(Aspekte der Thermodynamik in der Strukturbiologie)

Einfuhrung in die Bioinformatik

Wintersemester 2012/13
16:00-16:45 Horsaal N100 B3

Peter Gluntert

Alignment algorithms

Outline

* Dynamic programming

* Global alignment algorithm of
Needleman and Wunsch (1970)

* Local alignment algorithm of
Smith and Waterman (1981)

Alignment
algorithms

Possibles routes
from Malmo to
Tromsa.

How can you
determine an
optimal route?

X >
o
L d
© =R
€ c s
o0 ..n <R Y A
1 99 c
O u \O < | (O [m=t [0 =
')) .F
O b W0 | | [v vt vt vt
7, A A A =
wd
o (7] W (v (60 (vl | == e |V |
N TS g
6 m o (NS [| [(e [
D 2 I D A A Y L
m I <t [0 =i [[0 |6 |m fen = e
= -
17, 00 |on [en [[| Q1 [e [e e
A N AN A A Al AN AN P
—_— TR maelRmle e
B 0 ([[o [(O [en [| [o0 |1 |
' D v D v [[O D .E
N[[en [= [e [[| e [e
| N A TV e
N [on [oF [en [en [t [t [t [t e [0n [t vt [0 e [t
S A G A A A A D R A AN AN A AN &)
O |00 | O [mt [t [en [vt [0 |00 [v [vt [t [en) |en
£ NI RIDENENED AN =)
O = |en || [[~ [nn o m o = (o < o e
\ N Rl NN N4
N | | |n [(S [[en | e | [en (e [= [en | [en
RN h N DR AN Al A RO AN Y V)
T e (O[O (D [l vl (D (O vt v (v vl (O] v vl (D [0 (O (S
AN i NN A Al Al Al AN AR <
<o [z |2 O (O[O [e = [o [o [B

ic programming

3
"

Dynam

&

5

&
5

Consider possible paths from Start to Finish that pass through A.

Dynamic programming

e Consider first: how many paths from Start to Finish pass through A?

¢ There are six paths from Start to A.

* By symmetry, there are also six paths from A to Finish.

* Therefore, there are a total of 36 paths from Start to Finish through A.

¢ Assuming that we have assigned costs to the individual steps, do we have to
check all 36 paths to find the path of minimum cost that goes from Start to
Finish passing through A?

Dynamic programming

¢ No: the choice of the best path from A to Finish is independent of the choice of
path from the Start to A.

¢ If we determine the best of the six paths from Start to A, and the best of the six
paths from A to Finish, the best path from Start to Finish passing through A is:
The best path from Start to A, followed by the best path from A to Finish.
- No more than 12 of the 36 paths through A need to be considered.

* Even greater simplification is possible by systematically resubdividing the problem.

® The dynamic programming method for finding the optimal path through the
matrix is based on this idea.

Global alignment with the algorithm of
Needleman and Wunsch

Two sequences can be compared in a matrix along x- and y-axes.
If they are identical, a path along a diagonal can be drawn.

Find the optimal subpaths, and add them up to achieve the best
score. This involves

e adding gaps when needed
e allowing for conservative substitutions
e choosing a scoring system (simple or complicated)

The Needleman-Wunsch algorithm is guaranteed to find optimal
alignment(s).

Three steps to global alignment with the
Needleman-Wunsch algorithm

1. set up a matrix
2. score the matrix

3. identify the optimal alignment(s)

Four possible outcomes in aligning two sequences

1. identity
(stay along a diagonal)
2. mismatch
(stay along a diagonal)
3. gap in one sequence
(move vertically!)
4. gap in the other
sequence
(move horizontally!)

sequence 1 (length m)

region of
-— alignment

= .

