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Methods

1. Homology modeling/comparative modeling
— Similar sequences - similar structures
— Practically very useful, but requires structural homologues

2. Fold recognition and threading
— Many sequence-wise unrelated proteins share the same
structural fold
— Structures are more conserved than sequences

3. ab initio (or template-free methods)
— Can use first principles to fold proteins
— Do not require templates
— High computational complexity

Methods for protein structure prediction

Methods are distinguished according to the relationship between the
target protein and proteins of known structure:

* Comparative modeling: A clear evolutionary relationship between
the target and a protein of known structure can
be easily detected from the sequence.

* Fold recognition: The structure of the target turns out to
be related to that of a protein of known structure although
the relationship is difficult, or impossible, to detect from
the sequences.

* New fold prediction: Neither the sequence nor the structure of the
target protein are similar to that of a known protein.



Structure prediction
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Homology modelling is more reliable
than other methods.
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But, you can’t always find similar
sequences of known structure.
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de novo prediction
Insignificant sequence similarity

Baker, D, Sali, A. (2001). Science 294, 93-96

CASP: Critical Assessment of Techniques for
Protein Structure Prediction

CASP (Critical Assessment of Structure Prediction) is a community wide experiment to
determine and advance the state of the art in modeling protein structure from amino acid
sequence. Every two years since 1994, participants are invited to submit models for a set of
proteins for which the experimental structures are not yet public. Independent assessors
then compare the models with experiment. Assessments and results are published in a
special issue of the journal Proteins. In the most recent CASP round, CASP12, nearly 100
groups from around the world submitted more than 50,000 models on 82 modeling targets.
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CASP: Template-based modelling

Models based on templates identified by sequence similarity remain the most
accurate. Over the course of the CASP experiments there have been enormous
improvements in this area. However, the overall accuracy improvements that we
have seen in the first 10 years of CASP remained unmatched until CASP12, when a
new burst of progress happened (see the plot). In two years from CASP11 to
CASP12 the backbone accuracy of the submitted models improved more than in the
preceeding 10 years. Several factors contributed to this, including more accurate
alignment of the target sequence to that of available templates, combining multiple
templates, improved accuracy of regions not covered by templates, successful

based

g’ refinement of models, and better selection of models from decoy sets due to

- improved methods for estimation of model accuracy. [Kryshtafovych et al, 2018]
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target TO868-D1 (orange)
model 330_2 (blue): GDT_TS=87
best template: 2cw6 (seq.id= 4.2%)
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CASP: Ab initio modelling

Modeling proteins with no or marginal similarity to existing structures (ab initio, new fold, non-template or free
modeling) is the most challenging task in tertiary structure prediction. Probably the first ab initio model of
reasonable accuracy was built in CASP4. Since then CASP witnessed sustained progress in ab initio prediction, but
mainly for small proteins (120 residues or less, panels 1 and 2). In CASP11 for the first time a larger new fold
protein (256 residues, sequence identity to known structures <5%) was built with unpresedented before accuracy
for targets of this size (panel 3). The latest two CASPs (2014-2016) also showed a new trend in building better non-
template models by successful utilizing predicted contacts (panel 4). [Abriata et al, 2018] Models are shown in blue,
targets in orange.
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CASP7: T0283-D1 CASP9: T0581-D1 CASP11: T0806-D1 CASP12: T0866-D1
model 321_1: GDT_TS=75model 170_1: GDT_TS=71model 064_1: GDT_TS=61 model 325_5: GDT_TS=81

http://predictioncenter.org/



CASP: Contact prediction

The most notable progress in recent CASPs (2014, 2016) resulted from sustained
improvement in methods for predicting three-dimensional contacts between pairs of
residues in structures. Average precision of the best CASP12 contact predictor almost
doubled compared to that of the best CASP11 predictor (see the plot). Advances in the
field as a whole are not any less impressive: 26 methods in CASP12 showed better
results than the best method in CASP11. [Schaarschmidt et al, 2018]

