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Energieminimierung

= Integration der Bewegungsgleichungen
= Temperaturkontrolle

Druckkontrolle

= Periodische Randbedingungen
Zwangsbedingungen: SHAKE

Energieflachen
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Fig. 5.1: Variation in the energy of pentane with the two torsion angles indicated and represented as a contour diagram and isometric plot. Only the lowest-energy
regions are shown,
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Fig. 5.3: A schematic energy surface. ion methods move downhill to the nearest minimum.
The statistical weight of the narrow, deep minimum may be less than a broad minimum which is higher in energy.

Energieminimierungsalgorithmen

= Ohne Ableitungen

« Mit Gradienten:
- Steilster Abstieg (steepest descent)
- konjugierte Gradienten (conjugate gradients)

= Mit zweiter Ableitung: Newton-Raphson Methode

Simplex Algorithmus

Tnitial simplex
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Fig. 5.4 The three basic moves permitted to the simplex algorithm (reflection, and its close relation reflect-and-expand;
contract in one dimension and contract around the lowest point). (Figure adapted from Press W H, B P Flannery,
S A Teukolsky and W T Vetterling 1992. Numerical Recipes in Fortran. Cambridge, Cambridge University Press.)
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Simplex Algorithmus

Fig. 5.5: The first few steps of the simplex algorithm with the function x* + 2y*. The initial simplex corresponds to
the triangle 123. Point 2 has the largest value of the function and the next simplex is the triangle 134. The simplex for
the third step is 145.

Eindimensionale Minimierung

Fig. 5.8: The minimum in a line search may be found more
effectively by fitting an analytical function such as a quadratic to
the initial sef of three points (1,2 and 3). A better estimate of the

Fig. 5.7: A line search is used to locate the minimum

N P o . minimum can then be found by fitting a new function to the points
in the function in the direction of the gradient. Jound by fttng a new f P

1, 2and 4 and finding its mininm.

Energieminimierung: Steepest descent
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Fig. 5.10: The steepest descents method can give

Fig. 5.9: Application of steepest descents to the function x* + 2y7. undesirable behaviour in a long narrow valley.

Konjugierte Gradientenmethode
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Fig. 5.11: Application of conjugate gradients method to the function x* + 2y’
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Taylor Reihenentwicklung
F00 = 06)+ F06)(x-%)+ ‘20)(x %)’
f”':ELXO)(X %,)* +..

r(t+ 6t) = x(t) + otv(t) + 16f%a(t) + 16£b(t) + 4 6t*c(t) +
v(t+ 6t) = v(t) + Sta(t) + 168b(t) + 18tc(t) +
a(t + 6t) = a(t) + 6tb(t) + 16£c(t) - -

b(t + 6t) = b(t) + bte(t) +

Verlet Algorithmus

The Verlet algorithm uses the positions and
accelerations at time f, and the positions from the previous step, r(t — 6t), to calculate the
new positions at t + 6t, r(t + 6t). We can write down the following relationships between
these quantities and the velocities at time #:

x(t+ 6t) = x(t) + tv(t) + 1ot%a(t) + - (7.6)
x(t = 6t) =r(t) - Stv(t) +36Fa(t) — - (7.7)
Adding these two equations gives
r(t+ 6t) = 2r(t) — x(t — 6t) + 6ta(t) (7.8)
The velocities do not explicitly appear in the Verlet integration algorithm. The velocities can

be calculated in a variety of ways; a simple approach is to divide the difference in positions
at times ¢ + 6t and t — 6t by 26t:

v(t) = [x(t + 6t) — r(t — 6t)) /26t 79
Alternatively, the velocities can be estimated at the half-step, t + %6!:
v(t+368) = [x(t + 8t) — x(1)) /ot (7.10)
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Leap-frog Algorithmus

The leap-frog algorithm uses the following relationships:
r(t + 6t) = x(f) + 6tv(t + 1 6t) (7.11)
v(t+316t) = v(t —16t) + bta(t) (7.12)
To implement the leap-frog algorithm, the velocities v(t + 1 1) are first calculated from the
velocities at time t — 16t and the accelerations at time t. The positions r(t + 6t) are then

deduced from the velocities just calculated together with the positions at time r(f) using
Equation (7.11). The velocities at time ¢ can be calculated from

v(t) =3[v(t+36t) +v(t—16t)] (7.13)

The velocities thus ‘leap-frog’ over the positions to give their values at t+ 15t (hence the
name). The positions then leap over the velocities to give their new values at t + 6t, ready
for the velocities at f + gét, and so on. The leap-frog method has two advantages over the

Velocity Verlet Algorithmus

The velocity Verlet method [Swope et al. 1982] gives positions, velocities and accelerations at
the same time and does not compromise precision:

£(t+ 6t) = x(f) + 6tv(t) + 1 6ra(t) (7.14)
V(t+6t) = v(t) + 3 6ta(t) + a(t + 6t)] (7.15)
The velocity Verlet method is actually implemented as a three-stage procedure because, as
can be seen from Equation (7.15), to calculate the new velocities requires the accelerations at
both tand t + 6t. Thus in the first step the positions at ¢ + §t are calculated according to Equa-

tion (7.14) using the velocities and the accelerations at time £. The velocities at time  + 1 6t are
then determined using:

v(t+16t) = v(t) + 1 sta(t) (7.16)

New forces are next computed from the current positions, thus giving a(t + 6t). In the final
step, the velocities at time t + 6t are determined using:

v(t+ 6t) = v(t+16t) + 3 ota(t + 6t) (7.17)

Beemans Algorithmus

Beeman'’s algorithm [Beeman 1976] is also related to the Verlet method:
£(t+ 8t) = x(f) + 6tv(t) +368%a(t) — 16ta(t — 8t) (7.18)
v(t+ 6t) = v(f) + 1 ota(t) + 3 dta(t) — Lota(t — 6t) (7.19)

The Beeman integration scheme uses a more accurate expression for the velocity. As a
consequence it often gives better energy conservation, because the kinetic energy is
calculated directly from the velocities. However, the expressions used are more complex
than those of the Verlet algorithm and so it is computationally more expensive.

