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NMR spectra analysis for protein structure determination can now in many cases be performed by
automated computational methods. This overview of the computational methods for NMR protein
structure analysis presents recent automated methods for signal identification in multidimensional NMR
spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure
calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable

and integrated into one software package to enable the fully automated structure determination of
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proteins starting from NMR spectra without manual interventions or corrections at intermediate steps,
with an accuracy of 1-2 A backbone RMSD in comparison with manually solved reference structures.
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1. Introduction

The standard procedure for protein structure determination by
NMR [1-3] can be decomposed into two major parts. Data acqui-
sition comprises sample preparation, usually with uniform or spe-
cific stable isotope labeling [4], the actual measurements at the
NMR spectrometer [5], and data processing [6] to obtain a set of
multidimensional NMR spectra [7]. Data analysis (Fig. 1, dark gray
boxes) evaluates the acquired NMR spectra. It comprises the crucial
steps of signal identification, chemical shift assignment, nuclear
Overhauser effect (NOE) assignment, and structure calculation. The
automation of data analysis will be discussed in this review.

Identifying signals in an NMR spectrum yields peak lists, and it is
in this form that the information from the experimentally
measured spectra enters the remaining steps of the procedure. In
the next step, chemical shift assignment, the chemical shift values
that are observed in the spectra are assigned to the corresponding
protein atoms. This is followed by NOE assignment, where the cross
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peaks in NOESY spectra, which hold information about atom-atom
distances in the 3D structure are assigned to the respective atoms
based on the chemical shift assignment. Distance restraints are
deduced from the volumes of these peaks. Finally, the 3D structure
is calculated based on NOE distance restraints and possibly other
conformational restraints, e.g. torsion angle restraints from chem-
ical shifts or J-couplings, orientational restraints from residual
dipolar couplings (RDCs), or hydrogen bond restraints. Once a
preliminary 3D structure has been obtained, the structural infor-
mation is used to improve the NOE assignment. This is done in
several cycles. It is possible to refine the 3D structure using physical
force fields, e.g. by molecular dynamics simulation in explicit
solvent.

2. Automated signal identification
2.1. Peak picking principles

The identification of signals in an NMR spectrum, also known as
peak picking, plays a central role in biomolecular NMR studies and
is a prerequisite for sequence-specific resonance assignment and
structure determination. Peak lists provide an abstraction of the
multidimensional spectra that contains the most essential spectral
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Fig. 1. Steps of a protein structure determination by NMR. Data analysis steps shown in
dark gray are described in the following in more detail.

information—the position and intensity of the signals—in a form
that is readily accessible by interactive or automated spectra
analysis programs. The ease and reliability of spectrum assignment
and the collection of conformational restraints relies on the quality
of the peak lists, which in turn depends mainly on three factors:
how many of the protein's real signals the peak lists contain, how
few additional “artifact” peaks that do not correspond to true sig-
nals they contain, and how accurate they record the positions and
intensities of the signals.

Peak lists do not have to be flawless to serve as a basis for
chemical shift assignment and NOE assignment, followed by
structure calculation. For instance, it has been shown [8] that the
automated resonance assignment algorithm FLYA can yield more
than 90% correct resonance assignments even if either 60% of the
true peaks are missing or 5 times more artifacts than real peaks are
present in the input peak lists. Automated NOE assignment and
structure calculation with CYANA [9,10] can in many cases also
tolerate 30—40% missing NOESY peaks without dramatic deterio-
ration of the resulting structures [11,12].

Peak picking can be achieved by visual inspection of the spectra
or automated methods. Along with algorithms for resonance
assignment and structure calculation, the demand for automated
peak picking is increasing, and various algorithms for the purpose
have been proposed. Nevertheless, the task remains challenging.
Reasons for this include low signal-to-noise ratios, peak overlap,
and artifacts such as baseline distortions, intense solvent lines,
ridges, or sinc wiggles.