- without gaps
=]

b=t ;
ks m—
- sequence 2
o

€L

Q

T

- f

o

€L -

0 gap in

sequence 1

Sequence 2 Sequence 2
DPLE DPME
- D —D
Q [}
Sp ep
g g
gL gL
n E o E
1 DPLE 1 DPLE
2 DPLE 2 DPME
" Sequence 2 Sequence 2
D P E . DPLE
—D 2D
@ Q
ep 5LR
9 =3
oL o E
(o] 0y
o E
1 DPLE 1 D-LE
2 DP-E 2 DPLE

Dynamic programming algorithm |

A statement of the optimal alignment problem and the dynamic programming
solution are as follows: given two character strings, possibly of unequal length:
A=ayay---ay and B = byb, - - - by, where each g; and b; is a member of an alphabet set
A, consider sequences of edit operations that convert A and B to a common sequence.
Individual edit operations include:

Substitution of b; for a;—represented (a;, bj).
Deletion of g; from sequence A—represented (a;, ¢).
Deletion of bj from sequence B—represented as (¢, by).

If we extend the alphabet set to include the null character ¢: A™ = AU {$}, a sequence
of edit operations is a set of ordered pairs (x,y), with x,y € A*.

A cost function, d, is defined on edit operations:

d(a;, by) = cost of a mutation in an alignment in which position i of sequence A
corresponds to position j of sequence B, and the mutation substitutes a; < b;.

d(a;, ¢) or d(¢, b;) = cost of a deletion or insertion.
Define the minimum weighted distance between sequences A and B as

D(A, B) = min Zd(x,y)
A—B

where x,y € A" and the minimum is taken over all sequences of edit operations that
convert A and B into a common sequence.

Dynamic programming algorithm Il

The problem is to find D(A, B) and one or more of the alignments that correspond
to it.

An algorithm that solves this problem, requiring execution time proportional to
the product of the lengths of the two sequences, creates a matrix D(i,j),i =0,---n;j =
0,---m, such that D(i,) is the minimal distance between the strings that consist of the
first i characters of Aland the first j characters of B. Then D(n,m) will be the required
minimal distance D(A, B).

The algorithm computes D(i,j) by recursion. The value of D(i,j) corresponds to the
conversion of the initial subsequences A; = a1a; - - - a; and B; = byb; - - - bj into a common
sequence by L edit operations S,k =1,---L, which can be considered to be applied
in increasing order of position in the strings. Consider undoing the last of these edit
operations. The resulting truncated sequence of edit operations, Sy, k=1,---L —1,isa
sequence of edit operations for converting a substring of A; and a substring of B; into
a common result. What is more, it must be an optimal sequence of edit operations
for these substrings, for if some other sequence S, were a lower-cost sequence of
operations for these substrings, then S, followed by S; would be a lower-cost sequence
of operations than S, for converting A; to B;. Therefore, there should be a recursive
method for calculating the D(i, j).

Dynamic programming algorithm lll

Recognize the correspondence of steps between adjacent squares in the matrix, and
individual edit operations (see Fig. 5.1):

(i—1,j—1)— (i,)) corresponds to the substitution a; — b.
(i—1,j) = (i.j) corresponds to the deletion of a; from A.
(i,j—1)— (i,)) corresponds to the insertion of b; into A at position .

Sequences of edit operations correspond to stepwise paths through the matrix
(i0.jo) = (0,0) = (i1, j1) = ---(n,m)

where 0 <y —ix <1(forO<k<n-—1), 0 <jiy1 —jr <1 (for 0 < k <m — 1). Consid-
ering the possible sequences of edit operations and the corresponding paths through
the matrix, the predecessor of an optimal string of edit operations leading from (0,0)
to (i,j), where i,j > 0, must be an optimal sequence of edit operations leading to one
of the cells (i — 1,j),(i—1,j — 1) or (i,j — 1); and, correspondingly, D(i,j) must depend
only on the values of D(i — 1,j), D(i — 1,j — 1) and D(i,j — 1), (together of course with
the parameterization specified by the cost function d).