Theoretical advance in contact prediction lead to improved accuracy of 3D models,

o e especially for the hardest template-free modeling cases (see models for target T0915
Q .9 below).
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CASP: Experimental data-assisted modelling
Data-assisted or hybrid modeling, in which low-resolution experimental data are combined
with computational methods, is becoming increasing important for a range of experimental
data, including NMR, chemical cross-linking and surface labeling, X-ray and neutron
scattering, and electron microscopy. CASP11 and 12 experiments included a special sub-
category of modeling proteins using such data. In the latest CASP (2016), predictors were
provided with the cross-linking mass spectometry data and small angle X-ray scattering
data on a subset of targets. [Ogorzalek et al, 2018]
Examples of a non-assisted model and a cross-linking assisted model from the same
© g’ predictor (CASP group 220) are shown below.
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target TO894 target Tx894
original model 220_1 X-linking -assisted model 220_1
GDT_TS=24 GDT_TS=52

http://predictioncenter.org/ 10



CASP13 Goals

CASP assesses many aspects of modeling, including the accuracy of protein topologies, atom
co-ordinates, and multi-protein assemblies. The experiment also examines the extent to which
models can answer questions of biological interest, and how different types of sparse or low
resolution experimental data can improve model accuracy.

CASP13 has started in April 2018 and will address the following questions:

* How similar are the models to the corresponding experimental structure?

* Are domain orientations, subunit interactions, and the protein initeractions in complexes
modeled correctly?

* How much more accurate are template-based models than those that can be obtained by
simply copying the best template?

* How reliable are overall, residue, and atomic level error estimates?

* How much can current refinement methods improve the accuracy of models?

* How effective are approaches to predicting protein three dimensional contacts?

* How well do the models help answering relevant biological questions?

* How helpful is additional information, particularly sparse NMR data, chemical cross-linking,
SAXS and FRET?

* In which areas has there been progress since the last CASP?

*  Where can future effort be most productively focused?

http://predictioncenter.org/casp13 n

CASP13 Modeling Categories

* The High Accuracy Modeling category will include domains where majority of submitted models
are of sufficient accuracy for detailed analysis. This category replaces the previous Template Based
Modeling category.

* The Topology category (formerly Free Modeling) will assess domains where submitted models are
of relatively low accuracy.

* The Contact Prediction category will assess the ability of methods to predict three dimensional
contacts in targets structures.

* The Refinement category will analyze success in refining models beyond the accuracy obtained in
the initial submissions. For each target, one of the best initial models will be selected, and
reissued as the starting structure for refinement.

* The Assembly category will assess how well current methods can determine domain-domain,
subunit-subunit, and protein-protein interactions. As in CASPs 11 and 12, we hope to work closely
with CAPRI in this category.

* The Accuracy Estimation category will assess the ability to provide useful accuracy estimates for
the overall accuracy of models and at the domain and residue level.

* The Data Assisted category will assess how much the accuracy of models is improved by the
addition of sparse data. Targets for which such data are available will be re-released after initial
data independent models have been collected, together with the available data. Data types are
expected to include sparse NMR data, crosslinking data, SAXS data and FRET.

* The Biological Relevance category will assess models on the basis of how well they provide
answers to biological questions. Target providers will be asked to say what questions prompted
the determination of the experimental structure. The usefulness of the models in answering those
questions will be compared with the that of the experimental structures. 12



CASP13 in Numbers

Number of groups registered 241
including: expert groups 149
prediction servers 92
Number of tertiary structure prediction targets released 53
(including all-group targets) (45)
Number of hetero-multimer targets released 7
Number of refinement targets released 7
Number of assisted prediction targets released 16
Targets canceled (all / human) (1/2)
Targets available/expired for manual non-QA prediction 21/23
Targets available/expired for server non-QA prediction 1/51
Targets available/expired for QA prediction 6/43
Targets available/expired for assisted prediction 9/7
Targets available/expired for multimer prediction 3/4

Prediction category Number of groups/servers contributing Number of models designated as 1 Total number of models

Tertiary structure predictions 103/ 39 3556 16976
Heteromeric predictions 20/ 2 65 298
Data assisted predictions 10/1 56 241
Residue-residue contacts 46 / 25 1953 1953
Accuracy estimation 52/ 41 2260 4373
Refinement 14/ 4 60 281
All (unique): 173/ 87 7974 24146

http://predictioncenter.org/casp13

Measures of structural similarity

 RMSD: Average (root-mean-square) deviation of
atom positions

* GDT-TS: Percentage of residues that can be
superimposed under given distance cutoffs

13
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RMSD (root-mean-square deviation)
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« Minimum uber alle Rotationen R und
Translationen t — optimale Uberlagerung
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RMSD values of structure bundles
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GDT_TS

* The GDT (“global distance test”) algorithm searches for the
largest (not necessarily continuous) set of residues that
deviate by no more than a specified distance cutoff.