2.2. Automated peak picking algorithms

Most of the existing peak picking algorithms can be classified as
either threshold-based methods, methods that depend on sym-
metry criteria, peak-shape-based methods, methods that incorpo-
rate peak picking into NMR data processing, or a combination

thereof. Threshold-based methods are the most straightforward
and most commonly used automated peak picking approaches.
Interactive spectrum analysis programs like XEASY [13], Sparky
[14], NMRView] [15,16], or CcpNmr AnalysisAssign [17,18] (in the
following abbreviated as CCPN) give the user the possibility to
adjust a threshold manually and perform peak picking by finding
local extrema above the threshold. These methods are particularly
useful as a starting point for semi-automated peak identification,
which is refined manually. WavPeak [19] employs wavelet-based
smoothing of the spectrum prior to identifying peaks as local
maxima. PICKY [20], is a singular value decomposition (SVD)-based
automated peak picking method. Machine learning and computer
vision methods have also been employed for peak picking, e.g. in
the CV-Peak Picker program [21]. AUTOPSY [22] is a sophisticated
automated peak picker that includes functions to determine a local
noise level and to deconvolute clusters of overlapping peaks with
the help of line shapes derived from non-overlapping peaks. ATNOS
[23]is an automated peak picker specifically for NOESY spectra that
is integrated into automated NOESY assignment and structure
calculation and makes use of preliminary structural information to
guide the peak picking. Peak picking can be part of NMR data
processing, e.g. in the program MUNIN [24] that uses three-way
decomposition to decompose a three-dimensional (3D) NMR
spectrum into a sum of components defined as the direct product of
three 1D shapes. The GAPRO peak identification algorithm [25]
establishes peak lists for high-dimensional (e.g. 4D, 5D, 6D) APSY-
type spectra by picking peaks in the experimentally recorded til-
ted 2D projections.

The human approach to peak picking can be characterized as the
analysis of the shape and regularity of 2D contour lines. Real signals
are manifested by concentric ellipses and have common properties
which artifacts do not share, e.g. regarding peak width, convexity,
or similarity. However, real signals can deviate from the proposed
ideal shape for a number of reasons, such as, noise, spectral overlap,
limited digital resolution, baseline instabilities, or phase distor-
tions. An automated peak picking procedure should be able to
handle these imperfections and shortcomings. A promising
approach to automated peak picking is to mimic the human way of
analyzing similarity and symmetry criteria of contour lines in 2D
spectral planes. This approach has first been used in the CAPP al-
gorithm [26].

2.3. The CYPICK algorithm

A recent example of an automated peak picking method that is
based on analyzing geometric properties of contour lines is the
CYPICK algorithm [27], which is implemented in the CYANA soft-
ware package [28] and can be linked directly to automated chem-
ical shift assignment and/or NOE assignment, followed by structure
calculation, which are also available in CYANA. CYPICK follows, as
far as possible, the manual approach taken by a spectroscopist who
analyzes peak patterns in contour plots of the spectrum, but is fully
automated. Human visual inspection is replaced by the evaluation
of geometric criteria applied to contour lines, such as local
extremality, approximate circularity (after appropriate scaling of
the spectrum axes), and convexity. Fig. 2 shows a simplified flow-
chart of the CYPICK algorithm.

The first step is to read the processed NMR spectrum. Either a
global noise level for the entire spectrum [29] or the local noise
level at each data point is determined and used to set the intensity
of the lowest (base) contour level. The global noise level is repre-
sented by a single number with obvious meaning that is straight-
forward to transfer to other algorithms. On the other hand, a noise
level that is determined locally [22] permits the algorithm to better
deal with noise bands, water lines, and similar artifacts, which
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Fig. 2. Flowchart of the CYPICK peak picking algorithm implemented in CYANA.

automatically result in higher local noise levels and a reduced
number of picked artifacts.

The next step is to find local extrema above the base level and to
compute exponentially spaced contour lines in their vicinity. This
can either be done over the entire spectrum or restricted by a
frequency filter, defined by a 2D peak list, e.g. to pick peaks in a 3D
spectrum, for instance a'®N-resolved ['H,'H]-NOESY, based on a
previously picked 2D spectrum, for instance a ['H,”>N]-HSQC. The
vertices of all contour lines that enclose the local extremum are
stored. In order to achieve approximately circular contour lines for
real peaks, the chemical shift coordinates of the points defining the
contour lines are scaled according to the approximate line widths.

