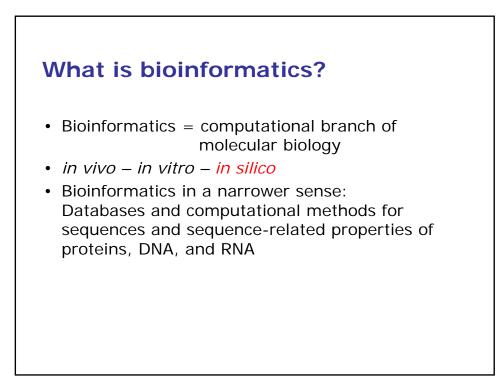
Einführung in die Bioinformatik

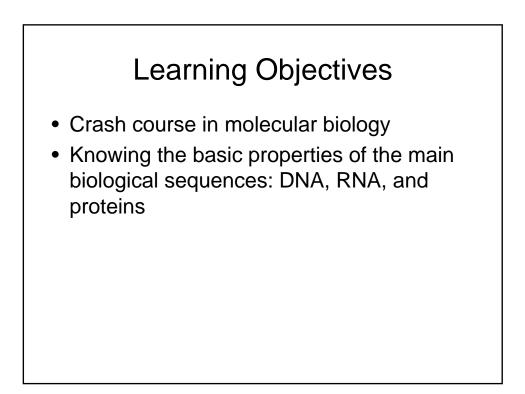
Wintersemester 2012/13 16:00-16:45 Hörsaal N100 B3

Peter Güntert

Literatur Jean-Michel Claverie, Cedric Notredame: Bioinformatics for Dummies, 2nd ed. (2007) Arthur M. Lesk: Introduction to Bioinformatics (2008) Marketa Zvelebil, Jeremy O. Baum: Understanding Bioinformatics (2008) Jonathan Pevsner: Bioinformatics and Functional Genomics (2009) Michael S. Waterman: Introduction to Computational Biology (1995) R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological Sequence Analysis (1998)

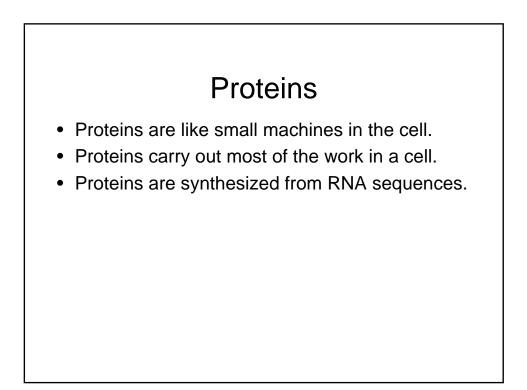
BCDS Seminar


Biochemische Datenbanken und Software

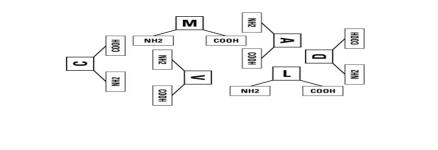

biokemika.uni-frankfurt.de/wiki/Portal:Seminare/BCDS-Seminar (wird noch aktualisiert)