» Results are reported as the percentage of residues under
a given distance cutoff.

« A popular measure is the “GDT total score”,

GDT TS = (P, + P, + P, + Py)/4,

where P, is the fraction of residues that can be
superimposed under a distance cutoff of d A, which
reduces the dependence on the choice of the cutoff by
averaging over four different distance cutoff values.

Critical assessment of methods of protein structure
prediction (CASP)—Round XI|

John Moult? I
Torsten Schwede3 I

Ynstitute for Bioscience and Biotechnology
Research and Department of Cell Biology
and Molecular Genetics, University of
Maryland, 9600 Gudelsky Drive, Rockville,
Maryland 20850

2Genome Center, University of California,
Davis, 451 Health Sciences Drive, Davis,
California 95616

SUniversity of Basel, Biozentrum & SIB
Swiss Institute of Bioinformatics, Basel,
Switzerland

“Department of Physics and Istituto
Pasteur - Fondazione Cenci Bolognetti,
Sapienza University of Rome, P.le Aldo
Moro, 5, Rome 00185, Italy

Correspondence

John Moult, Institute for Bioscience and
Biotechnology Research and Department of
Cell Biology and Molecular Genetics,
University of Maryland, 9600 Gudelsky
Drive, Rockville, MD 20850

Email: jmoult@umd.edu

Krzysztof Fidelis? I

Andriy Kryshtafovych? I

Anna Tramontano4

Abstract

This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction
(CASP12), held in 2016. CASP is a community experiment to determine the state of the art in mod-
eling protein structure from amino acid sequence. Participants are provided sequence information
and in turn provide protein structure models and related information. Analysis of the submitted
structures by independent assessors provides a comprehensive picture of the capabilities of

current methods, and allows progress to be identified. This was again an exciting round of CASP,
with significant advances in 4 areas: (i) The use of new methods for predicting three-dimensional
contacts led to a two-fold improvement in contact accuracy. (i) As a consequence, model accuracy

for proteins where no template was available improved dramatically. (i) Models based on a struc-

tural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy
of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for
building quaternary structure models, including an expansion of the collaboration between CASP
and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as
well as again using chemical cross-linking information. (iii) A team of assessors evaluated the
suitability of models for a range of applications, including mutation interpretation, analysis of ligand
binding properties, and identification of interfaces. This article describes the experiment and
summarizes the results. The rest of this special issue of PROTEINS contains papers describing
CASP12 results and assessments in more detail.

Moult et al. Proteins 86, 7-15 (2018).

17

18



CASP12 Prediction accuracy
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FIGURE 1 Contact prediction accuracy in CASPs 11 and 12
against effective alignment depth. As expected, accuracy increases
with alignment depth, and for a number of CASP12 targets with
deep alignments, precision is 100%. Best results on the set of free
modeling targets are shown. Precision is for the most confidently
predicted L/5 contacts separated by >23 residues in the sequence,
where L is the target length. Neff is the number of diverse (<90%
ID) homologous sequences covering at least 60% of the target
with an E-score of 1072 or better, retrieved by HHblits from the
uniprot20 database
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FIGURE 2 Backbone accuracy (GDT_TS) of the best submitted
models in the free modeling category for the 3 most recent CASPs,
as a function of target length. Good performance for targets
smaller than 100 residues mostly reflects earlier improvements in
this category. In CASP10, no models longer than 100 residues had
GDT_TS >50. In CASP11, 4 crossed this threshold. In CASP12, half
of the targets longer than 100 residues do so. (On the GDT_TS
scale, 100 is perfect agreement with experiment, 20-30 is typically
random, and structures with scores above 50 are largely
topologically correct.)
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0 FIGURE 5 Trend lines for best model backbone accuracy (by
0 20 40 60 80 100 GDT_TS) in CASP5 (2002), CASP11, and the most recent CASP12,
for the template-based modeling targets (TBM and TBM/FM). By
max precision this measure, there was only modest improvement in 12 years
between CASP5 and 11, but a substantial jump in the last 2 years.
FIGURE 3 Relationship between highest backbone accuracy Points show the CASP11 and CASP12 best models for each target.
(GDT_TS) and highest contact prediction accuracy for free The case of T0868 is discussed in the text and shown in Figure 6.
modeling targets in CASP12. Average structure accuracy doubles The “Target Difficulty” rank of each target is based on its sequence
as contact accuracy increases, demonstrating that high accuracy is and structure similarity to the closest template™®
a consequence of the availability of largely correct contacts.
(Precision is for the L/5 most confidently predicted contacts
20
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CASP12 Prediction accuracy

FIGURE 4 Superposition of the best model received for target
TO866, the periplasmic domain of MlaD from E.coli (blue), with the
corresponding experimental structure (turquoise, PDB 4cx8). There
were no sequence detectable templates for this protein, and the
outstandingly accurate model is largely because of successful
prediction of a set of three-dimensional contacts

Moult et al. Proteins 86, 7-15 (2018).

