSTRUCTURE [54], KNOWNOE [55], CANDID [56] 
and a similar algorithm implemented in CYANA [57], PASD [58], 
and a Bayesian approach [59]. Automated NOE assignment algo-
rithms generally require a high degree of completeness of the back-
bone and side chain chemical shift assignments [60].

A widely used algorithm for the automated interpretation of 
NOESY spectra is implemented in the NMR structure calculation 
program CYANA [41, 57]. This algorithm is a re-implementation 
of the former CANDID algorithm [56] on the basis of a probabi-
listic treatment of the NOE assignment, combined in an iterative 
process that comprises seven cycles of automated NOE assignment 
and structure calculation, followed by a final structure calculation 
using only unambiguously assigned distance restraints. Between 
subsequent cycles, information is transferred exclusively through 
the intermediary 3D structures. The molecular structure obtained 
in a given cycle is used to guide the NOE assignments in the 
following cycle. Otherwise, the same input data are used for all 
cycles, that is, the amino acid sequence of the protein, one or 
several chemical shift lists from the sequence-specific resonance 
assignment, and one or several lists containing the positions and 
volumes of cross peaks in 2D, 3D, or 4D NOESY spectra. The 
input may further include previously assigned NOE upper distance 
bounds or other previously assigned conformational restraints for 
the structure calculation.

In each cycle, first all assignment possibilities of a peak are gen-
erated on the basis of the chemical shift values that match the peak 
position within given tolerance values, and the quality of the fit is 
expressed by a Gaussian probability, Pshifts. Second, in all but the 
first cycle the probability Pstructure for agreement with the prelimi-
nary structure from the preceding cycle, represented by a bundle 
of conformers, is computed as the fraction of the conformers in 
which the corresponding distance is shorter than the upper dis-
tance bound plus the acceptable distance restraint violation cutoff. 
The precision of the structure determination normally improves 
with each subsequent cycle. Accordingly, the cutoff for acceptable 
distance restraint violations in the calculation of Pstructure is tight-
ened from cycle to cycle. Third, each assignment possibility is eval-
uated for its network anchoring (see below), which is quantified by 

4.1 Combined 
Automated NOE 
Assignment 
and Structure 
Calculation 
with CYANA
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the probability Pnetwork. Only assignment possibilities for which the 
product of the three probabilities is above a threshold,

 P P P P Ptot shifts structure network min= ³• • ,  

are accepted (Fig. 4). Cross peaks with a single accepted assign-
ment yield a conventional unambiguous distance restraint. 
Otherwise, an ambiguous distance restraint is generated that 
embodies multiple accepted assignments.

Because of the limited accuracy of chemical shift values and peak 
positions many NOESY cross peaks cannot be attributed to a sin-
gle unique spin pair but have an ambiguous NOE assignment 
comprising multiple spin pairs. Ambiguous distance restraints [61] 
provide a powerful concept for handling ambiguities in the initial, 
chemical shift-based NOESY cross peak assignments. Prior to the 
introduction of ambiguous distance restraints in the ARIA algo-
rithm [53], in general only unambiguously assigned NOEs could 
be used as distance restraints in the structure calculation. Since the 
majority of NOEs cannot be assigned unambiguously from chemi-
cal shift information alone, this lack of a general way to include 
ambiguous data into the structure calculation considerably ham-
pered the performance of early automatic NOESY assignment 
algorithms. When using ambiguous distance restraints, every 
NOESY cross peak is treated as the superposition of the signals 
from each of its possible assignments by applying relative weights 
proportional to the inverse sixth power of the corresponding 

4.2 Ambiguous 
Distance Restraints

Fig. 4 Three conditions that must be fulfilled by a valid assignment of a NOESY cross peak to two protons A 
and B in the CYANA automated NOESY assignment algorithm: (a) Agreement between the proton chemical 
shifts ωA and ωB and the peak position (ω1, ω2) within a tolerance of Δω. (b) Spatial proximity in a (preliminary) 
structure. (c) Network anchoring. The NOE between protons A and B must be part of a network of other NOEs 
or covalently restricted distances that connect the protons A and B indirectly through other protons
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interatomic distances. A NOESY cross peak with a unique assign-
ment possibility gives rise to an upper bound b on the distance d(α, 
β) between two hydrogen atoms, α and β. A NOESY cross peak 
with n > 1 assignment possibilities can be interpreted as the super-
position of n degenerate signals and interpreted as an ambiguous 
distance restraint, deff ≤ b, with the “effective” or “r−6-summed” 
distance
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Each of the distances dk = d(αk, βk) in the sum corresponds to one 
assignment possibility to a pair of hydrogen atoms, αk and βk. The 
effective distance deff is always shorter than any of the individual 
distances dk. Thus, an ambiguous distance restraint will be fulfilled 
by the correct structure provided that the correct assignment is 
included among its assignment possibilities, regardless of the pos-
sible presence of other, incorrect assignment possibilities. 
Ambiguous distance restraints make it possible to interpret NOESY 
cross peaks as correct conformational restraints also if a unique 
assignment cannot be determined at the outset of a structure 
determination. Including multiple assignment possibilities, some 
but not all of which may later turn out to be incorrect, does not 
result in a distorted structure but only in a decrease of the informa-
tion content of the ambiguous distance restraints.

