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Methods for protein structure prediction

Methods are distinguished according to the relationship between
the target protein(s) and proteins of known structure:
« Comparative modeling: A clear evolutionary relationship
between the target and a protein of known structure can
be easily detected from the sequence.
« Fold recognition: The structure of the target turns out to
be related to that of a protein of known structure although
the relationship is difficult, or impossible, to detect from
the sequences.
* New fold prediction: Neither the sequence nor the structure
of the target protein are similar to that of a known protein.
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Figure 4.1 A guide to protein-structure pre-
known structure

diction. The first step is always a search in the
protein sequence database. Comparative
modeling should be used when a protein of
known structure sharing sequence similarity
with the protein under examination is present
in the database. If this is not so, fold-
recognition methods should be applied and,
should they fail, the user should resort to new
fold or fragment-based methods. Note the
central role played by the structure database in
all these heuristic methods.
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CASP: Fragment-based predictions

Figure 6.2 Some examples of
fragment-based predictions
submitted to CASP experiments

Fragment-based approaches

*Rosetta (David Baker)
*Fragfold (David Jones)

Degenerate sequence-to-structure
relationship

Figure 6.1 The local sequence-to-structure

relationship is degenerate. For some recurring
local structures, however, a correlation can be
identified. In the figure, the left part depicts the
space of sequence fragments. Each line repre-

sents a sequence and two similar sequences
are closer to each other. Some groups of
sequences will show preference for a subset of
local structures (indicated by the thicker lines
in the figure) while others will be less specific.
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Steps of fragment-based structure
prediction

*Split sequence into fragments

*For each fragment, search the database of
known structures for regions with a similar
sequence (“neighbors”)

*Use an optimization technique to find the best
combination of fragments

Sequence: ATRFGCTGFKLMTYPFDGEWRTRSDEF...

Fragment ‘
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Figure 6.3 Schematic explanation ((_’;5 _9\—

of the first steps of the Rosetta
method. The query sequence is split

in fragments nine amino acids long.

Each fragment sequence is used to

search for similar fragments among b ’}

the sequences of proteins of known &

structure. Next, the fragments are S‘/ b

joined.

Distance between target and template
fragment sequences in Rosetta

dist = 29: §:|S(aa, i)— X (aa,i)

i=1 aa=1

*S(aa,i) and X(aa,i) are the frequencies of the amino
acid in position i = 1,...,9 of the target and template
nine-residue sequences or alignments.

*The 25 closest “neighbors” from the database of
known 3D protein structures are chosen.

ROSETTA:
Distance
between
fragments

Figure 6.4 Calculation of the distance between
the sequence of a fragment of 2 query protein
and that of a fragment of a protein of known
Structure, as implemented in the Rosetta
method. In the example, a multiple sequence
alignment is available for the query sequence
and this enables a profile to be derived for each
of the nine positions. The fragment of the
database in the example is instead unique and
its profile only contains 1 in the row corre-
sponding to the observed amino acid and 0 in
all other cells of the matrix. For each position,
the distance is computed as the absolute value
of the difference between the frequency of each
amino acid in the profiles of the query and
database sequences. They are summed to give
the distance between the two sequences

Structural variability and similarity
to true structure for fragments
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Correlation between structural variability and similarity to the true structure in nearest neighbor sets. Variability in phi and
rmsd from the native structure for entire calbindin sequence. Each position is represented by the segment with the lowest
variability. The four helices in the native structure are indicated by hatched bars.

Simulated annealing in Rosetta

« Simplified model: main-chain heavy atoms, and CP

« Torsion angles as degrees of freedom

« For each 9-residue sequence fragment, find 25 nearest
sequence neighbors

« Start from extended chain

< In each Monte Carlo step, substitute the dihedral angles
of arandomly chosen neighbor at a randomly chosen
position for those of the current position

« Conformations are initially evaluated using Bayesian
probabilities. In subsequent cycles, knowledge based
potentials are used.
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Radius of gyration

For arigid body consisting of n particles with
mass m; located at distance r; from the center
of mass, the radius of gyration is defined by

n n
Re = Zmi r’ Zmi
i=1 i=1

Radii of gyration of simulated and
native structures

Comparison of the radii of
100 gyrations of simulated and
] native structures. 100
structures were generated
for chains of 100 residues
by splicing together protein
fragments using either no
scoring function (open
bars), or the square of the
radius of the gyration as
the scoring function
(hatched bars). Histograms
20 . were computed using 5 A
bins. The distribution of
. ‘ ‘ | | radii of gyrations for the
(1] . 1 I L 1 1 small (50 to 150 residue)
0 5 10 15 20 25 30 35 40 45 50  Proteinsin the pdbselect
radius of gyration 25 set is shown for
comparison (filled bars).
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Rosetta Predictions in CASP5: Successes, Failures, and
Prospects for Complete Automation

Philip Bradley’, Dylan Chivian', Jens Meiler', Kira M5, Misara'. Caral A, Rehl', William . Schief,
William J. Wedemeyer', Oa Schueler-Furman, Paul Murphy, Jack Sehonbrun, Charles EM. Steauss, and
David Baker
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Global distance test (GDT)
plots for selected targets
comparing the CASP5
Rosetta submissions with
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RMSD cutoff under which
to fit the model to the native
structure, and the x axis.
represents the percentage
of the model that will fit
below that cutoff value.