FIGURE 6 Example of accurate template-based modeling for a
relatively difficult target, TO868, a bacterial CdiA tRNase toxin. The
experimental structure (PDB 5j4a) is shown as a cyan cartoon, with
the best homologous template in red, the best server model in green,
and the best overall model in blue. There are several obvious areas of
improvement over the template, for example modeling of the top left
helix, not present in the template, correction of the inter-helical
relationship on the top right, and correct replacement of the long

template hairpin at the bottom of the structure 21

Comparative protein structure
modelling
(template-based modelling)
(homology modelling)

22



Homology Modeling

Very
important
step

Identify homologous protein structures

|

Align query sequence with template sequence "/

|

Build a model for the query sequence
Core modeling, side chain modeling
loop modeling

|

Model evaluation

|

Model refinement

Most of the steps can be automated . .
HM can give excellent predictions 03

Threshold for Structural Homology
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Fig. 2. The relation of residue identity and the r.m.s. deviation of the
backbone atoms of the common cores of 32 pairs of homologous proteins
(see Table II).

From Protein Structure and Function
by Gregory A Petsko and Dagmar Ringe
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Chameleon Sequences

VLYVKLHN

1JIGA (20-27) 1P35A (277-284)
Fig. 1. A chameleonHS sequence VLYVKLHN (green) in 1JIGA (helix conformation) and in 1P35A
using Rasmol.¥”

(strand conform :n'(nmf?rnh-e figure was prepared Rax RVQDNIV

1N81A (92-98) 1QDLA (229-235)

Fig. 2. A chameleon-HE sequence RVQDNIV (greerp in 1NB1A (helix conformation) and in 1QDLA (sheet
conformation). The figure was prepared using Rasmol.®

Same short protein sequence adopts different secondary structures ”s

Protein folding and the Paracelsus challenge

nature structural biology * volume 4 number 7 « july 1997

George D. Rose

A challenge to change one protein into another while retaining 50% of the original protein’s sequence has )
been met and provides a warning to other would-be protein folding/engineering challenges: only offer a prize
of atee-shirt,

FUTURE DIRECTIONS

Protein Folding: Predicting Predicting

George D. Rose and Trevor P. Creamer )
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis,
Missouri 63110

suitably chosen residues. To focus attention on this
question, we have established the Paracelsus Chal-
lenge,'® a one-time prize of $1000, to be awarded to
the first individual or group that successfully trans-
forms one globular protein's conformation into an-
other by changing no more than half the sequence.'®

PROTEINS: Structure, Function, and Genetics 19:1-3 (1994) 26



NMR structures of two designed proteins with high
sequence identity but different fold and function

Yanan He, Yihong Chen, Patrick Alexander, Philip N. Bryan, and John Orban*

A: 24 mutations
B: 17 mutations
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Target-Template Sequence Alighment

Absolutely Critical:
* Sequence alignment is the bottleneck of the modeling process

* No comparative modeling scheme can recover from an incorrect
alignment.

How does one find template(s)?

* The simplest template determination approaches use fairly
common database searching methods (i.e., BLAST and FASTA).

* Inslightly more difficult cases, multiple sequence alignment and

profile-based methods might be used to identify and better align
the template to the target sequence.



Target-Template Sequence Alighment

When multiple targets are identified, there are a variety of ways
of determining the best — this is a very important step.

Key factors to consider include:
coverage
sequence similarity/phylogenetic clustering

matching of target predicted secondary structure with
observed template secondary structure

structure quality (resolution, R-factor, etc.)
known functional relationships, etc.

29

Backbone Model Generation

* For most of the model, creating the backbone structure with
a traditional homology modeling protocol is trivial (simply
copy the coordinates from one template to the model!). If
there is a match within the alignment, the coordinates of
the side-chain can be copied as well.

