
 INCLAN

1

INCLAN

INCLAN is a powerful interactive command language that allows the use
of variables, FORTRAN-77 mathematical and character expressions, mac-
ros, flow control (loops, conditional statements, jumps), parallelization,
the production of graphics etc.
When reading an input command line the command interpreter executes
the following steps:
• An optional comment, i.e. text following a comment sign “#”, is dis-

carded.
• The values of variables are substituted from right to left.
• The command line is split into elements (defined as sequences of

non-blank characters separated by blank characters). The first ele-
ment becomes the command name, and the following elements be-
come command parameters.

• If the command name matches a user-defined alias, the alias is ex-
panded.

• If the command name matches a built-in command of INCLAN, it is
executed by the command interpreter itself.

• Otherwise, if the command name matches a user-defined command,
it is executed by the command interpreter.

• Otherwise, if the command name matches a command of the pro-
gram unambiguously, it is executed by the program.

• Otherwise, the command interpreter looks for a macro with the given
command name and, if it is found in the current macro search path,
executes it. If no such macro is found, an error occurs.

 Copyright ©1997-2004 by Peter Güntert. All rights reserved.

INCLAN

2

Special characters

The following characters have a special meaning for INCLAN. To use
them literally, they usually must be preceded by a backslash.

$ “$variable” substitutes the value of the variable in the command line.
Substitutions proceed from left to right. If the value of the variable or
function call starts and ends with single quotes (i.e. if it is a FORTRAN-
77 character string), the delimiting single quotes are removed before in-
serting the value.

% “%variable” substitutes the value of the variable in the command line.
Substitutions proceed from left to right. Single quotes that delimit FOR-
TRAN-77 character strings are retained.

{ } The curly braces in “{$variable}” or “{%variable}” separate the variable
name variable from immediately following text. “${expression}” or
“%{expression}” substitute the result value of the FORTRAN-77 expres-
sion.

() “$variable(format)” uses the given FORTRAN-77 format to convert the
numeric value of a variable into the string that is substituted in the com-
mand line. If the value of the variable is a comma-separated list, “$vari-
able(n)”, where n is an integer expression, substitutes with the n-th
element of this list. “$variable(m:n)”, where m and n are integer expres-
sions, substitutes with the substring between positions m and n of the val-
ue of the variable. These three possible uses of parentheses cannot be
used simultaneously.

; separates commands that stand on the same line. Note, however, that
commands that form blocks (e.g. do . . . end do, if . . . end if) must
always appear as the first command on a line.

: “Label:” denotes a label that can be used as the target of a jump in a goto
statement.

\ “\c” treats the character c literally and allows the use of special charac-
ters in normal text, “\” at the end of a line indicates that the statement
continues on the following line.

" "text" treats text as a single parameter, even if it contains spaces. Vari-
able substitutions in the text still occur.

 INCLAN

3

’ ’text’ treats text as a single parameter; the single quotes remain part of the
text. Single quotes are used to delimit FORTRAN-77 character string con-
stants. Variable substitutions in the text still occur.

Text between a comment sign “#” and the end of the line is treated as a
comment and skipped by the program.

@ Commands preceded by “@” are only echoed if the variable echo has
the value full or FULL. “@” has its special meaning only if it occurs as
the first character of a command.

! “!string” recalls the last interactive command that started with string. “!”
has its special meaning only if it occurs as the first character of a com-
mand.

^ “^string^replacement^” executes the last interactive command again
after replacing the first occurrence of string by replacement. The third
caret is optional unless the replacement string has trailing blanks. “^”
has its special meaning only if it occurs as the first character of a com-
mand.

Variables

The command line interpreter allows the use of variables in two different
ways:
• Similar to shell-variables in the UNIX operating system as variables

whose value can be substituted into the command line. In this case,
the value of a variable is a general character string and has no partic-
ular type.

• As variables in FORTRAN-77 expressions. In this case, the value of a
variable must be an integer, real, complex, logical or character con-
stant, according to the rules of FORTRAN-77. In particular, character
strings must be delimited with single quotes.

Variables can be used in both ways simultaneously which makes them a
powerful tool of the command language.
A variable name consists of up to 32 letters, digits, or underscore char-
acters “_”. The value of a variable is always stored as a character string
and only converted temporarily to an integer, real, or complex number
during the evaluation of a FORTRAN-77 expression.
There are several types of variables:

INCLAN

4

Local variables exist only within the macro where they are declared, and in macros
called from this macro. With the exception of the command line param-
eters of a macro, which are always local, local variables must be declared
in var or syntax statements. They exist until they are removed with un-
set or until the end of the macro in which they are declared is reached.

Global variables are always visible, except when they are hidden by local variables with
the same name. Variables that are not local are global. The user can in-
troduce new global variables simply by using a variable with a new
name. Global variables exist until they are removed with unset.

Special variables are variables that can be created and used by the user but have also a spe-
cial meaning to the command interpreter.

System variables are variables that are used and, possibly, set by the program (not exclu-
sively by the user with eval, set etc.). System variables are always glo-
bal.

There are several ways to insert the value of a variable or the result value
of an expression into the command line:

Basic substitutions Substitutions of the form $variable or %variable insert the complete
value of the variable (without trailing blanks) into the command line.
Substitutions with “$” differ from those with “%” only if the value of the
variable starts and ends with single quotes, i.e. if it is a FORTRAN-77
character constant: with “%” the delimiting single quotes are retained in
the substitution, with “$” they are removed. A variable name that is im-
mediately followed by a letter, digit, or underscore character must be en-
closed in curly braces: “{$variable}”.

x:=4.6; y:=2.0; sum=x+y; t:=a sum Set variables
print "This is $t: $x + $y = $sum" Substitute values
This is a sum: 4.6 + 2.0 = 6.60000

s:=’$t’ Create a FORTRAN-77 string from a normal variable
print "\$s = $s; \%s = %s" With and without single quotes
$s = a sum, %s = 'a sum'

print "{$t}mer"
a summer

Fortran format Substitutions of the form $variable(format) or %variable(format) are
used to format integer or real values of variables according to a FOR-
TRAN-77 format. A format that contains the letter “I” or “i” applies to in-