17.11. 2012– 8.12.2012, jeweils samstags, 9-18 Uhr Beilstein Zentrum, Raum C

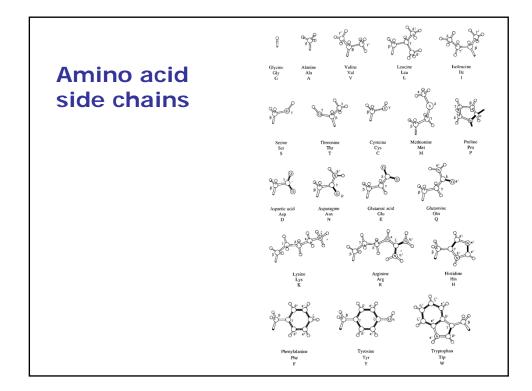
Anmeldung ab Montag 22.10.2012

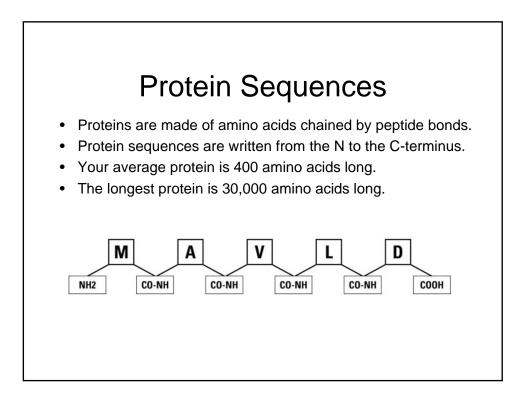

F	inding out what bioinformatics can do
f	or you
•	What is bioinformatics?
•	Analyzing protein sequences
	 A brief history of sequence analysis
	 Reading protein sequences from N to C
	 Working with protein 3D structures
	 Protein bioinformatics covered in this book
•	Analyzing DNA sequences
	 Reading DNA sequences the right way
	 The two sides of a DNA sequence
	 Palindromes in DNA sequences
٠	
	 RNA structures: playing with sticky strands
	 More on nucleic acid nomenclature
•	DNA coding regions: pretending to work with protein sequences
	 Turning DNA into proteins: the genetic code
	 More with coding DNA sequences
	 DNA/RNA bioinformatics covered in this book
٠	Working with entire genomes
	 Genomics: getting all the genes at once
	 Genome bioinformatics covered in this book

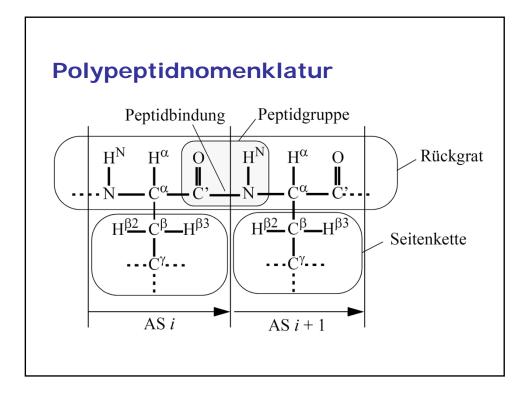


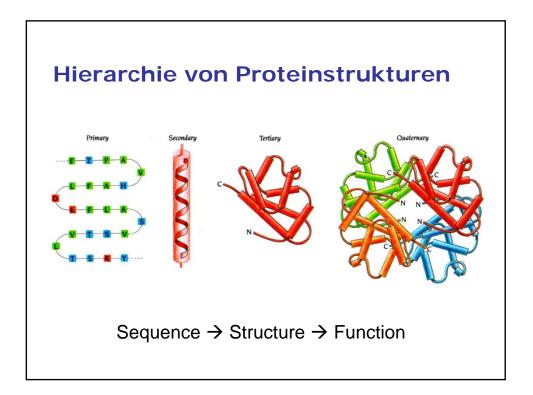


- 1. Protein sequences
- 2. DNA sequences
- 3. RNA sequences
- 4. Entire genomes

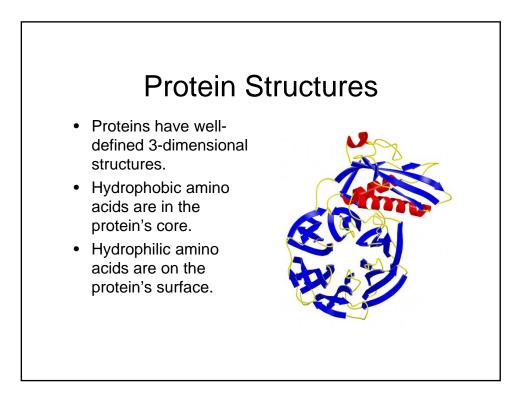


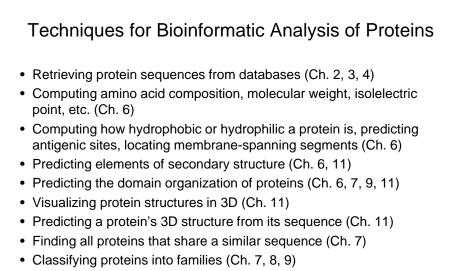

- Proteins are made of 20 amino acids.
- Each amino acid is small molecule made up of fewer than 100 atoms.
- The 20 amino acids have similar terminations; they can be chained to one another like Lego bricks.