* More recent methods attempt to use multiple structural

templates (e.g. if one template has good overlap in one
area, while the other has better overlap elsewhere).

30



Backbone Model Generation

* The program SEGMOD builds the model structure using a
hexapeptide fragment library. The model structure is built based

on a series of these fragments.

* The widely used program MODELLER generates a series of
distance constraints from the template structure, and then builds
a model using these restraints in much the same way that is done
with NMR structure determination.

One of the advantages of using the satisfaction of spatial restraints method
is that it can incorporate various restraints from experiments, such as NMR
experiments, site-directed mutagenesis and cross-linking experiments.

Loop Modelling

* Modeling loops that lack coverage within the template

is extremely difficult, yet common due to:
o Template structure is not well resolved.

o Sequence divergence
o Insertions/Deletions Q
* To make things worse, loop regions vary significantly between

model and template even when complete coverage is present.

o Surface loops tend to be involved in crystal contacts, leading to significant
conformational changes dependent upon the unit cell.

o The exchange of a small to bulky side-chain underneath the loop
(within the core) can “push” it aside.

o Also, remember that loop regions are generally floppy and fluctuate
constantly, meaning a fixed conformation may have little biological
meaning.

31
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Loop Modeling Methods

Knowledge-based:

- Find matching loops with the right number of residues and
matching endpoints within the PDB.

- In particularly difficult cases (loops longer than ~8 residues), chain
fragments together. Based on the premise that irregular
substructures are built from combinations of small standard
structures.

Energy-based:
- Generate random loops of right length and endpoints. Evaluate
resultant structure with some sort of energy function.

Some sort of knowledge-based rotamer library
from high-resolution structures is used.

33
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Side-chain Modeling/Packing

Combinatorial explosion:

- Intuitively, it makes sense that the conformation of one residue will affect the
conformations of others.

- Fortunately, rotamer space is not limitless.

- Assuming on average 5 rotamers per residue, there are still 5190 different
combinations to score within a 100 amino acid protein.

Solutions:

- Certain backbone conformations strongly favor certain rotamers, meaning the
others can be ignored.

- More rigid residues can be modeled first, and the more flexible (larger rotamer
space) can be modeled subsequently. The advantage of this is that the more
rigid residue limits the space that must be explored by the flexible one.

- Nature picks rotamer conformations that maximize packing (minimize voids) and
the number of interactions with other groups (i.e. H-bonds, salt bridges,
disulfide bonds, etc.).

35

Model optimization

The last step is to optimize the model using some sort of iterative
refinement.

- Unfortunately, current force fields are not sufficient.

- While they will remove the few big errors (bumps), they introduce
many small errors.

36



Summary of the steps

1. Pick a template

| lﬁ cmpiate; / 2 2. Refine the sequence alignment
(;‘@ &é 3 3. Build a model of the protein
4 r\f ‘ 4 backbone
. X k " 4. Model loops
5. - :% K \ i 5. Add side-chains
p - i ) 6a. Optimize side-chain configurations
/ < - 6b. Optimize entire structure

7. Assessment
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Modeller

Program for Comparative Protein
Structure Modelling by Satisfaction
of Spatial Restraints

http://salilab.org/modeller/

Given an alignment of a sequence to be modeled with known related structures, MODELLER
automatically calculates a model containing all non-hydrogen atoms. MODELLER implements
comparative protein structure modeling by satisfaction of spatial restraints and can perform many
additional tasks, including de novo modeling of loops in protein structures, optimization of various
models of protein structure with respect to a flexibly defined objective function, multiple alignment of
protein sequences and/or structures, clustering, searching of sequence databases, comparison of
protein structures, etc.

ModWeb: Server for Comparative Protein Structure Modeling
using MODELLER
http://modbase.compbio.ucsf.edu/modweb/

38




SWISS-MODEL

-0

Swiss-Model - an automated homology modeling server
http://swissmodel.expasy.org/

Closely linked to Swiss-PdbViewer, a tool for viewing
and manipulating protein structures and models.

May take hours to get results returned!

39

Typical errors in comparative modeling

Errors in side-chain packing Distortions and shifts in Errors in regions

\-\.@ ectly aligned regions without plate

Errors due to misalignments Errors due to an incorrect template

40




Conclusions on homology modeling

* Homology modeling focuses on the use of a structural template
derived from known structures to build an all-atom model of
the protein.

