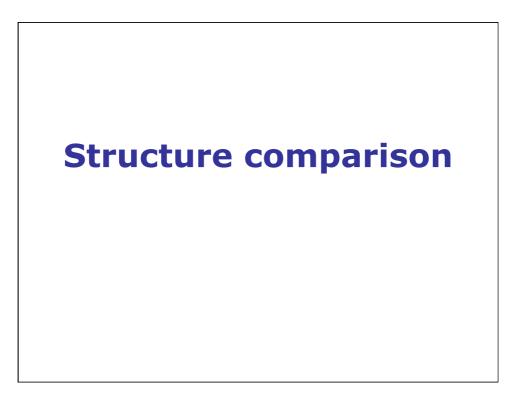
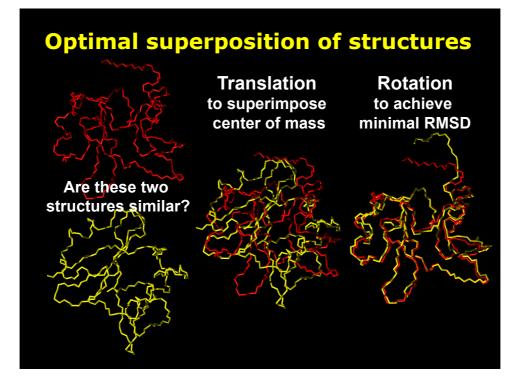
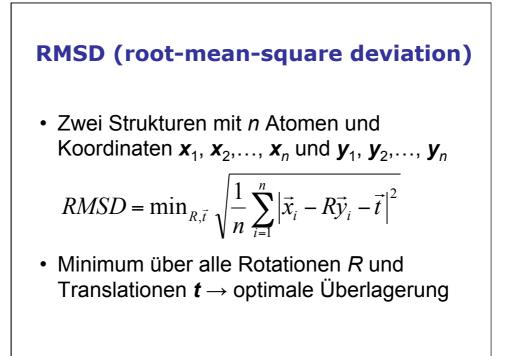
(Aspekte der Thermodynamik in der Strukturbiologie)