Dynamic programming algorithm IV

The algorithm is then as follows:
Compute the (m + 1) x (n + 1) matrix D by applying:

1. the initialization conditions on the top row and left column:

D(i,0) =) d(ax. ¢)

k=0

j
D(0.j) =Y d(d.bw)
k=0
These values impose the gap penalty on unmatched residues at the beginning of
either sequence
and then
2. the recurrence relationships:

D(i,j) = min{D(i — 1,j) + d(a;,), D(i — 1,j — 1) + d(a;, by), D(i,j — 1) + d(¢, b))}

Dynamic programming algorithm V

fori=1,---n:j=1,---m. This means: consider all three possible steps to D(i,) :

Operation Cumulative cost

Insert a gap in sequence A D(i —1,j) + d(a;, $)

Insert a gap in sequence B D(i,j— 1)+ d(. b))

From these, choose the minimal value of the cumulative cost. For each cell, record
not pnly the value D(i, j) but a pointer back to (one or more of) the cell(s) (i — 1,j), (i —
1,j—1) or (i,j — 1) selected by the minimization operation. Note that more than one
predecessor may give the same value.

When the calculations are complete, D(n, m) is the optimal distance D(A, B). An align-
ment corresponding to the sequence of edit operations recorded by the pointers can be
recovered by tracing a path back through the matrix from (n, m) to (0,0). This alignment
corresponding to the minimal distance D(A, B) = D(n, m) may well not be unique.

Fill in the matrix using “dynamic programming”

(a) Sequence 2 (b)
FMDTPLNE
Score = Max [Fii—1,j—1]+ s{x, ¥)
0 -2 4 6 81012 . "
gt [Ftl—tn—nap penalty

Fl2 F(i,j-1) - gap penalty
K-
- Hi= Soore (this example) =+1 (match)
M & —2 (mismatch)
g E o -2 (gap penalty)
FIIEE
P-4
L &
E -is
ie) Sequence 2 id) Sequence 2 ie) Saquence 2
F oM F oM
Fii=1.4)
Fii=1,j-1) o 2 4 o | 2| =
- - 1 - 4
8 ~ oa o 2 K
§ [—ramryic ey gF| s 5 F| 2 | oo
T T 5
P Rt Fi) PR @
- gap
penalty
(g} Sequance 2 i} Sequence 2
FMDTPLNE FMDTPLNE
024 & 8 10121418 o 24 8 e 0=
F | o/ttt 345 P 1113 F bt st s ettt
K=/ | e T
A iR e e e v
H & H -8 -3 -3 5+ -GaFs—gaitei3
- - v TR e e w
a M- @ M| 8| 6/2ed| BaFtoit13y
E e e 0
g E -0 g E -0 -7 < <76 F—811 =10
bk A
T D -z T D iz 86 G 5P —8-11-12
@ @ e
Pl P —ta—i1| S 55 o010
DY
L —a L -18-13-10 -7 -

7| & g7
Hbr e
E -8 E |-18-15-12 &[5 2| & |5 /4

Fill in the matrix using “dynamic programming”

(b)

F(i-1, j) — gap penalty

Score = Max{ F(i—1, j-1) + s(x; ¥)
F(i, j-1) — gap penalty

Score (this example) = +1 (maitch)
-2 (mismatch)
-2 (gap penalty)

Initialize with gap penalties

(a) Sequence 2
F MDTPL NE

0 -2 4 -6 -8-10-12-14-16

Sequence 1

mr T OmEZ I = T
N
o

10

Fill in the matrix using “dynamic programming”

(c) Sequence 2

Fi-1, j-1). FO=1.))

()]
9 —gap
§ + (X;, yj)\\ ¢ penalty
=
Q
@ F(i j-1)— F(i,))
—dap
penalty

Fill in the matrix using “dynamic programming”

(d) Sequence 2
F M
o . -2 —4
T
5 Fl 24
=1
?
Ki —4

11

Fill in the matrix using “dynamic programming”

(e) Sequence 2
F M
-2 _4—4

3 K

5§ Fl 2 | 1=

o =

=1

@

K -

Fill in the matrix using “dynamic programming”

(f) Sequence 2
F MDTWPUL NE

0 -2 -4 -6 -8-10-12-14-16
x
—2 +1=>—1=—3=+ 5= 7=+ —C=+—11+13

RN —%
-4 -1 13+ -5+7-05+11+13
I
-6 -3 3 -3+ - 547+-0+11+13

N e e
-8 5 294 57+-8+11+13
R o I O L R R
-7 4 -4+ -6 —~»—9+—11-10
¥ ¥ =N 4
—12 -9/ -6 -3+ S5+ -0+-11-12