* Can give good overall (fold level) results.

* Yet, the models are often not good enough for detailed
structure/function analyses.

* In fact, the models tend to look a lot like their templates,
meaning a key challenge is picking the right template.

* Detecting meaningful sequence homology in the Twilight Zone
is very difficult (if not impossible).

41

Methods for protein structure prediction

Methods are distinguished according to the relationship between
the target protein(s) and proteins of known structure:

* Comparative modelling: A clear evolutionary relationship
between the target and a protein of known structure can
be easily detected from the sequence.

* Fold recognition: The structure of the target turns out to
be related to that of a protein of known structure although
the relationship is difficult, or impossible, to detect from
the sequences.
* New fold prediction: Neither the sequence nor the structure of
the target protein are similar to that of a known protein.

42



Toward High-Resolution
de Novo Structure Prediction
for Small Proteins

Philip Bradley, Kira M. S. Misura, David Baker*

The prediction of protein structure from amino acid sequence is a grand
challenge of computational molecular biology. By using a combination of im-
proved low- and high-resolution conformational sampling methods, improved
atomically detailed potential functions that capture the jigsaw puzzle-like
packing of protein cores, and high-performance computing, high-resolution
structure prediction (<1.5 angstroms) can be achieved for small protein
domains (<85 residues). The primary bottleneck to consistent high-resolution
prediction appears to be conformational sampling.

Science 309, 1868-1871 (2005)

Rosetta
Commons

The hub for Rosetta modeling software

Home | Software

Developer
Resources

Documentation

& Support | About |RosettaCON

A unique partnership between universities, government
laboratories, institutes, research centers, and partner corporations

Robetta  Project v  Structure Prediction v iE B Register Login

Robetta is a protein structure prediction service that is continually evaluated through CAMEO

Features include an interactive submission interface that allows custom
sequence alignments for homology modeling, constraints, local fragments,
and more. It can model multi-chain complexes and provides the option for
large scale sampling. It uses the PDB100 template database, which is updated
weekly, a co-evolution based model database (MDB), and also provides the
option for custom templates.

For more information please visit our Frequently Asked Questions.

Any feedback to help improve this service is greatly appreciated. You can
submit feedback and bug reports using the form on our contact page.

Recent alerts and bug fixes:

* June 5, 2019 - There was an issue with our filesystem which caused a
delay in job run times. Sorry for any inconvenience.

« May 31, 2019 - Thanks to Luki Goldschmidt for not only building,
developing, and maintaining the computing infrastructure behind this
service but for also creating the home page graphic. We've added the total number of models sampled per week along with the
previously existing usage statistics displayed below.

o May 1,2019 - There was a bug in our contact page. Feel free to send us feedback.

o April 11,2019 - You can now view non-private jobs without having to log in. Fixed a bug on the submit page when trying to add
constraints without a loaded template,

March 27, 2019 - Updated the PDB template upload reader to skip residues missing backbone atoms which cause Rosetta jobs to fail
When the input sequence is modified and in the rare case when the template(s) realignment fails, the templates will be removed.

Software
http://www.rosettacommons.org/

Server

® [
http://new.robetta.org/
® March 22, 2019 - Fixed user provided partial thread input error where coordinates with no chain identifier would get skipped. Changed
how multiple user provided partial threads were setup for RosettaCM. Previously they were structurally clustered and each cluster would

be modeled separately. This was changed so multiple user provided partial threads are no longer clustered. All custom partial threads
are now used in a single RosettaCM hybridize run.

Jobs queued: () active: T

Users: (EET) Countries: () New users last week: () New jobs last week: (€213

New final models last week: ( EZE}) Total models sampled last week: (EXIERLILD

http://www.bakerlab.org | Contact | Terms of Service
©2019 University of Washington

Rosetta
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Assembly of sub-structural units

known
structures

fragment
library

%o

protein
sequence

¥
/

Structure Prediction with Rosetta

While not every protein fold
is present in the protein
databank, all possible
conformations of small
peptides are.

Select fragments consistent
with local sequence
preferences.

Assemble fragments into
models with native-like
global properties.