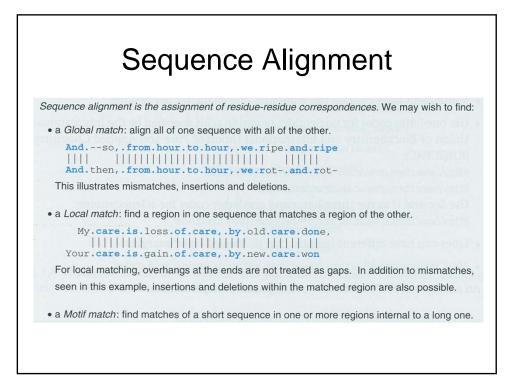



Amino acid names and symbols

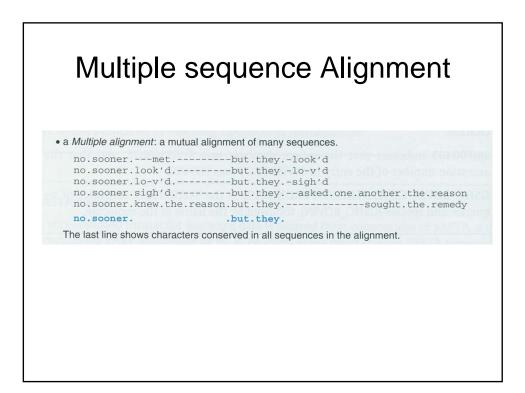
Amino acid or residue thereof	Three-letter symbol	One letter symbol	Mnemonic help for one- letter symbol	Relative abundance in <i>E. coli</i> proteins (19) (%)	M.W. of residue at pH7.0 (daltons)	pK value of side chain (19)
Alanine	Ala	Α	Alanine	13.0	71	
Glutamate	Glu	E	gluEtamic acid		128	4.3
Glutamine	Gln	Q	Q-tamine	10.8	128	
Aspartate	Asp	D	asparDic acid	9.9	114	3.9
Asparagine	Asn	N	asparagiNe	2.9	114	
Leucine	Leu	L	Leucine	7.8	113	
Glycine	Gly	G	Glycine	7.8	57	
Lysine	Lys	K	before L	7.0	129	10.5
Serine	Ser	S	Serine	6.0	87	
Valine	Val	V	Valine	6.0	99	
Arginine	Arg	R	aRginine	5.3	157	12.5
Threonine	Thr	Т	Threonine	4.6	101	
Proline	Pro	Р	Proline	4.6	97	
Isoleucine	Ile	I	Isoleucine	4.4	113	
Methionine	Met	Μ	Methionine	3.8	131	
Phenylalanine	Phe	F	Fenylalanine	3.3	147	
Tyrosine	Tyr	Y	tYrosine	2.2	163	10.1
Cysteine	Cys	С	Cysteine	1.8	103	
Tryptophan	Trp	W	tWo rings	1.0	186	
Histidine	His	н	Histidine	0.7	137	6.0