Sequence 1

mr— T Om<ET I X T
L
o

e R I e |
-14-11 -8 -5 -5 —4+—-6+-8=-+10
AR R
-16-13-10 -7 -7 —6 -3+ -5=-7
= = bt ey
-18-15-12 -8 -9 -8 -5 -5/ 4

Traceback to find the optimal (best) pairwise alignment

(a) Sequence 2 (b) Sequence 2
FMDTPL NE FMDTPL NE
0|-2|-4|-6|-8|-10]-12]-14]—16 0 -2 -4 -6|-8-10-12 -14-16
x ®
F| -2 +19—1=-3+ -5 7+ -94—11->13 F o2 +1 -1/-3 -5 -7 /-9 |-11-13
R i e R e . t
K -4 -1 -19-3+-57+-9+-11>13 K -4 -1 -1|-8|-5|-7|-9-11-13
F T T VIt ' 1
H -6 -8 -3 —3=+-5==7+—-09=+-11>13 H -6 -8 -3 -3/-5 -7 -9 -11-13
- N S i e T T Y — ®
o M|-8|-5 294 | 57201113 o M| 8 -5 -2 -4 -5 -7 -9 -11-13
2 = 1 el 2 t
¢ E |10 -7 4 -4+-6 -F+-9+-11-10 g E 10 -7/ 4 -4 -6 -7/-9|-11-10
>) A= —} Z S
&S D |-12| -9| -6 -3+ 5 +~7+-9+-11/-12 $ D|-12 -9 -6 B+=-5 -7 -9 -1 -12
e i e %
P —14/-11|-8|-5 -5 —4»—6+-8=10 Pl-14/-11 -8| -5 -5/ -4 -6|-8-10
Fodo ot b x
L | —16|-13/-10| -7 | =7 | =6 | =3+ 5=7 L |-16/-13 -10|-7 | -7| -6 | -8«-5 -7
L S A B A LS
E|-18-15-12/-9| -9 |-8 | -5|-5 —4 E -18-15-12/9 -9 -8/ -5 -5 —4
(c) S t t o= t x LS S x
+1 -1 -3 -2 4 -3 «-5 4 3 +«-5 -4
Sequence1 F K H M E D - p L - E
Sequence2 F - - M - D T P L N E

Dynamic programming: Example Il

Align the strings A = ggaatgg and B = atg, according to the simple scoring
scheme: match = 0, mismatch = 20, insertion or deletion = 25.

Here is the state of play after the top row and leftmost column have been
initialized (italic), and the element in the second row and second column has been
entered as 20 (boldface):

¢ a t g
0 25 5 75
25 20

50

75

100

125

150

175

Q@ Q cp pQ Qe

The value of 20 was chosen as the minimum of 25 + 25 (horizontal move, or
insert gap into string atg), 0 + 20 (substitution a <> g) and 25 + 25 (vertical move,
or insert gap into string ggaatgg). Because the substitution (the diagonal move)
provided the minimal value, the cell containing 0 in the upper left-hand corner
of the matrix is the predecessor of the cell in which we have just entered the 20.
For traceback purposes, we would also draw an arrow from the value of 20 just
entered, back to the 0 at the upper left. (If two or even three of the possible moves
produce the same value, the resulting cell has multiple predecessors.)

13

Here is matrix after completion of the calculation:

Dynamic e
. . 6|0 <25 <50 <75
programming: R S
g|25 20 <45 50
Example Il RN
g|50 45 40 45
{ e R LS
al75 50 65 60
t Nt N Nt
al100 75 70 85
1 TN N
t|125 100 75 90
t t TN

g |[150 125 100 75
[t 51

g|175 150 125 100
It includes the traceback information in the form of arrows pointing from each cell
to its predecessor(s). For some applications we may need only the value of D(A,B)
but not an alignment; if so, it is unnecessary to save the pointers, Boldface arrows
delineate the paths of optimal alignment retracing a trail of predecessors from
lower right, back to upper left. In some cases, one cell may show two predecessors.
These correspond to alternative alignments with the same score.