ROSETTA
results in
CASP5

Ribbon diagrams of predictions
made by using the fragment
insertion approach. The native
structure and best submitted model
are shown colored from the N-
terminus (blue) to C-terminus (red).
For T148, the best generated
model is also shown, and for T156,
both template-based and fragment
insertion based models are shown.
For targets T173, T135, T156, and
T191, colored regions deviate from
the native structure by <4 A, and
gray regions deviate by >4 A. For
targets T129 and T156, colored
regions deviate from the native
structure by <6 A C RMSD,
whereas the gray regions deviate
by >6 A.
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Contact order

The relative contact order is the average separation along the
sequence of residues in physical contact in a folded protein,
divided by the length of the protein.

Low contact order x
The contact
= order is strongly
§ correlated with

High contact order the folding rate

of a protein.
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Toward High-Resolution
de Novo Structure Prediction
for Small Proteins

Philip Bradley, Kira M. S. Misura, David Baker®

The prediction of protein structure from amino acid sequence is a grand
challenge of computational molecular biology. By using a combination of im-
proved low- and high-resolution conformational sampling methods, improved
atomically detailed potential functions that capture the jigsaw puzzle-like
packing of protein cores, and high-performance computing, high-resolution
structure prediction (<1.5 angstroms) can be achieved for small protein
domains (<85 residues). The primary bottleneck to consistent high-resolution
prediction appears to be conformational sampling.

Science 309, 1868-1871 (2005)

Prediction results
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Free-energy landscape for barstar

, all-atom energy
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Free-energy landscape for the small protein barstar (PDB code 1al19). Rosetta all-atom-
energy (y axis) is plotted against C*-RMSD (x axis) for models generated by simulations
starting from the native structure (refined natives, blue points) or from an extended chain
(de novo models, black points). The free-energy function includes the entropic
contribution to the solvation free energy but not the configurational entropy.

High-resolution de novo structure
predictions

A - . B

— Superposition
of low-energy
models (blue)
with experimental
structures (red)
showing core
side chains.

: Hox-B1

: Ubiquitin

- RecA

: KH domain of
Nova-2

: 434 repressor

: Fyn tyrosine

kinase
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Energy vs. accuracy
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Plots of C2-RMSD (x axis) against all atom energy (y axis) for refined
natives (blue points) and the de novo models (black points). Red arrows
indicate the lowest energy de novo models.

Protein design

*Inverse protein folding problem

*Design the sequence of a protein that will fold
into a given 3D structure.

« Structure can be that of an existing protein
(“sequence redesign”) or a completely new
fold, not yet observed.

Design of a Novel Globular
Protein Fold with
Atomic-Level Accuracy

Brian Kuhlman,'"{ Gautam Dantas,’* Gregory C. Ireton,*
Gabriele Varani,? Barry L. Stoddard,* David Baker™?}

A major challenge of computational protein design is the creation of novel
proteins with arbitrarily chosen three-dimensional structures. Here, we used a
general computational strategy that iterates between sequence design and
structure prediction to design a 93-residue o/f protein called Top7 with a novel
sequence and topology. Top? was found experimentally to be folded and
extremely stable, and the x-ray crystal structure of Top7 is similar (root mean
square deviation equals 1.2 angstroms) to the design medel. The ability to
design a new protein fold makes possible the exploration of the large regions
of the protein universe not yet observed in nature.

Science 302, 1364-1368 (2002)

Designed globular protein fold

A two-dimensional schematic of the target fold (hexagon, strand; square,
helix; circle, other). Hydrogen bond partners are shown as purple arrows.
The amino acids shown are those in the final designed (Top7) sequence.

Top7 structure

Schematic representation
of Top7 in unbiased SAD
density. (A and B) Stick
representations of
residues 46 to 76 from
the computationally
designed Top7 (left,
green) and from the 2.5 A
x-ray structure (right, red)
are shown in unbiased
density (blue). The map
was generated from SAD
phasing from a single
SeMet-substituted variant
of Top7, followed by
density modification. (C
and D) Ribbon diagrams
of Top7 with residues 46
to 76 highlighted in red.
The two diagrams are
related by a 90° rotation
around the vertical axis.

Designed and X-ray structure of Top7
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Comparison of the computationally designed €
model (blue) to the solved x-ray structure
(red) of Top7. (A) C- overlay of the model
and structure in stereo (backbone RMSD
1.17 A). (B) The C-terminal halves of the x-
ray structure and model are extraordinarily
similar. The representative region shown
(Asp78 to Gly8S5) has an all-atom RMSD of
0.79 A and a backbone RMSD of 0.54 A.
(C) Stereo representation of the effectively
superposable side chains in the cores of the
designed model and the solved structure.
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