The contour lines belonging to local extrema are subsequently
filtered and analyzed. A preliminary filtering process evaluates the
following conditions: (i) The local extremum of interest has to be
inside the contour line. (ii) No other local extremum except the
local extremum of interest may be enclosed by the contour line. (iii)
The contour line must have at least 5 vertices, because shape
criteria (see below) cannot be evaluated meaningfully for contour
lines with fewer points. (iv) At least two contour lines that fulfil all
preceding conditions must enclose the local maximum.

After filtering, the remaining contour lines are further analyzed
starting from the contour line with the highest absolute intensity. If
the highest contour line does not fulfill the requirements, the next
lower contour line is analyzed. At least two contour lines have to
fulfill the two following conditions. The first condition is that its
shape must be approximately circular. This is checked by
computing the area-to-circumference-squared ratio, which equals
1/(4m) in case of a perfect circle. As a second condition, a contour
line around an extremum is required to form an approximately
convex polygon with all interior angles smaller than 180°. Never-
theless, for some of the real signals a slight deviation from perfect
convexity should be tolerated.

The local extrema that fulfill these conditions correspond to the
picked peaks. Their precise positions and intensities are deter-
mined by spline interpolation, and they are stored in a peak list.

The performance of CYPICK was evaluated for a variety of
spectra from different proteins by systematic comparison with peak
lists obtained by other, manual or automated, peak picking
methods, as well as by analyzing the results of automated chemical
shift assignment and structure calculation based on input peak lists

from CYPICK [27]. The results show that CYPICK yielded peak lists
that compare in most cases favorably to those obtained by other
automated peak pickers with respect to the criteria of finding a
maximal number of real signals, a minimal number of artifact
peaks, and maximal correctness of the chemical shift assignments
and the three-dimensional structure obtained by fully automated
resonance assignment [8] and structure calculation [9,10] from the
CYPICK peak lists.

3. Automated chemical shift assignment
3.1. Resonance assignment principles

Every NMR-detected nucleus in a macromolecule has a specific
chemical shift value, which depends on its chemical environment.
Revealing the relationship between atoms and chemical shifts is
denoted as chemical shift or resonance assignment. Chemical shift
assignment is not only necessary to exploit the distance informa-
tion in NOESY spectra for structure determination, but in all cases in
which atom-specific information has to be obtained from an NMR
experiment. Examples include molecular interaction studies,
alternative approaches for protein structure determination that are
based on chemical shifts or RDCs, or investigations of protein
dynamics.

To enable chemical shift assignment, several NMR experiments
are performed that complement each other such that the connec-
tivity of the atoms in a protein is represented. Based on the covalent
structure that results from the protein sequence, it is possible to
establish the relationship between chemical shifts and atoms.
Usually, a set of standard experiments [7] is used to reveal the
covalent atom connectivities (Fig. 3). The different spectra should
be aligned as closely as possible; referencing offsets can be cor-
rected automatically [30].

Since the general strategy for chemical shift assignment has
been described in the 1980s [31], there have been many attempts to
establish an automated procedure for this process, and reviews of
these endeavours are available [32—34]. Some programs [8,35—38]
perform the entire chemical shift assignment process starting from
peak lists or NMR spectra as input data and ending with an (almost)
complete assignment of backbone and side chain atoms, others are
specialized in certain aspects of the assignment process, for
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Fig. 3. Standard 3D triple resonance experiments for protein resonance assignment.
(a) Experiments for the assignment of the backbone atoms N, H, C% C? and C. (b)
Experiments for the assignment of H* and H? nuclei. (c) Experiments for the assign-
ment of side-chain °C and 'H nuclei. Atoms that lead to peaks in the respective ex-
periments are encircled. Peaks in the “strips”, 2D rectangular regions taken from the
3D spectra at the backbone N/H positions, and the corresponding atoms are marked in
the same color. Inter-residue peaks are colored in blue. Intra-residue peaks are colored
in red. Backbone N and H resonances contribute to all peaks and are marked in gray.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

instance sequence-specific backbone assignment [39—42].

NMR resonance assignment is based on several experiments
that couple atom signals such that they can be measured as
multidimensional peaks in the corresponding spectra. Assignment
experiments are chosen to complement each other in such a way
that the connectivity of the atoms in a protein can be represented
by a network of peaks that are expected to be observed. Mapping
this network of expected peaks with unknown positions to the
unassigned measured peaks with known positions provides an
assignment of the frequencies to the atoms [35,36].