 INCLAN

5

teger numbers, all other formats to real numbers.

x:=4.6; y:=2.0; sum=x+y
print "$x + $y = $sum(E12.3)"
4.6 + 2.0 = 0.660E+01

Substring Substitutions of the form $variable(n:m) or %variable(n:m), where n
and m are positive integer expressions, are used to substitute with the
substring between character positions n and m of the value of a variable.
Substring expressions can also appear on the left hand side of assignment
statements.

t:=a sum
print "another $t(3:5)"
another sum
t(3:):=program Assignment to a substring
print "$t"
a program

List element If the value of a variable is a comma-separated list, “$variable(n)” or
“%variable(n)”, where n is a positive integer expression, substitute with
the n-th element of this list.

s:=17,28,,56,"This is the end"
do i 1 length(’s’) length returns the number of elments

print "Element $i: $s(i)"
end do
Element 1: 17
Element 2: 28
Element 3:
Element 4: 56
Element 5: This is the end

Function call “$function” or “%function” substitute with the result value of a function
without parameters, “$function(parameters)” or “%function(parame-
ters)” substitute with the result value of a function with parameters. If
there are several parameters, they are separated by commas.

x=2.5; print "log(x)= $log(x)"
log(x) = 0.916291

Expression “${expression}” or “%{expression}” substitute with the result value of
an expression.

INCLAN

6

x=2.5; y=10.0; print "x/y = ${x/y}"
x/y = 0.250000

All substitutions in the command line proceed from right to left. This al-
lows, for example, to compose a variable name from the values of other
variables before it is used in a substitution.

command list_param User-defined command list_param
do i 1 nparam

print "Parameter $i: pi"

pi inserts the value of the i-th command line
parameter.

end do
end

list_param 17 second last Call list_param
Parameter 1: 17
Parameter 2: second
Parameter 3: last

Special variables

The following variables have a special meaning for the command inter-
preter:

echo determines which commands are echoed, i.e. copied to standard output
before execution. The possible settings are:

NULL (or not set at all) In macros, all commands except those
built into the command line interpreter are echoed; inter-
active commands are not echoed.

off Commands are not echoed.
on Both in macros and interactively, all commands except

those built into the command line interpreter are echoed.
large Same as on, except that the echo is surrounded by blank

lines.
full All commands are echoed, and the corresponding line

numbers in macros are given.
OFF Same as off, except that this setting can only be overrid-

den by another value written in capital letters.

 INCLAN

7

ON Same as on, except that this setting can only be overrid-
den by another value written in capital letters.

LARGE Same as large, except that this setting can only be over-
ridden by another value written in capital letters.

FULL Same as full, except that this setting can only be overrid-
den by another value written in capital letters. This set-
ting is particularly useful for debugging macros in which
the echo is suppressed.

Labels are not included in the echo, but variable substitutions are. State-
ments preceded by “@” are only echoed if echo has the value full or
FULL.

erract is a variable for error handling in macros. If an error occurs within a mac-
ro, the value of erract is executed as a command. By default the exit
command is executed, i.e. the program returns to interactive input. Set-
ting erract has no effect on errors produced by interactively entered com-
mands: These errors are always reported and the program continues with
the execution of the next statement.

set erract="show; quit"

In case of an error in a macro a listing of all glo-
bal variables is given, and the program is
stopped. Such error handling can be useful if
the program is used non-interactively.

info determines which messages are written to standard output and into the
protocol file. The possible settings are:

none No messages are written.
minimal A minimal set of messages is written, in general a single

line for each command that is executed.
normal The “normal” amount of messages is written.
full The “full” amount of messages is written.
debug The “full” amount of messages and additional undocu-

mented messages for debug purposes are written.
Optionally, this variable may have two of the above values, separated by
a comma. In this case, the first value applies to standard output, the sec-
ond to the protocol file.

nparam denotes the number of command line parameters of the current macro.

nproc denotes the maximal number of processors that will be used for the exe-
cution of parallel do-loops.

INCLAN

8

p1, p2, . . . are the default names for the command line parameters of a macro. These
names may be changed at the beginning of the macro.

path denotes the search path for macro files in the form of a comma-separated
list of directories.

prompt denotes the prompt for interactive input. If this variable is not defined or
blank, no prompt is written but multiple blank lines of input and the end
of the execution of a macro are indicated by the word “Ready” on a sep-
arate line.

protocol denotes the name of the protocol file into which standard output is dupli-
cated under the control of the variable info. If this variable is not defined
or blank, no protocol file is written.

timing is a system variable to control the reporting of CPU times. CPU times are
given for all commands (except for those that are built into the command
line interpreter) that need more seconds of CPU time than the value of
timing indicates.

Expressions

The command interpreter can evaluate general FORTRAN-77 integer, re-
al, complex, logical and character expressions. Expressions can appear
in eval statements, as conditions of if statements, as command parame-
ters when a numeric value is expected, and as substring and element in-
dex expressions.
An expression is built according to the rules of FORTRAN-77 from con-
stants, variables, and function calls. These basic items can be combined
by operators (“+”, “–”, “*”, “/”, “**”, “.eq.”, “.ne.”, “.lt.”, “.le.”,
“.ge.”, “.gt.”, “.and.”, “.or.”, “.not.”, “.eqv.”, “.neqv.”, “==”, “!=”,
“<”, “<=”, “>=”, “>”) and grouped by parentheses.
There are the following differences to the rules of FORTRAN-77:
• The data type “double precision” is not supported.
• The data type “logical” is represented by the integer values 0 (false)

and 1 (true). Any integer expression can be used in place of a logical
expression, with 0 representing “false”, and all other values repre-
senting “true”.

• Variable, function and operator names are case sensitive. The names
of logical operators and intrinsic functions must be written in lower

 INCLAN

9

case.
• The logical operators “==”, “!=”, “<”, “<=”, “>=”, “>”, “&&”, “||”,

and “!” can be used in place of its respective FORTRAN-77 equiva-
lents “.eq.”, “.ne.”, “.lt.”, “.le.”, “.ge.”, “.gt.”, “.and.”, “.or.”,
and “.not.”.

