(Aspekte der Thermodynamik in der Strukturbiologie)

Einführung in die Bioinformatik

Wintersemester 2012/13

Peter Güntert

Outline

- Structure modeling:
 - Homology modeling
 - Fold recognition
 - ab initio modeling

PSI The Protein	Model Portal	YLDVGFDTTRVAVICARIVLISSE SDFSNDVFPEFADRSG SVVVKRGGAVPIGICIE
models menu	PMP Interactive Mode	ling
PMP home	Request	
advanced search	Title:	
interactive modeling	Amino Acid	
quality estimation	Sequence:	
ModWeb *		
Server By checking Policy: By checking institution (i commercial license *.	this box, I assert that I am part of an academic not a government research lab such as the NIH, or entity) and agree to the terms of the Modeller DELLER access key:	Server Usage of SWISS-MODEL Server and Workspace are free of cha
■ M4T *		Server Usage of I-TASSER is free of charge. Policy: However, there is a limitation of one job per email address and academic email addresses are allowed.
Server 🔲 I am a non-	profit/academic user and this server will be used	E Henred a

- 1. Given a protein of unknown structure, identify proteins of known structure that are evolutionarily related to it.
- 2. If they exist, construct a reliable alignment, i.e. deduce the correspondence between related amino acids in the core, i.e. in regions other than those affected by insertions, deletions, and local refolding.
- 3. Assign the coordinates of the backbone atoms of the corresponding amino acids of the target protein according to the sequence alignment.
- 4. Model the regions outside the conserved core.
- 5. Model the positions of the side-chains of the target.
- 6. Optimize the final three-dimensional structure.

- Given a protein of unknown structure, identify proteins of known structure that are evolutionarily related to it.
- If they exist, construct a reliable alignment, i.e. deduce the correspondence between related amino acids in the core, i.e. in regions other than those affected by insertions, deletions, and local refolding.
- Assign the coordinates of the backbone atoms of the corresponding amino acids of the target protein according to the sequence alignment.
- Model the regions outside the conserved core.
- Model the positions of the side-chains of the target.
- Optimize the final three-dimensional structure.

• Optimize the final three-dimensional structure.

- Given a protein of unknown structure, identify proteins of known structure that are evolutionarily related to it.
- If they exist, construct a reliable alignment, i.e. deduce the correspondence between related amino acids in the core, i.e. in regions other than those affected by insertions, deletions, and local refolding.
- Assign the coordinates of the backbone atoms of the corresponding amino acids of the target protein according to the sequence alignment.
- Model the regions outside the conserved core.
- Model the positions of the side-chains of the target.
- Optimize the final three-dimensional structure.

- Given a protein of unknown structure, identify proteins of known structure that are evolutionarily related to it.
- If they exist, construct a reliable alignment, i.e. deduce the correspondence between related amino acids in the core, i.e. in regions other than those affected by insertions, deletions, and local refolding.
- Assign the coordinates of the backbone atoms of the corresponding amino acids of the target protein according to the sequence alignment.
- Model the regions outside the conserved core.
- Model the positions of the side-chains of the target.
- Optimize the final three-dimensional structure.

Fold recognition

<text><list-item><list-item><list-item>

Inverse protein folding problem

Which amino acid sequences fold into a known three-dimensional structure?

Protein folding problem

Which three-dimensional structure is adopted by a given amino acid sequence?

•3D profile methods

Physico-chemical properties of the amino acids of the target protein must "fit" with the environment in which they are placed in the modeled structure.

Threading

Sequences are fitted directly onto the backbone coordinates of known protein structures.

Threading	fold recognition	
	D. T. Jones*†, W. R. Taylor† & J. M. Thornton*	
 Sequences are fitted directly onto the backbone coordinates of known protein structures. Matching of sequences to backbone coordinates is performed in 3D space, incorporating specific pair interactions explicitly. 	* Biomolecular Structure and Modelling Unit, Department of Biochemistry and Molecular Biology, University College, Gower Street, London WC1E 6BT, UK † Laboratory of Mathematical Biology, National Institute for Medical Research The Ridgeway, Mill Hill, London, NW7 1AA, UK	
	THE prediction of protein tertiary structure from sequence using molecular energy calculations has not yet been successful; an	
structures. • Matching of sequences to backbone coordinates is performed in 3D space, incorporating specific pair interactions explicitly.	alternative strategy of recognizing known motifs ¹ or folds ²⁻⁴ in sequences looks more promising. We present here a new approach to fold recognition, whereby sequences are fitted directly onto the backbone coordinates of known protein structures. Our method for protein fold recognition involves automatic modelling of protein structures using a given sequence, and is based on the frameworks of known protein folds. The plausibility of each model, and hence the degree of compatibility between the sequence and the proposed structure, is evaluated by means of a set of empirical potentials derived from proteins of known structure. The novel aspect of our approach is that the matching of sequences to backbone coordin- ates is performed in full three-dimensional space, incorporating specific pair interactions explicitly.	

Threading

- A library of different protein folds is derived from the database of protein structures.
- Each fold is considered as a chain tracing through space; the original sequence being ignored completely.
- The test sequence is then optimally fitted to each library fold, allowing for relative insertions and deletions in loop regions.
- The 'energy' of each possible fit (or threading) is calculated by summing the proposed pairwise interactions and the solvation energy.
- The library of folds is then ranked in ascending order of total energy, with the lowest energy fold being taken as the most probable match.

New fold prediction

Methods for protein structure prediction

Methods are distinguished according to the relationship between the target protein(s) and proteins of known structure:

- **Comparative modelling**: A clear evolutionary relationship between the target and a protein of known structure can be easily detected from the sequence.
- Fold recognition: The structure of the target turns out to be related to that of a protein of known structure although the relationship is difficult, or impossible, to detect from the sequences.
- New fold prediction: Neither the sequence nor the structure of the target protein are similar to that of a known protein.

Toward High-Resolution de Novo Structure Prediction for Small Proteins

Philip Bradley, Kira M. S. Misura, David Baker*

The prediction of protein structure from amino acid sequence is a grand challenge of computational molecular biology. By using a combination of improved low- and high-resolution conformational sampling methods, improved atomically detailed potential functions that capture the jigsaw puzzle–like packing of protein cores, and high-performance computing, high-resolution structure prediction (<1.5 angstroms) can be achieved for small protein domains (<85 residues). The primary bottleneck to consistent high-resolution prediction appears to be conformational sampling.

Science 309, 1868-1871 (2005)

ROSETTA results in CASP5

Ribbon diagrams of predictions made by using the fragment insertion approach. The native structure and best submitted model are shown colored from the Nterminus (blue) to C-terminus (red). For T148, the best generated model is also shown, and for T156, both template-based and fragment insertion based models are shown. For targets T173, T135, T156, and T191, colored regions deviate from the native structure by <4 Å, and gray regions deviate by >4 Å. For targets T129 and T156, colored regions deviate from the native structure by <6 Å C^{α} RMSD, whereas the gray regions deviate by >6 Å.