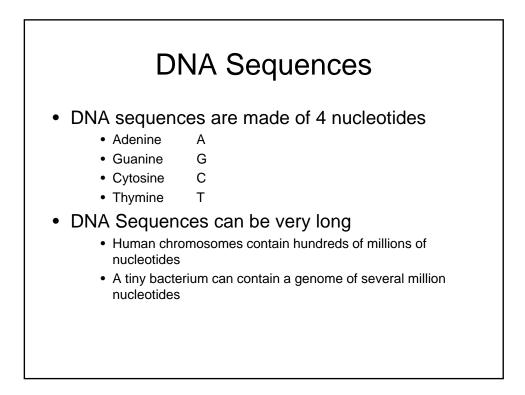


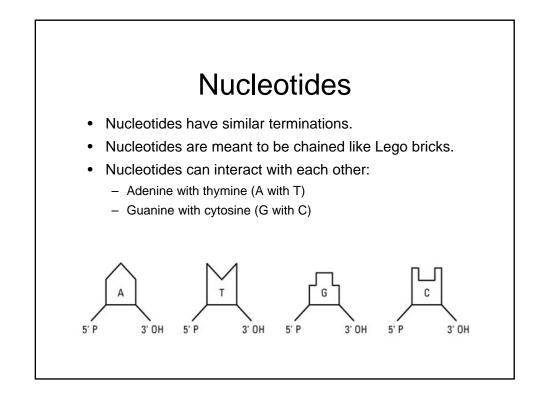


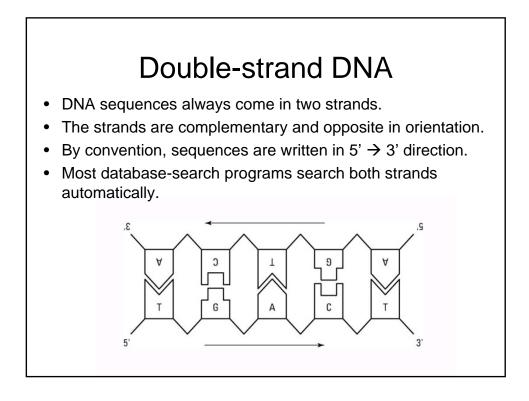
<text><text><text>

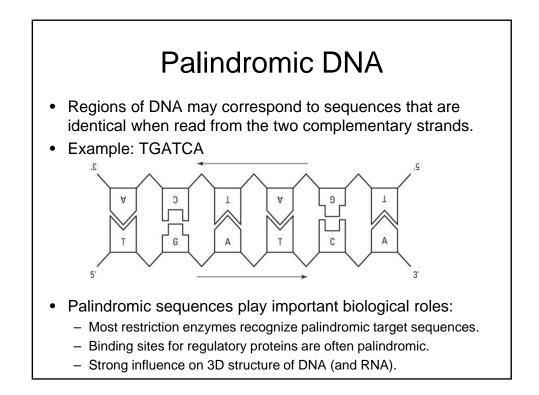


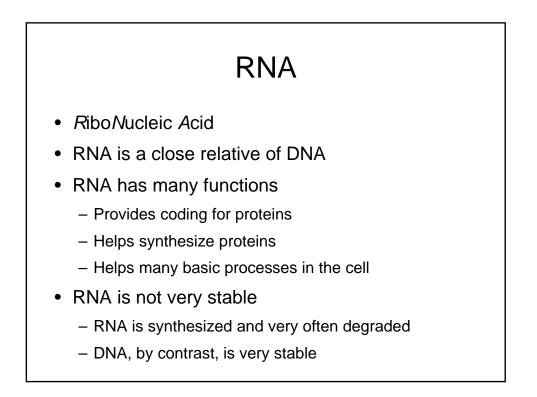
- Finding the best alignment between two or more proteins (Ch. 8, 9)
- Finding evolutionary relationships between proteins, drawing proteins' family trees (Ch. 7, 9, 11, 13)

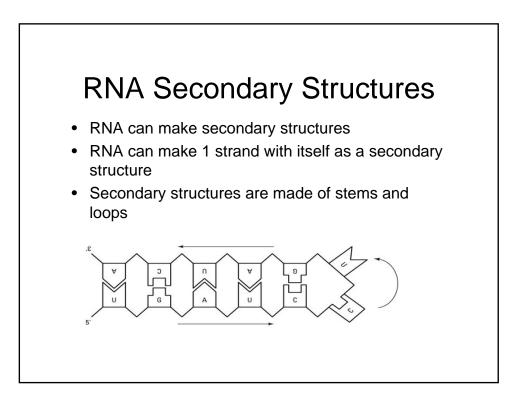


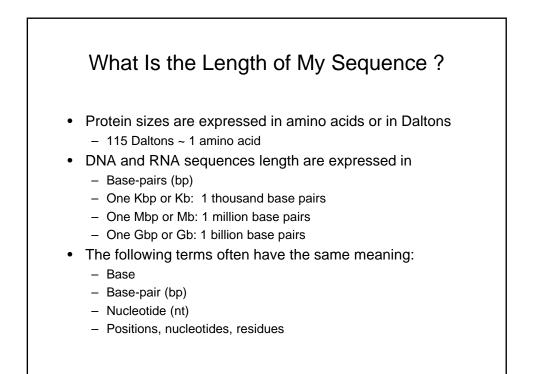

	Sequence Alignment
A perfect	match:
and and	match match is made; she seals it with a curtsy.
One can a	allow mismatching characters:
for t	<pre>match the watch to babble and to talk is most tolerable</pre>
	match match witch the world with noble horsemanship.
or insert	ions and/or deletions:
	<pre>match mat-ch not, Macbeth; no man that's born of woman l e'er have power upon thee.</pre>