• All FORTRAN-77 intrinsic functions (except “dble”, “dprod”, “lge”,
“lgt”, “lle” and “llt”) are available by their generic names but not un-
der special names. For example, the absolute value function is
known by the name “abs” but not by the special names “iabs” or
“cabs”.

• There are additional intrinsic functions (see below).
• Blanks can only appear at “reasonable” places but not inside of num-

bers, variable names etc.

Intrinsic functions

In the following list of all INCLAN intrinsic functions, arguments are de-
noted by

n integer
r real
c complex
s string
x integer or real, unless types are given explicitly
z real or complex

The result type of an intrinsic function is only given explicitly if it differs
from the type of the argument(s).

abs(x) Absolute value; the argument x is of any numeric type, for complex ar-
guments the result is real.

acos(r) Arc cosine; , .

aimag(c) Real function that returns the imaginary part of c.

aint(r) Discard fractional part; the result if of type real.

anint(r) Closest integer; the result if of type real.

r 1≤ 0 acos r() π≤ ≤

INCLAN

10

asin(r) Arc sine; , .

atan(r) Arc tangent; .

atan2(r1,r2) Argument of the complex number (not !); and
must not both be zero, .

char(n) Character function that returns the character with number n.

cmplx(x1,x2) Complex function that returns ; both arguments must have the
same type.

conjg(c) Complex conjugate.

cos(z) Cosine.

cosh(r) Hyperbolic cosine.

cputime Real function that returns the CPU time (in seconds) since the start of the
program.

date Character function that returns the current date in the form dd–mm–yy.

def(s) Logical function that returns 1 if a variable with name s exists and has a
value different from NULL, or 0 otherwise.

dim(x1,x2) Positive difference; .

exist(s) Logical function that returns 1 if a variable with name s exists, or 0 oth-
erwise.

existfile(s) Logical function that returns 1 if a file with name s exists, or 0 otherwise.

exp(z) Exponential function.

external(s) Character function that returns the value of the external (i.e. non-local)
variable with name s (even if it is hidden by a local variable with the
same name), or a blank string if no external variable with this name ex-
ists.

external(s1,s2) Character function that returns the value of the external (i.e. non-local)
variable with name (even if it is hidden by a local variable with the
same name), or if no external variable with the name exists.

r 1≤ π 2⁄– asin r() π 2⁄≤ ≤

π 2⁄– atan r() π 2⁄≤ ≤

r2 ir1+ r1 ir2+ r1 r2
π– atan2 r1 r2,() π≤ ≤

x1 ix2+

dim x1 x2,() max x1 x2– 0,()=

s1
s2 s1

 INCLAN

11

fitchisq Real function that returns the value of the last linear least-squares fit
(see plot subcommand fit).

fiterr(n) Real function that returns the standard deviation of the n-th fit parameter
of the last linear least-squares fit (see plot subcommand fit).

fitpar(n) Real function that returns the optimal value of the n-th fit parameter of
the last linear least-squares fit (see plot subcommand fit).

fitprob Real function that returns the probability that the value of the last lin-
ear least-squares fit would be exceeded by chance (see plot subcommand
fit).

getenv(s) Character function that returns the value of the environment variable
with name s.

getpid Integer function that returns the UNIX process identification number of
the current process.

global(s) Character function that returns the value of the global variable with name
s (even if it is hidden by another variable with the same name), or a blank
string if no global variable with this name exists.

global(s1,s2) Character function that returns the value of the global variable with name
 (even if it is hidden by another variable with the same name), or

if no global variable with the name exists.

ichar(s) Integer function that returns the number of the character s.

if(n,x1,x2) Function that returns the argument if , or otherwise. The ar-
guments and can have any type.

index(s1,s2) Integer function that returns the starting position of the first occurence of
the string in the string , or zero if does not occur as a substring
in .

indexr(s1,s2) Integer function that returns the starting position of the last occurence of
the string in the string , or zero if does not occur as a substring
in .

int(z) Integer function that returns the integer part of the real or complex num-
ber .

χ2

χ2

s1 s2
s1

x1 n 0≠ x2
x1 x2

s2 s1 s2
s1

s2 s1 s2
s1

z

INCLAN

12

len(s) Integer function that returns the number of characters in s.

length(s) Integer function that returns the number of elements in the array stored
in a variable with name s.

lenstr(s) Integer function that returns the index of the last non-blank character in
s.

log(z) Natural logarithm; , if z is real it must be positive, for complex z the
result has .

log10(z) Logarithm to base 10; , if z is real it must be positive, for complex
z the result is in the range .

macro(s) Logical function that returns 1 if a macro with name s is available, or 0
otherwise.

match(s1,s2) Wildcard match; logical function that returns 1 if the string matches
the string , or 0 otherwise. The string may contain wildcards: an
asterisk matches zero or more characters, and a question mark matches
exactly one character.

max(x1,x2,...) Maximum.

min(x1,x2,...) Minimum.

mod(x1,x2) Remainder of modulo ; , both
arguments must have the same type, .

mtime(s) Integer function that returns the time of last modification (in seconds
since a reference date) of the file with name s.

nint(r) Integer function that returns the integer closest to r.

opened(s) Logical function that returns 1 if a file with name s is currently open, or
0 otherwise.

plotx0, ploty0,
plotx1, ploty1

Real functions that return the coordinates of the two reference points
 and in the user coordinate system used for graphics

(see plot parameters X0, Y0, X1, Y1).

rand Real function that returns a pseudo-random number; pseudo-random
numbers are uniformly distributed between 0 and 1.

z 0≠
π– Im log z() π≤<

z 0≠
π– Im log10 z() π≤<

s2
s1 s2

x1 x2 mod x1 x2,() x1 x2 int⋅ x1 x2⁄()–=
x2 0≠

X0 Y0,() X1 Y1,()

 INCLAN

13

rand(n) Real function that returns a pseudo-random number; pseudo-random
numbers are uniformly distributed between 0 and 1. The random number
generator is initialized with the seed n.

rand(n1,n2) Real function that returns a pseudo-random number; pseudo-random
numbers are uniformly distributed between 0 and 1. The random number
generator is initialized with the seed , and the result is the -th ran-
dom number generated from this seed.

real(x) Conversion to real type; the argument x must be of type integer or com-
plex, for complex x the real part is returned.

sign(x1,x2) Returns the absolute value of times the sign of ; if , its sign
is taken as positive, both arguments must have the same type.

sin(z) Sine.

sinh(r) Hyperbolic sine.

sqrt(z) Square root; if z is real, it must be non-negative.

tan(z) Tangent.

tanh(r) Hyperbolic tangent.

time Character function that returns the current time in the form hh:mm:ss.

val(s) Character function that returns the value of the variable with name s, or
a blank string if no variable with this name exists.

val(s1,s2) Character function that returns the value of the variable with name ,
or if no variable with the name exists.

walltime Integer function that returns the number of seconds since the start of the
program.