There are two cells at which the traceback path branches. This gives a total of

four optimal alignments with equal score:

ggaatgg ggaatgg ggaatgg ggaatgg

---atg- ---at-g --a-tg- --a-t-g

Needleman-Wunsch: dynamic programming

e N-W is guaranteed to find optimal alighments,
although the algorithm does not search all possible
alignments.

e |tis an example of a dynamic programming
algorithm: an optimal path (alignment) is identified
by incrementally extending optimal subpaths.

e Thus, a series of decisions is made at each step of
the alignment to find the pair of residues with the
best score.

14

Global alignment versus local alignment

e Global alignment (Needleman-Wunsch) extends from
one end of each sequence to the other.

¢ Local alignment finds optimally matching regions
within two sequences (“subsequences”).

e Local alignment is almost always used for database
searches such as BLAST. It is useful to find domains
(or limited regions of homology) within sequences.

e Smith and Waterman (1981) solved the problem of
performing optimal local sequence alignment. Other
methods (BLAST, FASTA) are faster but less thorough.

NP_324492.1
NP_337032.1
NP_824492.1
NP_337032.1
NP_824492.1
NP_337032.1
NP _824492.1
NP_337032.1
NP_824492.1
NP_337032.1
NP_824492.1

NP_337032.1

NP_824492.1
NP_337032.1
NP _824492.1
NP_337032.1
NP_824492.1

NP_337032.1

Global alignment (top) includes matches
ignored by local alignment (bottom)

1 MCGDMTVHTVEYIRYRIPEQQSAEFLAAYTRAARQLAAARPQCVDYELARC
1
51 EEDFEHFVLRITWTSTEDHIEGFRESELFPDFLAEIRPYISSIEEMRHYK
1
v 1
101 PTTVHG':‘C—AE;‘JRI’TLYAWA

]
1 MEGMDOMPRSFYDAV!
'

TEVFYEEKVLKDDVLAPVFEGMAP

DAIVSRFYAQVAEDEVLRRVY----P

'
151 EH----- ARHVALWLGEVFGGPAAYSETQGGHGHMVAKHLGENITEVQRR

44 EDDLAGAEERLRMFLEQYWGGPRTYSE-QRGHPRLRMRHAPFRISLIERD
: L 4

196 RWVNLLQDAADDAGLPT- DAEFREAFLAYAEFGTRLAV‘Y FSGPDAVFPAE
teotoifemenns RN N

93 AWLRCMHTAVASIDSETLDDEHRRELLDYLEMARHSLV--NSPF
]

245 QPVPOWSWGRMPPYQP 260

135 134
113 TLYAWAGGAEAFARLTEVFYEKVLEDDVLAPVFEGMAPEH-----. AMHVA
N R
10 SFYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVY----PEDDLAGAEERLR

158 LWLGEVFGGPAAYSETQGGHGHMVAKHLGENITEVQRRRWVNLLQDAADD

56 MFLEQYWGGPRTYSE-QRGHPRLEMRHAPFRISLIERDAWLRCMHTAVAS

208 RGLPT-DAREFRSAFLAYAE

105 IDSETLDDEHRRELLDYLE 123

225

Global alignment:
15% identity

Local alignment:
30% identity

15

Local alignment algorithm of Smith-Waterman

The Needleman-Wunsch algorithm determines the optimal

global alignment of two sequences.

e |tis inappropriate for detection of local regions of high
similarity within two sequences, or for probing a long sequence
with a short fragment, because it imposes gap penalties
outside the similar regions.

¢ The method of T. Smith and M. Waterman solves this problem.

e Their modifications of the basic dynamic programming

algorithm find optimal local alignments; that is, they select the

substrings from both sequences that are most similar to each
other. Their changes affect three parts of the algorithm.

Local alignment algorithm of Smith-Waterman

1. Initialization of the matrix—setting the values of the top row and left
column. In the Smith-Waterman method, the top row and left column are
set to 0. As a result, either sequence can slide along the other before alignment
starts, without incurring any gap penalty against the residues it passes by.