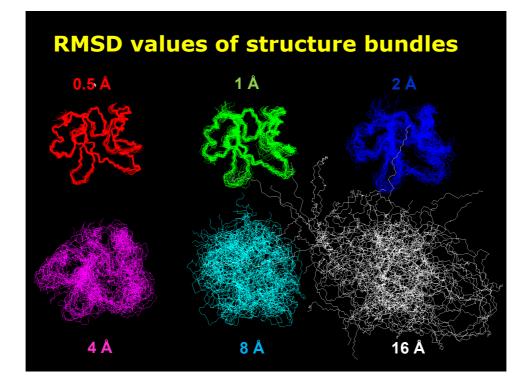
Einführung in die Bioinformatik

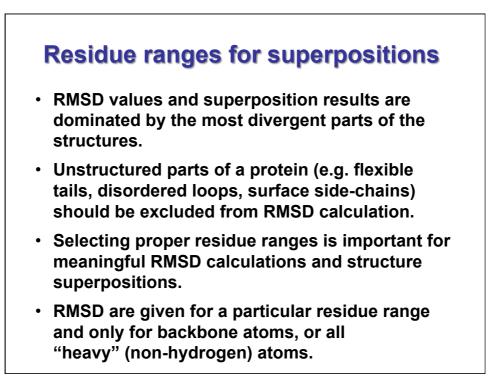

Wintersemester 2012/13

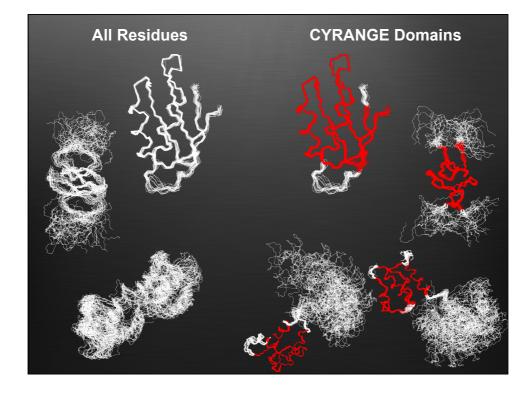

Peter Güntert

Protein Structure Similarity

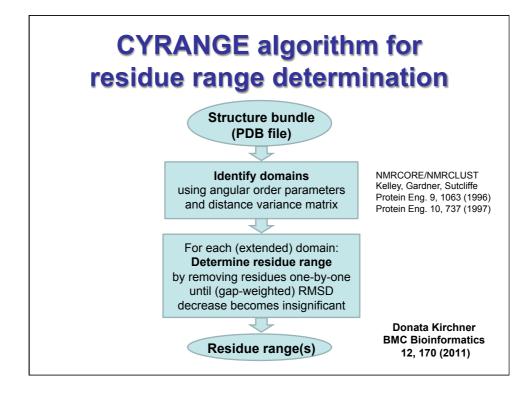

Outline

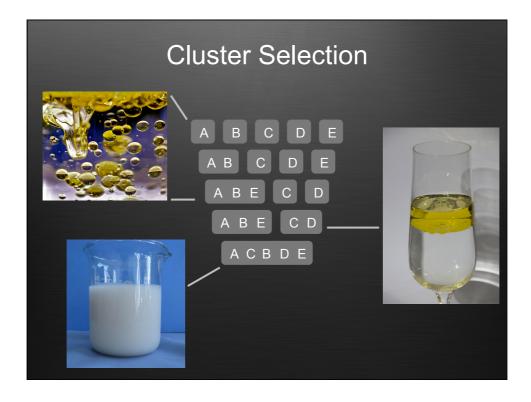

- Structure comparison
- Structural similarity search

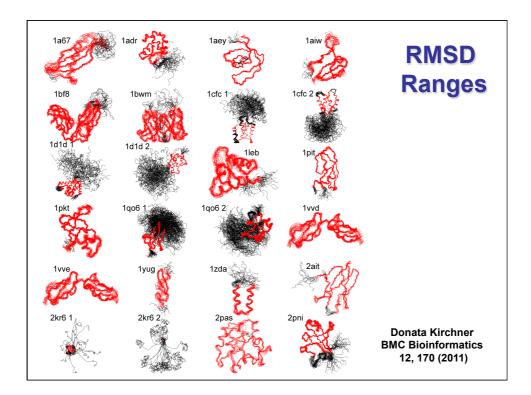


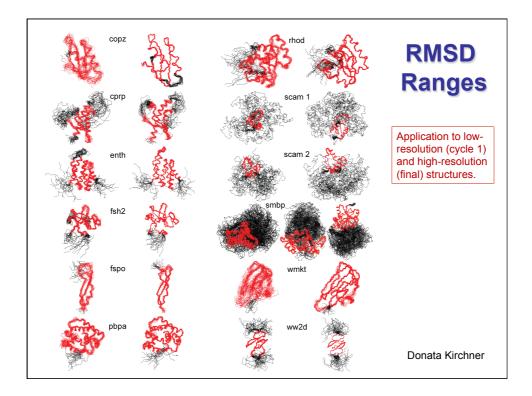


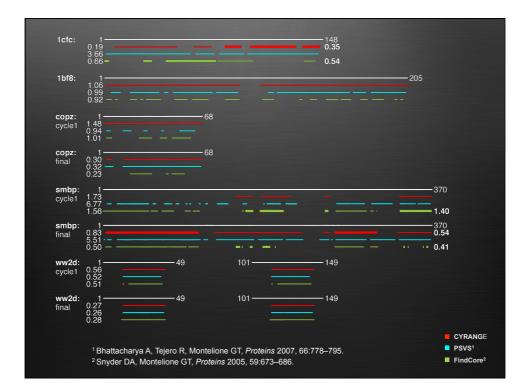
<text><text>

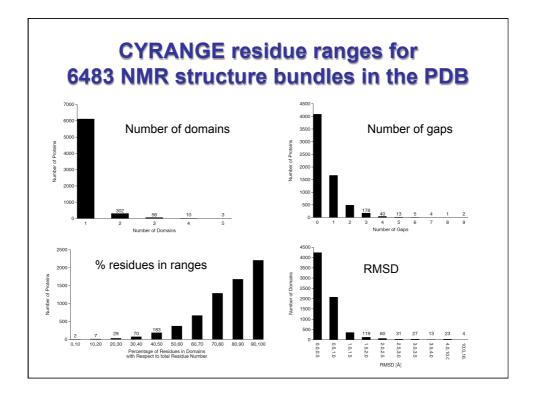


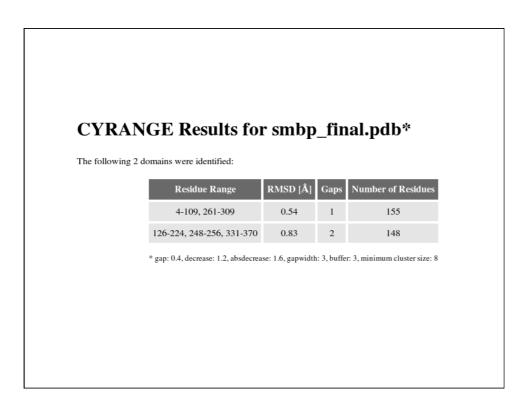





Residue ranges for superpositions


- Important for RMSD calculations, structure superpositions, structure validation
- Inconsistent choices of residue ranges
 → not comparable validation results
- Angular order parameters not suitable because they measure local order only
- Automated residue range determination: - without protein-specific parameter adjustment
 - without protein-specific parameter adjustment
 - ranges as large and as simple as possible
 - find domains in multi-domain proteins
 - for high- and low-resolution structure bundles





	Average Sequence Coverage ¹	Average RMSD ¹
CYRANGE	85 %	0.77 Å
PSVS	67 %	1.72 Å
FindCore	58 %	0.73 Å
		¹ of 37 protein structures

	l for identification of domains in an NMR-derived protein structure bundle. These domains te residue ranges for RMSD calculation.
	GE for your research projects we kindly ask you to cite the following publication:
Input Sectio	n
	er the parameter name in question. Alternatively you will find the explanations here. you are ready. Once the results have been computed you will be redirected to another page.
	Input File Browse

Alternative measure for structure similarity

GDT_TS