Macros

Macros are files containing INCLAN statements. A macro is called by its

n1 n2

x1 x2 x2 0=

s1
s2 s1

INCLAN

14

name that is identical to its filename except for the extension “.dya” that
is required for macro files. INCLAN looks for macro files in the directo-
ries given by the special variable path, or in the explicitly given direc-
tory. Command line parameters may be passed into a macro. Within the
macro, they are available as local variables that are by default called p1,
p2, ... These variable names can be changed with the parameter state-
ment. The local variable nparam denotes the number of command line
parameters. Macros can be called from within other macros. On-line
help information may be included into a macro as lines that start with
two comment signs “##”. Such lines are copied to standard output when
one requests help about a macro with the command help macro.
The special macro init is an initialization macro that is automatically ex-
ecuted when the program starts. Typically, this macro sets the system
variable path that defines the search path for macro files.

Standard output

This section explain the ways by which commands can write output to
the standard output device (in the following simply called “screen”) and/
or to disk files by using the protocol mechanism or output redirection.
The concepts of this section do not apply to output that is written to ex-
plicitly named disk files by specific output commands.

Information level All output has an importance level, and only output that is “important
enough” is actually written. The definition of what is “important
enough” is given by the special variable info that can, in its simple form,
take one of five information level values:

none no output at all, except for error messages
minimal minimal output, in general a one line confirmation
normal the “normal” amount of output
full detailed output
debug additional undocumented debugging output

Protocol file The output can be duplicated into a protocol file. In fact, different info
values might be used for output to the screen and to the protocol file. In
this case, the info value consists of two simple info values, separated by
a comma. A protocol file is written if the protocol variable is defined
and has a non-blank value that is the name of the protocol file. If the file
does not exist when the protocol variable is set to the corresponding
name, it is created; otherwise the output is appended to an existing pro-

 INCLAN

15

tocol file.
protocol:=logfile Open protocol file “logfile”
info:=minimal,full Minimal screen output, full protocol
...
protocol:= Close protocol file

Output redirection Output from a command is redirected to a given file if the last parameter
of the command is

>file Redirect to a new file, or overwrite existing file. After
writing the output, the file remains open.

>file. Redirect to a new file, or overwrite existing file. After
writing the output, the file is closed.

>>file Append to an existing file, or create new file. After writ-
ing the output, the file remains open.

>>file. Append to an existing file, or create new file. After writ-
ing the output, the file is closed.

Blanks between > and file are not allowed and that the file name must
not end with “.”. The file name is optional; if it is omitted, the output will
be redirected to the previously used file. When redirection is used, all
output that would otherwise be sent to the screen is written to the given
file. Standard output and the protocol file are not used.

Built-in commands

The following commands are built into the command interpreter. Their
names cannot be abbreviated.

alias

Defines a new alias name, i.e. an abbreviation, for the given statement.
The statement may contain an asterisk “*” to indicate where the com-
mand line parameters are to be inserted. Without parameters, alias gives
a list of all currently defined aliases.

alias ? "print \"\%{*}\"" Simulate a pocket calculator
? 5*7
35

[name statement]

INCLAN

16

ask

Writes the string prompt to standard output, reads one line from standard
input, and assigns from this line strings separated by blanks to the given
variables. The command is usually used for interactive input within mac-
ros. A prompt that contains blanks must be enclosed in double quotes.

ask "First and last point:" begin end
First and last point:
12 45
print "range = $begin...$end"
range = 12...45

break Breaks a do-loop and is only allowed in macros. The execution of the
macro is continued with the first statement following the loop.

command

Defines a new globally visible user-defined command within a macro,
i.e. a macro within a macro. User-defined commands defined by com-
mand statements are called by their name, possibly followed by param-
eters, in exactly the same way as macros. Within a macro, a user-defined
command can only be called after it was defined. The statement com-
mand without parameters gives a list of all user-defined commands, and
indicates where they are defined.

do (without parameters) Executes a loop within a macro. The loop is exe-
cuted unconditionally, i.e. until one of the statements break, exit, quit
or return is encountered.

do
if (filename.eq.’ ’) break
...

end do

do

Executes a FORTRAN-77 do-loop within a macro. The loop counter vari-
able and the integer expressions start, end, and step have the usual mean-
ing. Parallel loops are executed in parallel on nproc processors. If the
keyword continue is present, the program continues immediately with
the execution of the next statement after the parallel loop. Otherwise, the

prompt variable . . .

[name]

variable start end [step] [parallel [continue]]

 INCLAN

17

next statement after the loop is executed when the parallel loop is fin-
ished.

do i 1 10
print "Iteration $i."

end do

else Starts an else clause of a block if-statement.

else if

Starts an else-if clause of a block if-statement.

end Ends a user-defined command or subroutine.

end do Ends a do-loop.

end if Ends a block if-statement.

error

Writes the text to standard output or into the file with the given filename
and calls the error handler. This statement is suitable to treat errors that
occur during the execution of a macro. If the text contains blanks it must
be enclosed in double quotes.

eval

Evaluates the arithmetic or string expression according to the rules of
FORTRAN-77 and assigns the result to the variable. The keyword eval can
be omitted. In contrast to FORTRAN-77 function names must be given in
lowercase letters.

eval i = 7
sentence = ’A flexible program!’
j = mod(i,4)**2
l = len(sentence)
show i sentence j l
... Variables:
 i = 7
 sentence = ’A flexible program!’