* |dentify the best model from

the population of decoys.

predicted
structure
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Protein sequence

Protein sequence

Modelling

Model each candidate
local structure as a node

Modelling

[ ]
\ 4 v
v v

Model each candidate
local structure as a node

If two consecutive local
structure are compatible,
an edge joins them
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Modelling

Protein sequence

Protein sequence

Model each candidate
local structure as a node

If two consecutive local
structure are compatible,
an edge joins them

Add a source s and sink t
to the graph
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Model each candidate
local structure as a node

If two consecutive local
structure are compatible,
an edge joins them

Add a source s and sink t
to the graph

Each path fromstot
forms a candidate
structure
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Local Sequence Bias — Rapid

Approximation of Local Interactions

i

TNy v

* While not every protein fold is
present in the protein databank, all
possible conformations of small
peptides are!

* Approximate local interactions using
the distribution of conformations seen
for similar sequences in known protein
structures

* For each sequence window, select
fragments that represent the
conformations sampled during
folding
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« 25-200 fragments for each 3 and 9
residue sequence window

* Selected from database of known
structures
> 2.5 A resolution
< 50 % sequence identity

* Ranked by sequence similarity and

similarity of predicted and known
secondary structure
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Scoring Function

The ideal energy function
— has a clear minimum in the native structure
— has a clear path towards the minimum

— Global optimization algorithm should find the
native structure.
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Rosetta Potential Function

- Derived from Bayesian treatment of ﬁt\\

residue distributions in known protein ‘\_;\(\
structures -1 |
> Z
i i 5’)@ e
- Reduced representation of protein used; "
one centroid per sidechain
- Potential Terms: '

. environment (solvation)
. pairwise interactions (electrostatics)

. strand pairing

- radius of gyration &?ﬁ\

. CB density ~(\

. steric overlap ‘\i
S b

L\‘L /K/)
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Decoy Discrimination: Identifying the Best Structure

1000-100,000 short simulations to generate a population of 'decoys'
Filter population to correct systematic biases

Full atom potential functions to select the deepest energy minimum
Cluster analysis to select the broadest minimum

Structure-structure matches to database of known structures

Rosetta: Energy vs. Accuracy

-60
=70 I
-80
80

1 140
1 160}

-180 l

Plots of C®-RMSD (x axis) against all atom energy (y axis) for refined natives (blue points) and
the de novo models (black points). Red arrows indicate the lowest energy de novo models.
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The Rosetta Scoring Function

P(structure|sequence) « P(sequence|structure) x P(structure)

Sequence dependent: Sequence independent:
e hydrophobic burial e helix-strand packing
e residue pair interaction e strand-strand packing

e sheet configurations

e vdW interactions
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ROSETTA search algorithm
Monte Carlo/Simulated Annealing

e Structures are assembled from fragments:

— Begin with a fully extended chain

— Randomly replace the conformation of one 9
residue segment with the conformation of one of
its neighbors in the library

— Evaluate the move: Accept or reject based on an
energy function

— Make another random move, taboo list is built to
forbid some local minimums

— After a prescribed number of cycles, switch to 3-
residue fragment moves
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ROSETTA
results in
CASP5

Ribbon diagrams of predictions made
by using the fragment insertion
approach. The native structure and
best submitted model are shown
colored from the N-terminus (blue) to
C-terminus (red). For T148, the best
generated model is also shown, and
for T156, both template-based and 4
fragment insertion based models are el native model 3
shown. For targets T173, T135, T156, TR, aan
and T191, colored regions deviate =

from the native structure by <4 A, and &
gray regions deviate by >4 A. For

targets T129 and T156, colored regions i i
deviate from the native structure by T170:HYPA (full chain, 1-69)

<6 A C2 RMSD, whereas the gray
regions deviate by >6 A.

native model 4
T129:HI0817 (full chain 1-182)

;i

model 1

native m:de\z best model
T148:HI1034 (full chain, 1-163)

[ {f

native-N model 1-N
T173:Rv1170 (N-terminal region, 1-127)

High-resolution de novo structure predictions

/i

..—/ e —7-‘ s 3

native model 1

T135:Boiling stable protein (full chain 1-108)

native rmodel 4

T149:yjiA (C-terminal domain, 206-318)

native model 2
T161:HI1480 (full chain, 1-156)

¥ oH

native model 1
T162:(Domain 1,1-62)

W

native model 4
T191:(N-terminal domain, 1-104)

with experimental
structures (red)
showing core side
chains.

A: Hox-B1

B: Ubiquitin
C: RecA

E: 434 repressor

Superposition of low-
energy models (blue)

F: Fyn tyrosine kinase
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D: KH domain of Nova-2

60