Gear Predictor-Corrector Algorithmen

The predictor-corrector methods [Gear 1971] form a general family of integration algorithms
from which one can select a scheme that is correct to a given order. These methods have
three basic steps. First, new positions, velocities, accelerations and higher-order terms are
predicted according to the Taylor expansion, Equations (7.2)~(7.4). In the second stage,
the forces are evaluated at the new positions to give accelerations a(t + 6t). These accelera-
tions are then compared with the accelerations that are predicted from the Taylor series
expansion, a“(t + 6t). The difference between the predicted and calculated accelerations is
then used to ‘correct’ the positions, velocities, etc., in the correction step:

Aa(t+6t) = a“(t + 6t) — a(t + 6t) (7.22)
Then
1°(t+ 5t) = x(t+ 6t) + coa(t + b6t) (7.23)
VO(t+ 6t) = v(t + 8t) + ¢y Aa(t + 6t) (7.24)
aS(t+66)/2 = a(t + 61)/2 + cyAa(t + 6t) (7.25)
b(t+ 6t)/6 = b(t + 6t) /6 + c3Ma(t + bt) (7.26)
Gear has suggested ‘best’ values of the coefficients co, ¢y, .... The set of coefficients to use

depends upon the order of the Taylor series expansion. In Equations (7.23)-(7.26) the expan-
sion has been truncated after the third derivative of the positions (i.e. b(t)). The appropriate
set of coefficients to use in this caseis cg =% ¢; =2 ; =land ¢ = 1.
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Fig. 7.3: Variation in total energy versus time for the production phase of a molecular dynamics simulation of 256
argon atoms at a temperature of 100 K and a density of 1.396 g com > (top). The time step was 10s and the equations
of motion were integrated using the velocity Verlet algorithm. The variations in the kinetic and potential energies are
also shown (bottom). The graphs have different scales.
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Fig. 7.4: With a very small time step (left) phase space s covered very slowly; a large time step (middle) gives
instabilities. With an appropriate time step (right) phase space is covered efficiently and collisions occur smoothly.

System Types of motion present Suggested time step (s)
Atoms Translation 107"

Rigid molecules Translation and rotation 5x107"°

Flexible molecules, rigid bonds Translation, rotation, torsion 2x107"

Flexible molecules, flexible bonds ~ Translation, rotation, torsion, vibration 107" or 5 x 107"

Table 7.1 The different types of motion present in various systems together with suggested time steps.
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Fig. 3.3 Encrgy conservation of various algorithms. The system studied is as for Fig. 3.1. We
calculate RMS energy fluctuations <6¢*)'* for various runs starting from the same initial

and corresponding numbers of SIEPS Tygg = tryy/dt. The plot-uses log-log scales. The curves
correspond to velocity Verlet (circles), Gear fourth-order (squares), Gear fifth-order (triangles),
and Gear sixth-order (diamonds) algorithms.

Temperatur

Momentane Temperatur T(t):
1 51
_ _ 2
5 NkBT (t) = Ekin (t) = z* myv;
2 =2
N = Anzahl Freiheitsgrade (N = 3n), n = Anzahl Atome
Methoden fur MD Simulation bei konstanter Temperatur:

= (strikt) konstante kinetische Energie und Temperatur
= erweitertes System mit zusatzlichem Freiheitsgrad

= schwache Kopplung an ein Warmebad

Druck

Druck = Kraft pro Flacheneinheit auf die Wande des Systems
Aber: bei periodischen Randbedingungen keine Wand vorhanden

2 13 =
virialsatzz P=—|E . += > F.-F.
Irialsatz W Kin 2 ; ij ij

P = Druck, V = Volumen

Methoden fur MD Simulation bei konstantem Druck:

Periodische Randbedingungen

[l Y

‘Truncated octahedron

- (strikt) konstanter Druck ? o g ? J il

- erweitertes System mit zuséatzlichem Freiheitsgrad Fhombic dodecahedron
= schwache Kopplung

Periodische Randbedingungen Literatur

Rectangular box. side 2a (x) bv 2b (y) by 2¢ (2) X =x-2xaxAINT(x/a)
y=y-2xbxAINT(y/b)
z=2-2xcxAINT(z/c)
A common alternative is:
X =x—axANINT(x/a)
y=y—bxANINT(y/b)
- z=z-cx ANINT(z/c)

Truncated octahedron derived from cube of side 2a

=

X =x—2xax AINT(x/a)
y=y-2xbxANT(y/a)
z=z-2xcxAINT(z/a)
if (ABS(x) + ABS(y) + ABS(2)) > 1.5 x A
then

x =x - SIGN(a,x)

y=y-SIGN(a,y)

z=2z-5IGN(a,2)
endif

Hexagonal prism of length 2a (in z direction) and distance ~ z =2z -2 x a x AINT(z/a)
between opposite faces of the hexagon 2b X =x—2xb x AINT(x/b)
if (ABS(x) + v/3 x ABS(y)) = 2 x B then
X =x — SIGN(b, x)
y=y-SIGN(v3 x by)
endif

» Andrew R. Leach: Molecular Modellling,
Principles and Applications, Prentice Hall, 2001.

* M. P. Allen & D. J. Tildesley: Computer
Simulation of Liquids, Clarendon Press, 1987.

» Tamar Schlick: Molecular Modeling and

Simulation, Springer, 2006.
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