(condition) then

text

variable = expression

INCLAN

18

 j = 9
 l = 19

external

or

assigns a value (i. e. a string) or the result of an expression to an external
(non-local) variable even if a local variable with the same name exists.
This command can be used to return values from a macro to the calling
macro.

command swap a b Command to swap two variables
 var x y Declare two local variables, x and y
 x=$external('$a') Get value of external variable with name $a
 y=$external('$b') Get value of external variable with name $b
 external $a=y Assignment to external variable with name $a
 external $b=x Assignment to external variable with name $b
end

x=10; y=5
print "Before swap: x = $x, y = $y"
Before swap: x = 10, y = 5
swap x y
print "After swap : x = $x, y = $y"
After swap : x = 5, y = 10

exit Returns from a macro to interactive input. Given interactively, it exits
from the program.

go to

continues execution of a macro at the first line that begins with the label.
Jumps into loops (do . . . end do) or conditionally executed statements
(if . . . else . . . end if) are not allowed and can lead to unpredictable
results. A label may consist of letters, digits, and underscore characters
“_”. A label must be followed by a colon.

go to cont
...

cont: print "Now at label cont."

variable = expression

variable := value

label

 INCLAN

19

help

Gives on-line help for a given topic. With no topic given, a list of all
available help topics is displayed. On-line help for macros can be includ-
ed in the macro: help macro shows all lines of the macro that start with
“##”.

if

Executes a logical “if” statement as in FORTRAN-77, i. e. the statement is
executed if the logical expression condition is true. A line with a logical
“if” statement must not end with the word then.

i=–56
if (i.lt.0) print "$i is negative."
–56 is negative.

if

Executes a block-”if” statement, as in FORTRAN-77.
if (mod(i,2).eq.1) then

print "$i is an odd number."
else if (def(’x’) .and. exist(’y’)) then

print "x is defined, and y exists."
else if (s.eq.’ ’) then

print "The variable s is blank."
end if

parameter

Changes the names of the parameters that are passed to a macro; i. e. the
parameters p1, p2, . . . get the names given in the parameter statement.
The parameter statement must precede all other statements in a macro
(except var) and cannot be used interactively.

plot

Performs a plot subcommand. Plot commands are described separately
in the “Graphics” section of this chapter.

[topic]

(condition) statement

(condition) then

variable . . .

subcommand [parameter . . .]

INCLAN

20

print

Writes the text to standard output or into the file with the given filename.
If the text contains blanks it must be enclosed in double quotes. Option-
ally, the importance level of the output can be defined. By default, the
importance level is normal.

quit Exits from the program.

readline

Reads one line from a file and assigns it to a variable. If the file is not yet
open, it is opened and the first line is read. If the file is already open, the
next line is read. If the end of the file is reached, the variable is set to
EOF and the file is closed. Optionally, the file can be closed after read-
ing a line.

remove

Removes one or more disk files.

return exits from the current macro and returns to the calling macro or, if the
macro was called interactively, to interactive input. Given interactively,
return exits from the program.

set

or, if the keyword set is omitted

assigns a value (i. e. a string) to a variable.
set i=456
j := 2 + i Short form of set assigns a string value
k = 2 + i Short form of eval evaluates an expression
set i j k
i = 456
j = 2 + i
k = 458

text [level=level]

file variable [close]

file . . .

variable = value

variable := value

 INCLAN

21

set

Displays values of variables. If no variable is specified, all variables that
have values different from NULL are displayed. If the names of one or
several variables are given, the values of these variables are displayed.

show

Displays the values of all or selected global variables. If no variable is
specified, all global variables that have values different from NULL are
displayed. If the names of one or several global variables are given, the
values of these variables are displayed.

sleep

Waits for t seconds.

subroutine

Defines a new user-defined command within a macro, i.e. a macro within
a macro. User-defined commands defined by subroutine statements
are called by their name, possibly followed by parameters, in exactly the
same way as macros. User-defined commands defined by a subroutine
statement are local to the current macro (or macros called through it).
Within a macro, a user-defined command can only be called after it was
defined.

syntax

Analyzes the command line parameters of the current macro. This state-
ment can only be called within a macro. Command line parameters that
match with one of the format specifications are removed from the list of
command line parameters and assigned to a new local variable.
The possible format items are:

name=[=]type[=default]
Declares a named parameter with the given name, type
and, optionally, default value. If the default value is ab-

variable . . .

variable . . .

t

name

format . . .

INCLAN

22

sent, the parameter is required, and an error will occur if
the parameter is not specified in the macro call.
The optional second “=” sign after the name indicates
that a parameter that matches name but does not contain
an “=” sign is not recognized, otherwise (with only one
“=” sign after name), an error occurs in this situation.
A local variable with the given name is created, and ei-
ther the value specified by the user, or, in its absence, the
default value is assigned to it. The value must be compat-
ible with the given type (see below).
In a macro call, a named parameter can either be speci-
fied anywhere in the parameter list in the form
“name=value” or as a positional parameter of the form
“value” at the same position in the parameter list as the
corresponding format in the syntax statement. Only pa-
rameters that appear before “*” or “**” (see below) can be
specified as positional parameters without giving their
name.
A name may contain an asterisk “*” to indicate how
much it can be abbreviated. By default, all unambiguous
abbreviations are allowed. If a name starts with an aster-
isk, then the corresponding parameter is a positional pa-
rameter that cannot be given in the form “name=value”.

name Declares a literal option with the name. A local variable
with the given name is created. If the option name is
present in the macro call this variable is set to 1 (i.e. the
logical value “true”), otherwise it is set to 0.

name1|name2 . . .
Declares a set of mutually exclusive literal options with
the names name1, name2, etc. Local variables with the
given names are created. If one of the option names is
present in the macro call, the corresponding variable is
set to 1 (i.e. the logical value “true”) and the other vari-
ables are set to 0.