3.2. The FLYA algorithm

The FLYA resonance assignment algorithm [8] that has been

implemented in the CYANA software package [28,43], uses this
general approach to assign all types of NMR spectra, those which
are based on scalar couplings as well as experiments that take
advantage of the nuclear Overhauser effect [44] or corresponding
solid-state NMR experiments [45]. A scheme of the algorithm is
shown in Fig. 4. FLYA starts by deducing the expected peak network
from the protein sequence and the experiment specifications. For
NOE-based experiments expected peaks can in general only be
predicted for pairs of atoms that are close in sequence. Expected
peaks resulting from long-range contacts can only be obtained if
the 3D structure of the protein is available, which is typically not
the case in a structure determination. Therefore, in general only
short-range expected NOESY peaks are generated. To this end, 20
random structures of the respective protein are calculated without
using experimental restraints and expected NOESY peaks are
generated for '"H—'H contacts with a user defined maximal distance
in all 20 structures.

The mapping of expected peaks to measured peaks is done using
an evolutionary optimization algorithm that works with a popu-
lation of individuals, each representing an assignment solution [8].
The evolutionary optimization is complemented by local optimi-
zation that is applied to the individuals of each generation. Solu-
tions that are produced during the optimization are created such
that the search space of an expected peak for a mapping is
consistent with general chemical shift statistics (by default from
the BMRB data bank [46], or user defined [47]), the deviation of the
measured frequencies of different measured peaks that are
assigned to the same atom remain within a given tolerance, and an
expected peak can be mapped to only one measured peak. The first
generation of solutions is generated randomly, but fulfilling these
criteria. In each iteration a local optimization algorithm takes small
parts of a mapping back and reassigns the expected peaks for a
predefined number of iterations (by default 15,000). The different
solutions of one generation are then recombined into a new gen-
eration. The individuals and the specific parts of an individual that
contribute to a new individual are selected based on a scoring
function. The scoring function takes into account four conditions
that should be fulfilled by correct assignments: the distribution of
chemical shift values with respect to the given shift statistics, the
alignment of peaks assigned to the same atom, the completeness of
the assignment, and a penalty for chemical shift degeneracy. The
solution that maximizes this function is given as the final assign-
ment at the end of the calculation.

To increase the accuracy of the assignment, and to obtain a
reliability measure for each assigned atom, several (typically 20)
independent runs of the algorithm are performed with different
random seeds. From the resulting 20 chemical shift values for each
atom a consensus chemical shift value and a measure of the self-
consistency of the assignment are computed. The self-consistency
measure equals the fraction of runs yielding a chemical shift
value that is, within user-defined tolerances, in agreement with the
consensus chemical shift value of the atom. Experience has shown
[8,48,49] that assignments with high self-consistency (“strong”
assignments) are more reliable than others (“weak” assignments).

4. Automated NOESY assignment and structure calculation
4.1. Automated NOE assignment principles

The structure determination of biological macromolecules by
NMR in solution relies primarily on distance restraints derived from
cross peaks in NOESY spectra. A large number of assigned NOESY
cross peaks are necessary to compute an accurate 3D structure
because many of the NOEs are short-range with respect to the
sequence and thus carry little information about the tertiary
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structure and because NOEs are generally interpreted as loose up-
per bounds in order to implicitly account for internal motions and
spin diffusion. Alternatively, accurate distance measurements have
become available with eNOEs [50]. Obtaining a comprehensive set
of distance restraints from NOESY spectra is in practice not
straightforward. The large amount of data, as well as resonance and

peak overlap, spectral artifacts and noise, and the absence of ex-
pected signals because of fast relaxation turn interactive NOESY
cross peak assignment into a laborious and error-prone task, even if
it is supported by semi-automated tools that propose and check
assignment possibilities [51—53]. Therefore, the development of
computer algorithms for automating this often most time-
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consuming step of a protein structure determination by NMR has
been pursued intensely [33]. Several algorithms have been devel-
oped for the automated analysis of NOESY spectra given the
chemical shift assignments, e.g. NOAH [54,55], ARIA [56,57], ASDP
[58], CANDID [10], PASD [59,60] and AutoNOE-Rosetta [61]. Auto-
mated NOESY peak picking guided by intermediate structures has
also been integrated into ATNOS-CANDID method [23].