DNA

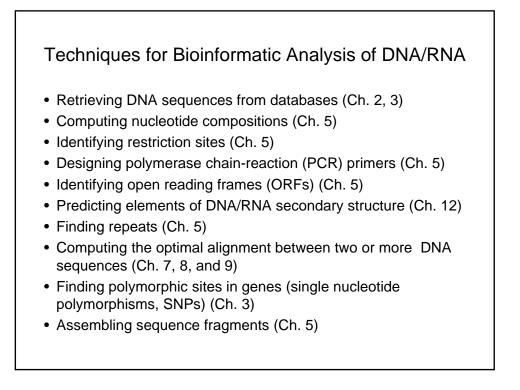

- DeoxyriboNucleic Acid
- Genomes and genes are made of DNA
- DNA is the main support of heredity

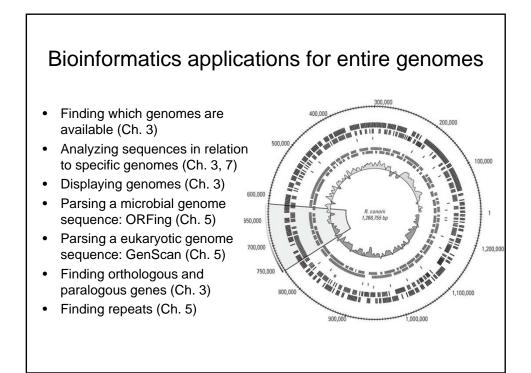


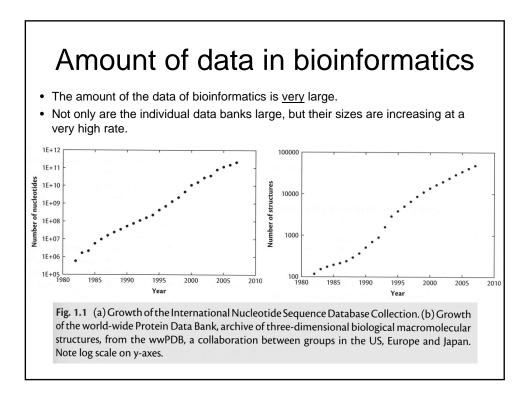




- RNA contains 4 nucleotides:
 - -A, G, C, U
 - U is Uracil
- RNA does not contain Thymine (T)
- Uracil replaces Thymine in RNA
- RNA is single-stranded






Turning DNA into Proteins: The Genetic Code										
DNA gets transcribed into	Γ		Т	С	Α	G				
RNA using nucleotide		٦	TTT Phe (F)	TCT Ser (S)		TGT Cys (C)				
complementarity.	-		TTC Phe (F)	TCC Ser (S)	TAC Tyr (Y)	TGC Cys (C)				
			TTA Leu (L)		TAA Stop	TGA Stop				
	Ļ		TTG Leu (L)		TAG Stop	TGG Trp (W)				
RNA gets translated into			CTT Leu (L)		CAT His (H)					
proteins using the genetic	0		CTC Leu (L) CTA Leu (L)			CGC Arg (R) CGA Arg (R)				
			CTG Leu (L)			CGG Arg (R)				
code:	-	ATT Ile (I)		AAT Asn (N)						
– UCU UAU GCG UAA			ATC Ile (I)		AAC Asn (N)					
			ATA Ile (I)			AGA Arg (R)				
– SER-TYR-ALA-STOP	Ļ					AGG Arg (R)				
			GTT Val (V) GTC Val (V)			GGT Gly (G) GGC Gly (G)				
	C	÷	GTA Val (V)			GGA Gly (G)				
			GTG Val (V)			GGG Gly (G)				
			<u> </u>	31. X Z	7.	r				