** Allows for additional parameters that do not match with
one of the formats.

* Has the same meaning as “**” except that additional pa-
rameters must not contain an “=” sign.

Formats must not contain blanks.
A type can be one of the following:

* Any character string.
@i Integer expression.
@r Real expression.

 INCLAN

23

[l<[=]]@i[<[=]u]
[l<[=]]@r[<[=]u]

Integer or real expression in the given range.
@ii Integer range, i.e. one of the following:

m a single integer expression
m..n two integer expressions
m.. using the default value for n
..n using the default value for m

name1|name2 . . .
List of mutually exclusive literals.

@f.extension Filename that will be extended with the given exten-
sion, if necessary (extension can also be $name to denote
the value of a preceding parameter).

command read_file

syntax format=asc|bin file=@f.$format \

weight=@r=1.0

The command read_file has three parameters.
The first parameter (format) is required and can
either be asc or bin, the second parameter
(file) is also required and is a filename that will
be given the extension .asc or .bin, depending
on the chosen format, and the third parameter
(weight) is an optional real number with default
value 1.0.

...

end

read_file asc test

Positional parameters and default value for
weight. Equivalent to setting format=asc,
file=test.asc and weight=1.0.

read_file file=test format=asc weight=2.0

Named parameters in any order.

system

Executes a UNIX-command by invoking a shell. If no command is spec-
ified, an interactive shell is started.

type

[UNIX-command]

macro

INCLAN

24

displays the macro or user-defined command with the given name. Mac-
ros in the current path can be listed without giving a path; otherwise the
path has to be specified.

unset

Removes one or more variables.

var

declares variables as local variables of the current macro. In contrast to
normal (global) variables, local variables are only visible within the
macro where they are declared and within macros that are called via that
macro (except when such a macro declares itself a local variable with the
same name). The var command must precede any other commands in a
macro (except the parameter command) and cannot be used interac-
tively.

Graphics

With INCLAN it is possible to produce graphical output in either Post-
script of FrameMaker (MIF) format. Graphics is created with the built-
in command plot. The plot command can either be invoked directly, or
plot subcommands can be combined with list data in graphics files that
can be read with the plot file command.
A graphics file can contain one or several blocks of list data, i.e. matrices
of integer or real numbers in free format. Each row (line) of a list data
block must have the same number of entries. The columns of a list data
block form vectors called x, y1, y2,... If a list data block consists of a sin-
gle column with n numbers, this column is called y1 and an x-column
with values is added implicitly. After reading a block of list
data, the graphics system is in list mode, and various plot subcommands
can be applied to vector expressions formed from the column vectors of
the list data block. These vector expressions are general FORTRAN-77 ex-
pressions that are evaluated for all vector elements and where the column
vectors x, y1, y2,... are denoted by x, y1, y2,...

variable . . .

variable . . .

1 2 … n, , ,

 INCLAN

25

Besides list data, a graphics file can contain plot subcommands (and
comments starting with #) but not other commands; it is not an INCLAN
macro.
The following alphabetical list contains all plot subcommands. They are
called from INCLAN in the form

plot subcommand parameters
and in graphics files in the form

subcommand parameters
Some of the plot subcommands have different parameters in normal and
list mode as indicated by “(normal mode)” or “(list mode)” at the right
margin.

arc

draws a circle, an ellipse, or part of a circle or ellipse with the center at
, and half axes a and b. If b is omitted, a circle with radius a (mea-

sured in the x-direction) is drawn. Optionally, only the part of the ellipse
starting and ending with phase angles and , respectively, is drawn.
The phase angle is 0° on the positive x-axis and increases counterclock-
wise. This command can also be used in list mode, where the parameters
are vector expressions.

caro See section mark.

clip

draws a rectangle with corners , , , and
sets the current clipping path to its border. Subsequent drawing com-
mands will only draw within this rectangular area.

clip

resets the clipping path. After this command, graphics will no longer be
confined to the rectangular area specified in a previous clip command.

close closes the current output plot file.

x y a [b [φ1 φ2]]

x y,()

φ1 φ2

x1 y1 x2 y2

x1 y1,() x1 y2,() x2 y1,() x2 y2,()

off

INCLAN

26

comment

writes text as a comment into the output plot file.

cross See section mark.

curve

draws a Bézier spline curve defined by the points . The total
number of points must be , with integer . The resulting
curve passes through the points 1, 4, 7,...; the other points guide the
curve. Four points define the shape of each segment of the curve: The
curve segment leaves along the direction of the straight line
connecting with and reaches along the direc-
tion of the straight line connecting with . The lengths of
the lines connecting with and with
represent, in a sense, the “velocity” of the path at the endpoints. The
curve segment is always enclosed by the convex quadrilateral defined by
the four points.

curve

draws Bézier spline curves through the points of the given vector expres-
sions x, y1,... If no vector expressions are specified, splines are drawn
through the points of all list columns. If the x-expression is omitted (i.e.
if only a single expression, y1, is given), the x-coordinates are taken from
the x-column of the list. The number of list points must be , with
integer n.

dot See section mark.

errorbar

draws an errorbar defined by the given x- and y-coordinates. This com-
mand can also be used in list mode, where x, y1 and y2 are three vector
expressions.

text

x1 y1 x2 y2 x3 y3 x4 y4 . . . (normal mode)

xi yi,()
3n 1+ n 1≥

x1 y1,()
x1 y1,() x2 y2,() x4 y4,()

x3 y3,() x4 y4,()
x1 y1,() x2 y2,() x3 y3,() x4 y4,()

[[x] y1. . .]. (list mode)

3n 1+

x y1 y2

 INCLAN

27

file

reads an input graphics file (default extension: .grf) containing list data
and plot commands and executes the plot commands in the graphics file.
Graphics files cannot be nested. If no output plot file is open when the
file command is executed, and if the first plot command in the graphics
file does not open an output plot file explicitly, a new Postscript output
plot file with the name file.ps is opened implicitly. An implicitly opened
output plot file will be closed when the end of the graphics file is
reached.

fit

performs a linear least-squares fit of the basis functions given by the vec-
tor expressions f1,... to the data points with x-coordinates, y-coordinates
and errors given by the vector expressions x, y and σ, respectively. For
m basis functions, the optimal linear combination,