The basic problem of NOESY assignment is the ambiguity of
cross peak assignments if only the match between cross peak po-
sitions and the chemical shift values of candidate resonances is
considered. It has been shown that the number of assignment
possibilities based on chemical shift matching increases exponen-
tially with the uncertainty in the peak and resonance positions. As a
consequence, there are in general not a sufficient number of
unambiguously assigned distance restraints to obtain a structure
[55]. Ambiguous distance restraints make it possible to use also
NOEs with multiple assignment possibilities in a structure calcu-
lation [62]. Nevertheless, to minimize the information loss, addi-
tional criteria have to be applied to resolve these ambiguities as far
as possible, such as using secondary structure information [58] or a
preliminary structure that is refined iteratively in cycles of NOE
assignment and structure calculation [54]. The CANDID automated
NOESY assignment method [10] introduced the concepts of
network anchoring to reduce the initial ambiguity of NOE assign-
ments and constraint combination to reduce the impact of erro-
neous restraints.

4.2. Combined automated NOE assignment and structure
calculation with CYANA

The algorithm for automated NOE assignment in CYANA [9] is a
re-implementation of principles of the former CANDID procedure
[10] on the basis of a probabilistic treatment of the NOE assignment
process that is conceptually more consistent and better capable to
handle situations of high chemical shift-based ambiguity of the
NOE assignments. The key features of the algorithm are network
anchoring to reduce the initial ambiguity of NOESY peak assign-
ments, ambiguous distance restraints to generate conformational
restraints from NOESY cross peaks with multiple possible assign-
ments, and constraint combination to minimize the impact of
erroneous distance restraints on the structure. Automated NOE
assignment and the structure calculation are combined in an iter-
ative process that comprises, typically, seven cycles of automated
NOE assignment and structure calculation, followed by a final
structure calculation using only unambiguously assigned distance
restraints. Between subsequent cycles, information is transferred
exclusively through the intermediary 3D structures. The molecular
structure obtained in a given cycle is used to guide the NOE as-
signments in the following cycle. Otherwise, the same input data
are used for all cycles, that is the amino acid sequence of the pro-
tein, one or several chemical shift lists from the sequence-specific
resonance assignment, and one or several lists containing the po-
sitions and volumes of cross peaks in 2D, 3D, or 4D NOESY spectra.
The input may further include previously assigned NOE upper
distance bounds or other previously assigned conformational re-
straints for the structure calculation.

4.2.1. Assignment conditions and network anchoring

In each cycle, first all assignment possibilities of a peak are
generated on the basis of the chemical shift values that match the
peak position within given tolerance values, and the quality of the
fit between the atomic chemical shifts and the peak position is
expressed by a Gaussian probability, Pspifis. Second, the probability
Pstructure for agreement with the preliminary structure from the
preceding cycle (if available) is computed. Third, each assignment

possibility is evaluated for its network anchoring, i.e., its embed-
ding in the network formed by the assignment possibilities of all
the other peaks and the covalently restrained short-range dis-
tances. The network anchoring probability Pperwork that the dis-
tance corresponding to an assignment possibility is shorter than
the upper distance bound plus the acceptable violation is computed
given the assignments of the other peaks but independent from
knowledge of the three-dimensional structure. Only assignment
possibilities for which the product of the three probabilities is
above a threshold, Pyt = Pshifts Pnetwork Pstructure = Pmin, are accepted
(Fig. 5). Cross peaks with a single accepted assignment yield a
conventional unambiguous distance restraint. Cross peaks with
multiple accepted assignments result in an ambiguous distance
restraint.