- Base triplets are translated into amino acids.
- Example DNA sequence: ATGGAAGTATTTAAAGCGCCACCTATTGGGATATAAG...
- Decompose into successive triplets: ATG GAA GTA TTT AAA GCG CCA CCT ATT GGG ATA TAA G...
- Translate each triplet into the corresponding amino acid:
 M E V F K A P P I G I stop
- Other reading frames: A TGG AAG TAT TTA AAG CGC CAC CTA TTG GGA TAT AAG... W K Y L K R H L L G Y K AT GGA AGT ATT TAA AGC GCC ACC TAT TGG GAT ATA AG... G S I STOP
- Together with the complementary strand there are 6 possible reading frames. In nature usually only one of these is translated into a protein.
- Open reading frame (ORF): interval of DNA sequence without stop codons.
- Eukaryotic genes can be interrupted by non-coding intervals (introns).
- Locating protein-coding regions in DNA is an important part of bioinformatics.

17

	Genome sizes			
	Organism	Number of base pairs	Number of genes	Comment
Genome sizes	άX-174	5386	10	virus infecting E. coli
	Human-mitochondrion	16 569	37	subcellular organelle
	Epstein-Barr virus (EBV)	172 282	80	cause of glandular fever
	Mycoplasma pneumoniae	816 394	680	cause of cyclic pneumonia epidemics
Size of human genome	Rickettsia prowazekii	1 111 523	878	bacterium cause of epidemic typhus
	Treponema pallidum	1 138 011	1039	bacterium cause of syphilis
= 1 huge (" <u>hu</u> man <u>g</u> enome <u>e</u> quivalent")	Borrelia burgdorferi	1 471 725	1738	bacterium cause of Lyme disease
$= 3 \times 10^9$ bases	Aquifex aeolicus	1 551 335	1749	bacterium from hot spring
	Thermoplasma acidophilum	1 564 905	1509	archaeal prokaryote lacks cell wall
= number of characters in 6 complete	Campylobacter jejuni	1 641 481	1708	frequent cause of food poisoning
years of issues of the New York Times	Methanococcus jannaschii	1 664 970	1783	archaeal prokaryote thermophile
Size of E cali ganama	Helicobacter pylori	1 667 867	1589	chief cause of stomach ulcers
Size of <i>E. coli</i> genome	Haemophilus influenzae	1 830 138	1738	bacterium cause of middle ear infections
= 4.6 x 10 ⁶ bases = 0.0015 huges	Thermotoga maritima Archaeoglobus fulgidus	1 860 725 2 178 400	1879 2437	marine bacterium another archaeon
no n lo bacco cico i agoo	Archaeoglobus fulgidus Deinococcus radiodurans	2 1/8 400	3187	radiation-resistant bacterium
= number of characters in Shakespeare's	Synechocystis	3 573 470	4003	cyanobacterium 'blue-green alga'
plays	Vibrio cholerae	4 033 460	3890	cause of cholera
	Mycobacterium tuberculosis	4 411 529	4275	cause of tuberculosis
Size of nucleotide sequence databanks	Bacillus subtilis	4214814	4779	popular in molecular biology
(2007 est.)	Escherichia coli	4639221	4406	molecular biologists' all-time favourite
= 1.7 x 10 ¹² bases = 567 huges	Pseudomonas aeruginosa	6 264 403	5570	largest prokaryote sequenced as yet
$= 1.7 \times 10^{-2}$ bases = 567 huges	Saccharomyces cerevisiae	12.1 × 10 ⁶	6172	yeast, first eukaryotic genome sequenced
	Caenorhabditis elegans	95.5×10^{6}	19 099	the worm
	Arabidopsis thaliana	1.17×10^{8}	25 498	flowering plant (angiosperm) the fruit fly
	Drosophila melanogaster Takifugu rubripes	1.8×10^{8} 3.9×10^{8}	13 601 30 000	puffer fish (fugu fish)
	Human	3.9×10^{9} 3.2×10^{9}	20 500	paner han (rugu han)
	Wheat	16×10^{9}	30 000	
	Salamander	1011	?	
	Psilotum nudum	1011	?	whisk fern — a simple plant