- The GDT ("global distance test") algorithm searches for the largest (not necessarily continuous) set of residues that deviate by no more than a specified distance cutoff.
- Results are reported as the percentage of residues under a given distance cutoff.
- A popular measure is the "GDT total score",

$$GDT_TS = (P_1 + P_2 + P_4 + P_8)/4,$$

where P_d is the fraction of residues that can be superimposed under a distance cutoff of d Å, which reduces the dependence on the choice of the cutoff by averaging over four different distance cutoff values.

Structural similarity search

DALI: structure similarity search

With a rapidly growing pool of known tertiary structures, the importance of protein structure comparison parallels that of sequence alignment.

DALI algorithm for optimal pairwise alignment of protein structures: (L. Holm & C. Sander: Protein structure comparison by alignment of distance matrices. *J. Mol. Biol.* 233, 123-138 (1993)):

- Coordinates of each protein are used to calculate residue-residue (C^α-C^α) distance matrices.
- Distance matrices are first decomposed into elementary contact patterns, e.g. hexapeptidehexapeptide submatrices.
- Then, similar contact patterns in the two matrices are paired and combined into larger consistent sets of pairs. A Monte Carlo procedure is used to optimize a similarity score. Several alignments are optimized in parallel, leading to simultaneous detection of the best, second-best and so on solutions.
- DALI allows sequence gaps of any length, reversal of chain direction and free topological connectivity of aligned segments. Sequential connectivity can be imposed as an option.
- DALI is fully automatic and identifies structural resemblances and common structural cores accurately and sensitively.