4.2.2. Ambiguous distance restraints

Ambiguous distance restraints [62] provide a powerful concept
for handling ambiguities in NOESY cross peak assignments. When
using ambiguous distance restraints, every NOESY cross peak is
treated as the superposition of the signals from each of its possible
assignments by applying relative weights proportional to the in-
verse sixth power of the corresponding interatomic distances. A
NOESY cross peak with a unique assignment possibility gives rise to
an upper bound b on the distance d («,8) between two hydrogen
atoms, « and B. A NOESY cross peak with n > 1 assignment possi-
bilities can be interpreted as the superposition of n degenerate
signals and interpreted as an ambiguous distance restraint, defr < b,
with the “effective” or “r~%-summed” distance

N ~1/6
deff = < > dk6>
P

Each of the distances dy = d («ax,0k) in the sum corresponds to one
assignment possibility to a pair of hydrogen atoms, «k and . The
effective distance defr is always shorter than any of the individual
distances di. Thus, an ambiguous distance restraint will be fulfilled
by the correct structure provided that the correct assignment is
included among its assignment possibilities, regardless of the
possible presence of other, incorrect assignment possibilities.
Ambiguous distance restraints make it possible to interpret NOESY
cross peaks as correct conformational restraints also if a unique
assignment cannot be determined at the outset of a structure
determination. Including multiple assignment possibilities, some
but not all of which may later turn out to be incorrect, does not
result in a distorted structure but only in a decrease of the infor-
mation content of the ambiguous distance restraints.

4.2.3. Constraint combination

Spurious distance restraints may arise from the misinterpreta-
tion of noise and spectral artifacts, in particular at the outset of a
structure determination before 3D structure-based filtering of the
restraint assignments can be applied. CYANA uses “constraint
combination” [9,10] to reduce structural distortions from erroneous
distance restraints. Medium-range and long-range distance re-
straints are incorporated into “combined distance restraints”,
which are a generalization of ambiguous distance restraints with
assignments taken from different, in general unrelated, cross peaks
(Fig. 6). A basic property of ambiguous distance restraints is that the
restraint will be fulfilled by the correct structure whenever at least
one of its assignments is correct, regardless of the presence of
additional, erroneous assignments. This implies that such com-
bined restraints have a lower probability of being erroneous than
the corresponding original restraints, provided that the fraction of
erroneous original restraints is smaller than 50%. Constraint
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combination aims at minimizing the impact of erroneous NOE as-
signments on the resulting structure at the expense of a temporary
loss of information. It is applied to medium- and long-range dis-
tance restraints, by default only in the first two cycles of combined
automated NOE assignment and structure calculation with CYANA.

4.2.4. Structure calculation

The distance restraints are then included in the input for the
structure calculation with simulated annealing by the fast CYANA
torsion angle dynamics algorithm [28]. The structure calculations
typically comprise seven cycles. The second and subsequent cycles
differ from the first cycle by the use of additional selection criteria
for cross peaks and NOE assignments that are based on assessments
relative to the protein 3D structure from the preceding cycle. The
precision of the structure determination normally improves with
each subsequent cycle. Accordingly, the cutoff for acceptable dis-
tance restraint violations in the calculation of Psrycture is tightened
from cycle to cycle. In the final structure calculation, an additional
filtering step ensures that all NOEs have either unique assignments
to a single pair of hydrogen atoms, or are eliminated from the input
for the structure calculation. This facilitates the use of subsequent
refinement and analysis programs that cannot handle ambiguous
distance restraints.

5. Conclusions

The abovementioned computational tools are sufficiently reli-
able and integrated into one software package to enable the fully
automated structure determination of proteins starting from NMR
spectra without manual interventions or corrections at interme-
diate steps. It has been shown that the fully automated method can
yield 3D structures of proteins with an accuracy of 1-2 A backbone
RMSD in comparison with manually solved reference structures of
proteins [8,27,49].