	Landmarks in the Hur	nan	Genome Project
1953	Watson-Crick structure of DNA published.	1995	First complete sequence of a bacterial genome, Haemophilus influenzae, by
1975	F. Sanger, and independently A. Maxam and W. Gilbert, develop methods for		TIGR.
	sequencing DNA.	1996	High-resolution map of human genome—markers spaced by ~600 000 base pairs.
1977	Bacteriophage ΦX-174 sequenced: first 'complete genome'.	1996	Completion of yeast genome, first eukaryotic genome sequence.
1980	US Supreme Court holds that genetically-modified bacteria are patentable. This decision was the original basis for patenting of genes.		
	Human mitochondrial DNA sequenced: 16 569 base pairs.	May 1998	Celera claims to be able to finish human genome by 2001. Wellcome responds by increasing funding to Sanger Centre.
1981		1998	Caenorhabditis elegans genome sequence published.
1984 1990	Epstein-Barr virus genome sequenced: 172 281 base pairs. International Human Genome Project launched — target horizon 15 years.		Drosophila melanogaster genome sequence announced, by Celera Genomics; released Spring 2000.
1991	J. Craig Venter and colleagues identify active genes via Expressed Sequence Tags—sequences of initial portions of DNA complementary to messenger RNA.	1999	Human Genome Project states goal: working draft of human genome by 200 (90% of genes sequenced to >95% accuracy).
1992	Complete low resolution linkage map of the human genome.	December 1,	Sequence of first complete human chromosome published.
1992	Beginning of the Caenorhabditis elegans sequencing project.	1999	
1992	Wellcome Trust and United Kingdom Medical Research Council establish The	June 26, 2000	Joint announcement of complete draft sequence of human genome.
	Sanger Centre for large-scale genomic sequencing, directed by J. Sulston.	2003	Fiftieth anniversary of discovery of the structure of DNA. Announcement of
1992	J. Craig Venter forms The Institute for Genome Research (TIGR), associated with plans to exploit sequencing commercially through gene identification and drug discovery.		completion of human genome sequence.

Genome	Organism	Complete	Draft assembly	In progress	tota
Genome	Prokaryotes	<u>1117</u>	<u>966</u>	<u>595</u>	267
uencing	Archaea	<u>100</u>	<u>5</u>	<u>48</u>	153
uentening	Bacteria	<u>1017</u>	<u>961</u>	<u>547</u>	252
ojects	Eukaryotes	<u>36</u>	<u>319</u>	<u>294</u>	649
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Animals	<u>6</u>	<u>137</u>	<u>106</u>	249
	Mammals	<u>3</u>	<u>41</u>	<u>25</u>	69
	Birds		<u>3</u>	<u>13</u>	16
	Fishes		<u>16</u>	<u>16</u>	32
	Insects	<u>2</u>	<u>38</u>	<u>17</u>	57
	Flatworms		3	<u>3</u>	6
	Roundworms	<u>1</u>	<u>16</u>	<u>11</u>	28
	Amphibians		<u>1</u>		1
	Reptiles		2		2
	Other animals		<u>20</u>	<u>24</u>	44
	<u>Plants</u>	<u>5</u>	<u>33</u>	<u>80</u>	118
	Land plants	<u>3</u>	<u>29</u>	<u>73</u>	105
	Green Algae	<u>2</u>	<u>4</u>	<u>6</u>	12
	Fungi	<u>17</u>	<u>107</u>	<u>59</u>	183
	Ascomycetes	<u>13</u>	<u>83</u>	<u>38</u>	134
	Basidiomycetes	2	<u>16</u>	<u>11</u>	29
	Other fungi	2	8	<u>10</u>	20
	Protists	8	<u>39</u>	<u>46</u>	93
	Apicomplexans	3	<u>11</u>	<u>16</u>	30
	Kinetoplasts	4	<u>3</u>	2	9
	Other protists total:	1153	<u>24</u> 1285	<u>28</u> 889	53 332