Each assignment possibility is evaluated for its network anchoring, 
i.e., its embedding in the network formed by the assignment pos-
sibilities of all the other peaks and the covalently restricted short- 
range distances. The network anchoring probability Pnetwork that the 
distance corresponding to an assignment possibility is shorter than 
the upper distance bound plus the acceptable violation is com-
puted given the assignments of the other peaks but independent 
from knowledge of the three-dimensional structure. Contributions 
to the network anchoring probability for a given, “current” assign-
ment possibility result from other peaks with the same assignment, 
from pairs of peaks that connect indirectly the two atoms of the 
current assignment possibility via a third atom, and from peaks that 
connect an atom in the vicinity of the first atom of the current 
assignment with an atom in the vicinity of the second atom of the 
current assignment. Short-range distances that are constrained by 
the covalent geometry take, for network anchoring, the same role 
as an unambiguously assigned NOE. Individual contributions to 
the network anchoring of the current assignment possibility are 
expressed as probabilities, P1, P2, …, that the distance  corresponding 
to the current assignment possibility satisfies the upper distance 
bound. The network anchoring probability is obtained from the 

4.3 Network 
Anchoring
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individual probabilities as Pnetwork = 1 − (1 − P1)·(1 − P2)⋯, which is 
never smaller than the highest probability of an individual network 
anchoring contribution.

In practice, spurious distance restraints may arise from the 
misinterpretation of noise and spectral artifacts, in particular at the 
outset of a structure determination, before 3D structure-based 
filtering of the restraint assignments can be applied. The key 
technique used in CYANA to reduce structural distortions from 
erroneous distance restraints is “constraint combination” [56]. 
Ambiguous distance restraints are generated with combined assign-
ments from different, in general unrelated, cross peaks (Fig. 5). 
The basic property of ambiguous distance restraints that the 
restraint will be fulfilled by the correct structure whenever at least 
one of its assignments is correct, regardless of the presence of addi-
tional, erroneous assignments, then implies that such combined 
restraints have a lower probability of being erroneous than the cor-
responding original restraints, provided that the fraction of errone-
ous original restraints is smaller than 50 %. Constraint combination 
aims at minimizing the impact of such imperfections on the result-
ing structure at the expense of a temporary loss of information. It 
is applied to medium- and long-range distance restraints in the first 
two cycles of combined automated NOE assignment and structure 
calculation with CYANA.

4.4 Constraint 
Combination

Fig. 5 Schematic illustration of the effect of constraint combination in the case of two distance restraints, a 
correct one connecting atoms A and B, and a wrong one between atoms C and D. A structure calculation that 
uses these two restraints as individual restraints that have to be satisfied simultaneously will, instead of find-
ing the correct structure (shown, schematically, in the first panel), result in a distorted conformation (second 
panel ), whereas a combined restraint that will be fulfilled already if one of the two distances is sufficiently 
short leads to an almost undistorted solution (third panel). The formation of a combined restraint from the 
assignments of two peaks is shown in the right panel
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5 Structure Calculation

The three-dimensional protein structure is calculated using the list 
of distance restraints, which are obtained from NOESY spectra. 
Commonly used programs for structure calculation are CYANA 
[40] (formerly DYANA [41]/DIANA [62]), Xplor-NIH [63], 
and CNS [64] (formerly X-PLOR [65]), where CYANA is the pro-
gram most widely used for NMR structure calculation [66].

The most efficient algorithm for the calculation of 3D protein 
structures from distance restraints, which is also implemented in 
CYANA, performs simulated annealing by molecular dynamics 
simulation in torsion angle space. The simulated annealing proce-
dure minimizes a potential energy function, which takes distance 
restraints, angle restraints, and a repulsive potential into account. 
Atom distance information from NOESY spectra can be comple-
mented, e.g., by angle restraints, orientational restraints, and 
hydrogen bond restraints.

A CYANA structure calculation with automated NOE assign-
ment can be completed in less than 1 h for a 10–15 kDa protein, 
provided that the structure calculations can be performed in paral-
lel, for instance on a Linux cluster system.

In the following, an example of a CYANA macro for a standard 
combined automated NOE assignment and structure calculation is 
shown. Executing this macro performs the automated NOE assign-
ment and the structure calculation of a protein.

 1. peaks := c13.peaks,n15.peaks,aro.peaks
 2. prot := demo.prot
 3. restraints := demo.aco
 4. tolerance := 0.04, 0.03, 0.45
 5. structures := 100,20
 6. steps := 10000
 7. randomseed := 434726
 8. cyanalib
 9. read seq protein.seq
 10. noeassign peaks=$peaks prot=$prot autoaco

Line 1: The names of the input NOESY peak lists are specified.
Line 2: The names of the input chemical shift lists are specified. In 
this case, there is one chemical shift list that is used for all peak lists.
Line 3: The names of additional input restraint files, in this case a 
file with torsion angle restraints, are specified.
Line 4: Tolerances are set for the NOE assignment calculation, i.e., 
0.04/0.03 ppm for hydrogen atoms in the indirect/direct dimen-
sions, and 0.45 ppm for carbon and nitrogen atoms.
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Line 5: The numbers of conformers that are calculated (100) and 
analyzed [20] are specified.
Line 6: The number of torsion angle dynamics steps in the structure 
calculation is specified.
Line 7: The random number generator seed for generating initial 
structures is specified.
Line 8: The CYANA standard library is read.
Line 9: The protein amino acid sequence is read from the file “pro-
tein.seq”.
Line 10: The command noeassign, which is specified in the macro 
“noeassign.cya” is executed with the given NOESY peak lists and 
chemical shift list(s) as input. The option “autoaco” specifies that 
weak torsion angle restraints for the Ramachandran plot and stag-
gered side chain rotamers will be generated and used for the struc-
ture calculations.
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