ali server)				Institute of Biotechnology
SERVICES & TOOLS	GROUP MEMBERS	NEWS & VACANCIES	RESEARCH	PUBLICATIONS
compares them against th comparing 3D structures m Requests can also be sub format. If you want to know the stru- If you want to superimpose	ose in the Protein Data Bank ay reveal biologically interesti nitted by e-mail to <i>dali-servei</i> ctural neighbours of a protein a two particular structures, you	rotein structures in 3D. You suby (PDB) You receive an email noti ng similarities that are not detecta at helsinki dot fi. The body of the already in the Protein Data Bank (can do it in the pairwise DaliLite s	fication when the search ha ble by comparing sequence e e-mail message must con PDB), you can find them in f	is finished. In favourable case es. tain atomic coordinates in PD
Upload a structur		irowse		
Or enter PDB ide		(optional)		
(Keyword search for PDB in	(interest)			

								La constante
L	JF	۱L	н.	E	X	ar	np	le result
							- E.	
Q	uei	ry: 1	egf	ſA				
_		•	0					
MOI	LECU	LE: EPII	DERM	AL GI	ROWI	'H FAC	CTOR;	
								structural alignment or 3D superimposition. The list of neighbours is sorted by Z-score. Similaritie
								ir has links to pairwise structural alignment with the query structure, to pre-computed structural
neig	nbour	s in the D	ali Da	tabase	, and t	o the P	DB format	coordinate file where the neighbour is superimposed onto the query structure.
Str	uctura	I Alignmen		Expar	ıd gap	s GD S	Superimposit	ion (Jmol Applet) Reset Selection
			_	-				
Su	mm	ary						
		·						
	No:	Chain	Z			nres		Description
	1: 2:	<u>legf-A</u> 3eqf-A		0.0	53 53	53 53	100 PDB 100 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR; MOLECULE: EPIDERMAL GROWTH FACTOR;
	_	3ca7-A		2.0	53 46	50	35 PDB	MOLECULE: PROTEIN SPITZ;
	3: 4:	1mox-D	4.5	3.0	40	48	32 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
	5:			2.0	44	48	36 PDB	MOLECULE: PROTEIN GIANT-LENS;
	<u>2</u> . 6:	3c9a-D		2.1	45	48	36 PDB	MOLECULE: PROTEIN GIANT-LENS;
	7:	livo-C		2.7	44	47	61 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
[**1	8 :	1mox-C	4.2		47	49	30 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
	9:	livo-D	4.2	2.7	44	47	61 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
	10:	1j19-A	4.1	2.2	41	42	71 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR;
	11:	1xdt-R	3.9	2.0	40	41	33 PDB	MOLECULE: DIPHTHERIA TOXIN;
	12:	1bf9-A	3.7	2.4	39	41	33 PDB	MOLECULE: FACTOR VII;
	13:	2vj3-A	3.7	2.9	41	120	32 PDB	MOLECULE: NEUROGENIC LOCUS NOTCH HOMOLOG PROTEIN 1;
	14:	1epg-A	3.5	4.2	48	53	92 PDB	MOLECULE: EPIDERMAL GROWTH FACTOR;
	15:	<u>1a3p-A</u>	3.5	3.0	43	45	91 <u>PDB</u>	MOLECULE: EPIDERMAL GROWTH FACTOR;
							00.000	MOLECULE: EPIDERMAL GROWTH FACTOR;
	16:	<u>leph-A</u>	3.4	4.5	48	53	92 <u>PDB</u>	
	_	<u>leph-A</u> lj9c-L		4.5 3.2	48 40	53 95	33 PDB	MOLECULE: TISSUE FACTOR;
	16:							

DALI: Example result

Pairwise Structural Alignments

Notation: three-state secondary structure definitions by DSSP (reduced to H=helix, E=sheet, L=coil) are shown above the amino acid sequence. Structurally equivalent residues are in uppercase, structurally non-equivalent residues (e.g. in loops) are in lowercase. Amino acid identities are marked by vertical bars.

No 1: Query=1egfA Sbjct=1egfA Z-score=99.9

back to top

No 2: Query=1egfA Sbjct=3egfA Z-score=10.6

back to top

No 3: Query=1egfA Sbjct=3ca7A Z-score=4.8

back to top