, [1]

is determined by minimizing

, [2]

where i runs over the list data points. The optimal fit function is
added as another column to the list data. This command does not draw
anything. The fit parameters, , their standard deviations, ,
and the probability that this value of would be exceeded by chance
are available through the intrinsic functions fitpar, fiterr, fitchisq and
fitprob, respectively. If the errors of the data points are unkown, this
can be indicated by setting σ to zero in the fit command.

dot x y1 Plot original data points
fit x log(y1) 0 1 x Logarithmic fit of
spline x exp(y2) Plot fitted curve

file

x y σ f1. . . (list mode)

f1 … fm, ,

y x() a1f1 x() … amfm x()+ +=

χ2 a1 … am, ,()
yi y xi()–

σi
--------------------⎝ ⎠
⎛ ⎞

2

i
∑=

y x()

a1 … am, , χ2

χ2

σi

y a1 exp a2x–()=

INCLAN

28

frame

draws a rectangular frame with corners , ,
and . Subsequently produced graphics is clipped on the bor-
ders of the frame. The x- and y-axes are labeled with the titles xtext and
ytext, respectively. The parameter tics and labels determines whether
tics and numeric labels are drawn. The possible values for ticaxes and la-
belaxes are:

off No labels or tics.
x Labels or tics only on the x-axis.
y Labels or tics only on the y-axis.
x,y Label or tics on both axes (default).

If the option grid is present, a fine grid is drawn. If the option zero is
present, fine lines will be drawn along and (if they fall
within the frame).

function

plots the functions given by the expressions f1(x),...

label

labels the given axis by placing a tic and the text at the given position.
The parameter axis can have the following values:

x or bottom Label the x-axis, i.e. the horizontal line at y-position
.

y or left Label the y-axis, i.e. the vertical line at x-position .
top Label the horizontal line at y-position .
right Label the vertical line at x-position .

If text is blank, only a tic is set.

line

xtext=xtext —
ytext=ytext —
tics=ticaxes x,y
labels=labelaxes x,y
grid zero

X0 Y0,() X0 Y1,() X1 Y0,()
X1 Y1,()

x 0= y 0=

f1. . .

axis position text

Y0
X0

Y1
X1

x1 y1 x2 y2 . . . (normal mode)

 INCLAN

29

draws a line that connects the points , ,... by straight line
segments.

line

draws straight lines through the points of the given vector expressions x,
y1,... If no vector expressions are specified, straight lines are drawn
through the points of all list columns. If the x-expression is omitted (i.e.
if only a single expression, y1, is given), the x-coordinates are taken from
the x-column of the list.

mark

where mark stands for either dot, square, caro, plus, cross or trian-
gle, marks the position with the corresponding symbol. The size
of the symbol is determined by the current value of the plot parameter
marksize.

mark

where mark stands for either dot, square, caro, plus, cross or trian-
gle, marks the positions given by the vector expressions x, y1,... with the
corresponding symbol. If no vector expressions are specified, all points
of the list columns are marked. If the x-expression is omitted (i.e. if only
a single expression, y1, is given), the x-coordinates are taken from the x-
column of the list.

mif

opens and initializes an output plot file in FrameMaker (MIF) format. If
another plot file is open when the mif command is executed, it is closed.

plus See section mark.

polygon

x1 y1,() x2 y2,()

[[x] y1. . .]. (list mode)

x y (normal mode)

x y,()

[[x] y1. . .]. (list mode)

file

x1 y1 x2 y2 x3 y3. . . (normal mode)

INCLAN

30

draws a polygon with the edges . At least three points must be
specified.

polygon

draws polygons with the edges given by the vector expressions x, y1,...
If no vector expressions are specified, polygons are drawn through the
points of all list columns. If the x-expression is omitted (i.e. if only a sin-
gle expression, y1, is given), the x-coordinates are taken from the x-col-
umn of the list. The number of list points must be three or more.

ps

opens and initializes an output plot file in Postscript format. If another
plot file is open when the ps command is executed, it is closed.

rectangle

draws a rectangle with corners , , and .
This command can also be used in list mode, where x1, y1, x2 and y2 are
four vector expressions. In list mode, the command can also be used
without parameters. In this case a rectangle with corners

, , and
, i.e. a histogram bar, is drawn for each point

 in the list columns (for the first and last point, and
are replaced by the minimal and maximal x-values, and , respec-
tively).

scale

performs scaling of the given axis (x or y) on the basis of the vector ex-
pressions f1,... Scaling sets the coordinates of the reference points in the
user coordinate system (and for the x-axis, and and for the
y-axis) such that they include all values of the vector expressions f1,... If
the option exact is present, then the new coordinates of the reference
points will correspond exactly to the minimum and maximum of the vec-
tor expressions f1,...; otherwise a small margin will be added in order to
avoid that points lie exactly on the boundary.

xi yi,()

[[x] y1. . .]. (list mode)

file

x1 y1 x2 y2

x1 y1,() x1 y2,() x2 y1,() x2 y2,()

xi 1– xi+() 2⁄ 0,() xi xi 1++() 2⁄ 0,() xi 1– xi+() 2⁄ yi,()
xi xi 1++() 2⁄ yi,()

xi yi,() xi 1– xi 1+
X0 X1

axis f1. . . exact (list mode)

X0 X1 Y0 Y1

 INCLAN

31

set

sets one or several plot parameters to the given values. The keyword set
is optional.

shape

draws a shape enclosed by a closed Bézier spline curve that is defined by
the points . The total number of points must be 3n, with integer

.

shape

draws shapes enclosed by Bézier spline curves through the points of the
given vector expressions x, y1,... If no vector expressions are specified,
shapes are drawn for all list columns. If the x-expression is omitted (i.e.
if only a single expression, y1, is given), the x-coordinates are taken from
the x-column of the list. The number of list points must be 3n, with inte-
ger n.

spline

draws a cubic spline through the points , ,... The spline
starts at the first point and ends at the last point with vanishing second
derivative. The x-values must be increasing: , for all i.

spline

draws cubic spline curves through the points of the given vector expres-
sions x, y1,... If no vector expressions are specified, splines are drawn
through the points of all list columns. If the x-expression is omitted (i.e.
if only a single expression, y1, is given), the x-coordinates are taken from
the x-column of the list.

square See section mark.

parameter=value . . .