N

. Filling in the matrix In global alignment, at each step a choice is forced
among match, insertion or deletion, even if none of these choices is attractive
and even if a succession of unattractive choices degrades the score along
a path containing a well-fitting local region. The Smith-Waterman method
adds the fourth option: end the region being aligned.

3. Scoring and traceback The score of a global alignment is the number in
the matrix element at the lower right. In the Smith-Waterman method it is
the optimal value encountered, wherever in the matrix it appears. For global
alignment, traceback to determine the actual alignment starts at the lower-
right cell. In the Smith-Waterman method it starts at the cell containing the
optimal value and continues back only as far as the region of local similarity
continues.

The Smith-Waterman method would report a unique global optimum for our
example:

ggaatgg
atg

Note that no gaps appear outside the region matched.

16

How the Smith-Waterman algorithm works

Set up a matrix between two proteins (size m+1, n+1)
No values in the scoring matrix can be negative! S >0

The score in each cell is the maximum of four values:
[1] s(i-1, j-1) + the new score at [i,j] (a match or mismatch)
[2] s(i,j-1) — gap penalty
[3] s(i-1,j) — gap penalty
[4] zero

Smith-Waterman algorithm allows
the alignment of subsets of sequences

Sequence 1 (length m)
CAGCCUCGCUUAG

0.0{0.0|0.0{0.0(0.0{0.0]0.0/0.0{0.0/0.0]0.0/0.0(0.0{0.0
0.0{0.0|1.0{0.0(0.0{0.0]0.0/0.0{0.0{0.0]0.0/0.0({1.0{0.0
0.0/0.0/1.0{0.7(0.0/0.0]0.0|0.0{0.0/0.0]0.0/0.0(1.0{0.7
0.0/0.0|0.0{0.7(0.3/0.0/1.0/0.0{0.0{0.0]1.0/1.0{0.0{0.7
0.0{0.0|0.0{1.0/0.3/0.0]0.0|0.7{1.0/0.0]0.0|0.7(0.7|1.0
0.0{/1.0{0.0{0.0(2.0/1.3]0.3|1.0{0.3]|2.0]0.7|0.3(0.3]0.3
0.0{1.0{0.7{0.0(1.0|3.0]1.7|1.3{1.0|1.3]1.7]|0.3(0.0{0.0
0.0/0.0|2.0{0.7(0.3|1.7]2.7|1.3(1.0]0.7]1.0|1.3(1.3]0.0

0.0{0.0|0.7{1.7(0.3|1.3]2.7|2.3(1.0]0.7]1.7|2.0(1.0[1.0
0.0/0.0|0.3{0.3(1.3[1.0]2.3|2.3|2.0|0.7]1.7|2.7(1.7|1.0
0.0/0.0/0.0(1.3/0.0/1.011.0|2.0(3.3|2.0]1.7|1.3(2.3|2.7
0.0/0.01.0{0.0(1.0{0.3]0.7|0.7(2.0|3.0]1.7|1.3[2.3|2.0
0.0/1.0]0.0{0.7(1.0|2.0]0.7|1.7(1.7|3.0]2.7|1.3[1.0|2.0
0.0{0.0|0.7(1.0/0.3|0.7]1.7|0.3|2.7|1.7]2.7|2.3(1.0|2.0
0.0/0.0/0.0{1.7/0.7]0.3]0.3(1.3{1.3|2.3[1.3(2.3|2.0]|2.0

Sequence 2 (length n)

OO0Oo0OrocCcc2>»O0O00OC>>

17

Performing global and local pairwise alignment

http://www.ebi.ac.uk/Tools/psa/

Rapid, heuristic versions of Smith-Waterman:
FASTA and BLAST

e Smith-Waterman is very rigorous and it is guaranteed
to find an optimal alignment.

e But Smith-Waterman is slow. It requires computer
space and time proportional to the product of the
two sequences being aligned (or the product of a
guery against an entire database).

e Gotoh (1982) and Myers and Miller (1988) improved
the algorithms so both global and local alighnment
require less time and space.

e FASTA and BLAST provide rapid alternatives to S-W.

18

Unterlagen zur Vorlesung

http://www.bpc.uni-frankfurt.de/guentert/wiki/index.php/Teaching

19