For instance, the automated pipeline of CYPICK peak picking,
FLYA chemical shift assignment, NOESY assignment and structure
calculation with CYANA was applied to the 140-residue protein
ENTH [27]. 16 through-bond and through-space spectra were
available [49,63], and results could be compared with those ob-
tained by manual peak picking and assignment. Over all peak lists,
75% of the manually picked peaks were identified also by CYPICK,
whose peak lists contained 29% additional peaks. On the basis of
the CYPICK peak lists, the chemical shift assignments by FLYA were
correct for 95.4% of the backbone atoms and 89.4% of all atoms
which had been assigned manually. Combined automated NOESY
assignment and structure calculation based on the CYPICK peak
lists and the FLYA chemical shift assignments yielded a structure
bundle with 0.5 A RMSD to the mean coordinates and 0.9 A RMSD
from the well-defined regions of the manually determined
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Fig. 7. Fully automated structure determination of the RRM domain of the RNA-binding protein FUS (PDB code 2LA6) using exclusively NOESY spectra as experimental input [44]. (a)
Automated resonance assignment. Each assignment for an atom is represented by a rectangle; colored green, if the assignment by FLYA agrees with the manually determined
reference chemical shifts within a tolerance of 0.03 ppm for 'H and 0.3 ppm for '*C/"N; red, if the assignment differs from reference; blue, if assigned by FLYA but no reference
available; black, if with reference assignment but not assigned by FLYA. Strong and weak colors represent “strong” (self-consistent) and “weak” (tentative) assignments as classified
by chemical shift consolidation from multiple runs of the assignment algorithm. The row labeled HY/H* shows for each residue H" on the left and H* in the center. The N/C%/C’ row
shows for each residue the N, C*, and C’ assignments from left to right. The rows B-n show the side chain assignments for the heavy atoms in the center and hydrogen atoms to the
left and right. For branched side chains, the corresponding row is split into an upper part for one branch and a lower part for the other branch. (b) Structure determined by
combined automated NOE assignment and structure calculation with CYANA, using the automatically assigned chemical shifts as input (orange). For comparison, the automatically
determined structure is superimposed on the conventionally determined reference structure (white). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

reference structure.

In favorable cases, 3D protein structures can even be determined
from NOESY spectra alone, without measuring any “through-bond”
spectra for the resonance assignment (Fig. 7) [44].

5.1. Critical assessment of structure determination by NMR (CASD-
NMR)

Recently, the critical assessment of structure determination by
NMR (CASD-NMR) initiative [64] has evaluated several NMR
structure determination methods by blind testing. Using high-
quality data sets of small proteins from a structural genomics
project, it was found that the NOESY-based methods included in the
test yielded structures with an accuracy of 2 A RMSD or better to
the subsequently released reference structures [65,66].

5.2. Possible pitfalls of fully automated structure determination

Because experimental NMR spectra are never perfect, fully
automated structure determination must be capable to cope with
incomplete and partially erroneous input data. For instance, the
algorithms should discard artifact peaks when making assignments
or generating NOE distance restraints for the structure calculation.
Under such circumstances, there is a potential danger that erro-
neous structures are generated. In principle, automated structure
determination approaches can go wrong in two ways, especially
with low-quality input data. Either the algorithm fails to ever assign
enough NOE distance restraints to obtain a defined structure. This
outcome, manifested by a divergent structure bundle with a high
RMSD, is unfortunate but straightforward to detect. More prob-
lematic are failures of a second kind, where the algorithm, possibly
gradually over several cycles, discards part of the NOE cross peaks

and selects a self-consistent but incomplete subset of the data to
compute a well-defined but erroneous structure, i.e. a tight bundle
of conformers with low RMSD to its mean coordinates that, how-
ever, differs significantly from the (unknown) correct structure of
the protein. If this outcome goes unnoticed, it may result in the
publication or PDB deposition of erroneous structures that cannot
be detected easily by common coordinate-based validation tools
[67].

5.3. Realistic accuracy estimates by consensus structure bundles

To exclude such problems, the method of consensus structure
bundles has been developed [68]. For this approach, one first per-
forms 20 independent runs of combined automated NOESY
assignment and structure calculation with CYANA using the same
input data but different random start structures. Each run yields a
structure bundle as well as the corresponding set of distance re-
straints. Because the NOESY peaks are assigned independently in
each of the 20 runs, the sets of distance restraints from each run in
general differ from each other. One now combines the individual
sets of distance restraints in order to obtain a consensus set of
distance restraints including assignments from all individual runs,
which is then used to recalculate the final protein structure bundle,
the consensus bundle. This new protocol for NMR structure deter-
mination produces, like the traditional method, bundles of con-
formers in agreement with a common set of conformational
restraints, however with a realistic precision that has been shown,
throughout a variety of proteins and NMR data sets, to be a much
better estimate of structural accuracy than the precision of con-
ventional structure bundles [68].
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