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 . . . (normal mode)

xi yi,()
n 2≥

[[x] y1. . .]. (list mode)

x1 y1 x2 y2 . . . (normal mode)

x1 y1,() x2 y2,()

xi xi 1+<

[[x] y1. . .]. (list mode)

INCLAN

32

text

print text at position . The alignment of the text with respect to the
reference position depends on the current values of the plot pa-
rameters align and rotate. The current values of the plot parameters
font, textsize, weight and angle define the font used to write the text.
In addition, the text may contain the following embedded text com-
mands:

@T Change font type to Times.
@H Change font type to Arial.
@C Change font type to Courier.
@S Change font type to Symbol.
@b Change to boldface.
@i Change to italics.
@^ Start a superscript.
@v Start a subscript.
@N Return to standard font, end sub- or superscript.

If the text contains multiple blanks, it must be enclosed in double quotes.
Double quotes that are part of the text must be preceded by a backslash.

triangle See section mark.

write

writes text into the output plot file.

Plot parameters are used to define the positioning and appearance of
graphics objects. They are set by the plot subcommand set:

align determines how text is aligned with respect to its reference position. Pos-
sible values are:

left The horizontal reference position is at the left margin of
the text.

center The horizontal reference position is in the center of the
text.

right The horizontal reference position is at the right margin of
the text.

bottom The vertical reference position is at the bottom margin of

x y text

x y,()
x y,()

text

 INCLAN

33

the text.
middle The vertical reference position is in the middle of the

text.
top The vertical reference position is at the top margin of the

text.
Horizontal and vertical alignment specifications can be separated by a
comma, e.g. align=center,top.
Initial value: left,bottom.

angle defines a font property with the possible values:
regular Regular; not italics.
italics Italics or oblique.

The Symbol font is only available as regular.
Initial value: regular.

autoscale determines whether the user coordinate system is automatically rescaled
after reading list data. The possible values are:

off No automatic scaling.
x Automatic scaling of the x-dimension only.
y Automatic scaling of the y-dimension only.
x,y or on Automatic scaling of both dimensions.

If autoscaling of the x-dimension is on, then the values of and
(plot parameters X0 and X1) are reset after reading list data such that all
values in the x-column of the list data are in the range between and

. If autoscaling of the y-dimension is on, then the values of and
(plot parameters Y0 and Y1) are reset to include all values in the y-col-
umns of the list data. In general, the limits are extended slightly with re-
spect to the exact minimum and maximum in order to avoid that data
points lie exactly on the margin.
Initial value: on.

border determines whether the border of a closed figure (a rectangle, a circle, an
ellipse, a polygon, a closed Bézier curve, or certain types of marks) will
be drawn as a line:

off Border lines are not drawn.
on Border lines are drawn.

Initial value: on.

color defines the color, and can have the value black, white, red, green,
blue, cyan, magenta, or yellow. All text and graphics that follows
has the given color.
Initial value: black.

X0 X1

X0
X1 Y0 Y1

INCLAN

34

dash defines the dash pattern used to draw lines. Its value is either blank
(which is equivalent to solid), or a comma separated list of numbers, or
one of the following literals:

solid Solid lines.
dotted Dotted lines; equivalent to 1.
dashed Dashed lines; equivalent to 5,4.
dot-dashed Dot-dashed lines; equivalent to 5,2,1,2.

General dash patterns are specified by a comma separated list of num-
bers that define the lengths (measured in points) of alternating solid and
invisible stretches.
Initial value: solid.

fill defines the fill pattern used to draw areas. Its value is an integer between
0 and 15 with the following meaning:

0 Empty; do not fill areas.
1 Full color.
2–7 Progressively less saturated shading or color.
8 White; covers other graphics.
9–15 Different types of hatching.

Initial value: 0.

font defines the font type and can have the following values:
Times Times.
Arial Arial.
Courier Courier.
Symbol Symbol.

Initial value: Arial.

linewidth defines the current linewidth in points (1 pt = 0.353 mm).
Initial value: 1.

marksize defines the mark size in points (1 pt = 0.353 mm). If the mark is a circle,
the mark size corresponds to the diameter. For other types of marks, sim-
ilar conventions apply.
Initial value: 6.

mode defines the input mode to line and area drawing commands and can have
the following values:

normal Coordinates are specified explicitly on the command
line.

 INCLAN

35

list Coordinates are taken from vector expressions, and the
corresponding command is applied to all points in the
list.

The input mode is automatically set to list when a graphics file with list
data is read.
Initial value: normal.

rotate defines the direction in which text is written and can have the following
values:

off Text is written horizontally, from left to right.
on Text is written vertically, from bottom to top.

Initial value: off.

textsize defines the font size in points (1 pt = 0.353 mm).
Initial value: 12.

weight defines a font property with the possible values:
regular Regular; not bold.
bold Bold.

The Symbol font is only available as regular.
Initial value: regular.

x0, y0, x1, y1 define the positions of the two reference points and in
the standard coordinate system. The standard coordinate system has its
origin in the center of an A4 sheet and uses points (1 pt = 0.353 mm) to
measure distances in both dimensions. The x-axis points to the right, and
the y-axis points up.
Initial values: , , , .

X0, Y0, X1, Y1 define the positions of the two reference points and
in the user coordinate system. All positions and distances are measured
in the user coordinate system except for linewidth, text size, mark size,
and dash patterns, which are always specified in points. These plot pa-
rameters are changed implicitly by the scale command or if autoscaling
is enabled. The values of these plot parameters are available in INCLAN
as intrinsic functions: plotx0, ploty0, plotx1 and ploty1.
Initial values: , , , .

x0 y0,() x1 y1,()

x0 250–= y0 375–= x1 250= y1 375=

X0 Y0,() X1 Y1,()

X0 250–= Y0 375–= X1 250= Y1 375=

INCLAN

36

