Computergestützte Strukturbiologie (Strukturelle Bioinformatik)

Membrane proteins

Sommersemester 2009

Peter Güntert

Membrane proteins

- About 25% of all human proteins are membrane proteins.
- The majority of proteins that are drug targets are membrane proteins.
- However, less than 1% of the protein structures in the PDB are membrane proteins.
- Membrane proteins are difficult to crystallize.
- Membrane proteins are insoluble in water and thus difficult to study by NMR spectroscopy.

Two membrane proteins

Membrane protein structure and function

- Membrane proteins are either $\alpha\text{-helix}$ bundles or $\beta\text{-barrels}$
- Most of the important membrane proteins are α-helical. β-barrel membrane proteins are found only in the outer membrane.
- Functions:
- Transport of ions/molecules through the membrane
- Signal transduction (e.g. G-protein coupled receptors; GPCR)

Hydrogen bonding in membrane proteins

- In soluble proteins hydrogen bonds can be formed between protein atoms and to the solvent (water).
- In the hydrophobic environment of membrane proteins only intra-protein hydrogen bonds can be formed.
- The energy cost of burying a pair of unsatisfied hydrogen bond donors/acceptors is high: ~ 4 kcal/mol.
- Transmembrane segments that are α -helices or β -strands involve all main chain polar atoms in hydrogen bonds.
- Random coil structures within the membrane bilayer is energetically unfavorable and rare.

Membrane protein structure prediction

- The present data base of known membrane protein structures is small.
- Less structural variability than for soluble proteins
- Prediction of transmembrane helices based on secondary structure prediction and hydrophobicity

Which features of membrane protein structure can be predicted?

- Discrimination between globular and membrane proteins
- Identification of individual transmembrane helices
- Location of loops on the inside/outside of the membrane
- Topology

Chou-Fasman propensities for α , β , and coil secondary structure

 Table 7.1 The Chou and Fasman parameters for secondary structure prediction.

Amino acid	Pa	<i>Pb</i>	Рс	Amino acid	Pa	Pb	Рс
Alanine	1.42		0.66	Leucine	1.21	1.30	0.59
Arginine	0.98	0.93	0.95	Lysine	1.14	0.74	1.01
Aspartic acid	1.01	0.54	1.46	Methionine	1.45	1.05	0.60
Asparagine	0.67	0.89	1.56	Phenylalanine	1.13	1.38	0.60
Cysteine	0.70	1.19	1.19	Proline	0.57	0.55	1.52
Glutamic acid	1.39	1.17	0.74	Serine	0.77	0.75	1.43
Glutamine	1.11	1.10	0.98	Threonine	0.83	1.19	0.96
Glycine	0.57	0.75	1.56	Tryptophan	1.08	1.37	0.96
Histidine	1.00	0.87	0.95	Tyrosine	0.69	1.47	1.14
Isoleucine	1.08	1.60	0.47	Valine	1.06	1.70	0.50

Chou-Fasman secondary structure prediction

Pa Pb Predicted Observed	0.57 0.55 E	0.83 1.19 E	1.21 1.3 E	1.39 1.17 E	1.08	1.13	1.21	0.77	1.00 0.87	0.70	1.00	1.08	1.00	1.14	0.
Pb Predicted Observed	0.55 E	1.19 E	1.3 E	1.17 E	1.37	1.38	1.30	0.75	0.87	1.19	0.87	1.6	0.97	0.74	
Predicted Observed	E	E	E	F									0.07	0.74	1.12
Observed				- N	E	. E	E								
			н	н	н	Н	н	н	Н					E	ł
	Р	S	ĸ	S	Т	ι	1	н	Q	G	E	к	Α	E	1
Pa	0.57	0.77	1.14	0.77	0.83	1.21	1.08	1.00	1.11	0.57	1.39	1.14	1.42	1.39	0.3
Pb	0.55	0.75	0.74	0.75	1.12	1.30	1.60	0.87	1.10	0.75	1.17	0.74	0.83	1.17	1.1
Predicted			E	E	E	E	E		E	E	E	E	E	E	1
Observed															1
	L	Y	Y	1	v	K	G	S	v	Α	v	L			
Pa	1.21	0.69	0.69	1.08	1.05	1.14	0.57	0.77	1.06	1.42	1.06	1.21			
Pb	1.30	1.47	1.47	1.60	1.70	0.74	0.75	0.75	1.70	0.83	1.70	1.30			
Predicted	E	E	E	E		E	E	E	E	E	E				
Observed	E	E	E					E	E	E	E	E			
re 7.3 An 1an meth rimental :	n exar Iod to struc	nple o a prote tures o	f the a ein. It i only ha	pplicat s appai ve limi	ion of t rent tha ted ove	the Chi the p rlap.	ou and redicte	d and							

TMHMM performance

- Discrimination globular/membrane: sensitivity and specificity > 98%
- Correct topology: 65-70%
- Single transmembrane helix identification: sensitivity 96%, specificity 98%
- Training set: 160 membrane proteins, 650 globular proteins

http://www.cbs.dtu.dk/services/TMHMM/ Krogh et al., J. Mol. Biol. 305, 567-580 (2001)

Literatur

Anna Tramontano: Protein Structure Prediction, Wiley-VCH, 2006.
 A. Krogh, B. Larsson, G. Von Heijne, E. L. L. Sonnhammer. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567-580 (2001)