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Abstract We present solid-state NMR assignments of the

N-terminal domain of the DnaB helicase from Helicobac-

ter pylori (153 residues) in its microcrystalline form. We

use a sequential resonance assignment strategy based on

three-dimensional NMR experiments. The resonance

assignments obtained are compared with automated reso-

nance assignments computed with the ssFLYA algorithm.

An analysis of the 13C secondary chemical shifts deter-

mines the position of the secondary structure elements in

this a-helical protein.

Keywords HpDnaB � Assignments � Solid-state NMR �
Secondary chemical shifts � ssFLYA

Biological context

DnaB helicases are bacterial ATP-driven enzymes which

unwind double-stranded DNA in the presence of ATP

during the fork movement in 50–30 direction in DNA

replication (LeBowitz and McMacken 1986). Structurally,

DnaB is a two-domain helicase with an amino-terminal

domain and a carboxy-terminal domain separated by a

linker region. The full-length protein forms ring-shaped

hexameric assemblies which encircle single-stranded DNA

(LeBowitz and McMacken 1986). The C-terminal domain

supports the ATPase activity and is involved in the ring

formation, while the N-terminal domain is forming an a-

helical globule which has the function to activate the

helicase. A fundamental step in DNA replication is the

strand synthesis which is initiated by an interaction

between the N-terminal domain of the helicase DnaB and

the primase DnaG (Corn and Berger 2006).

This work focuses on the investigation of the N-termi-

nus of DnaB extracted from Helicobacter pylori

(H. pylori), a gram-negative microaerophilic spiral shaped

bacterium which is, with a worldwide prevalence of

approximately 50 %, responsible for the most common

chronic bacterial infections, such as gastric ulcer diseases

and gastric adenocarcinoma (Parsonnet et al. 1991; Peter-

son 1991). The replication system in H. pylori exhibits

significant differences compared to other microorganisms

which were investigated in detail, e.g. Escherichia coli.

The most relevant differences are the absence of the recF

gene, the presence of the dnaA gene *600 kb away from

the dnaN-gyrB genes and most importantly the absence of

the dnaC gene (Soni et al. 2003). In E. coli, DnaC is

essential for loading DnaB helicase at oriC, which is the

origin of the chromosomal DNA replication, whereas in the

case of H. pylori HpDnaB itself is able to take over the
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Moléculaires et Structurales des Systèmes Infectieux, Labex
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DnaC function (Soni et al. 2005). The crystal structure of

the C-terminal domain (Stelter et al. 2012), as well as of

the 121 N-terminal residues of HpDnaB were determined

(Kashav et al. 2009). The latter one was found to consist of

a dimer and two further degradation peptide fragments in

the asymmetric unit (Kashav et al. 2009). This manuscript

presents the solid-state NMR spectroscopic investigation of

the N-terminus of HpDnaB as a step towards an integrated

structural biology approach aiming at a detailed structural

description of the full-length protein. In this context, solid-

state NMR studies on a sedimented sample of the full-

length protein have been described (Gardiennet et al.

2012). Previous biochemical investigations suggest that the

N-terminal domain and the linker region play an important

role in multimerisation, quaternary state transition and

activity of HpDnaB (Kashav et al. 2009; Nitharwal et al.

2007).

Methods and experiments

Protein expression and purification, sample

preparation

The DNA fragment corresponding to the N-terminal

domain (NTD) of the H. pylori helicase DnaB (strain

26695) was amplified by PCR (forward 50-caccatggatcatt-

taaagcatttgcag-30 and reverse 50-gcaccatagaaggctttag-

gaattag-30) from genomic DNA and inserted into the

plasmid pET151/DTopo (InvitrogenTM). The resulting

vector was introduced into E. coli BL21(DE3) cells (One

Shot� BL21 StarTM (DE3) Chemically Competent E. coli,

InvitrogenTM) and protein overexpression was performed

in minimal M9 medium (Studier 2005) containing

D-[U-13C]glucose 2 g L-1 (Cambridge Isotope Laborato-

ries, Inc. CLM-1396-PK) and 15NH4Cl 2 g L-1 (Sigma-

Aldrich� 299251) as the only nitrogen and carbon sources.

After cell lysis by a microfluidization process, 13C-15N-

HpDnaB-NTD was purified by Ni2?-agarose affinity

chromatography (QiagenTM). The pseudo-affinity tag was

subsequently cleaved with the TEV (Tobacco Etch Virus)

protease by dialysis. Six additional residues of the tag

remain in the sequence (see Fig. 1).

For crystallization, 13C-15N-HpDnaB-NTD was con-

centrated to 23.5 mg/ml using a centrifugal concentrator

with a 10 kDa cut-off (Vivaspin� 20 VS2001 Sartorius),

and the buffer was exchanged during the concentration step

with the final buffer (50 mM Tris–HCl pH 6.5, 100 mM

NaCl). Crystallization of the protein was performed by

mixing an equal volume of protein and crystallization

buffer (100 mM HEPES pH 7.0, 0.1 % (m/v) sodium

azide, 10 % (v/v) polyethylene glycol 10000) in a nine-

well glass plate with 2.3 M NaCl solution in the reservoir.

Microcrystals were obtained after 1 week at 20 �C and

were harvested and centrifuged into the NMR rotor

(25,0009g during 1 h at 4 �C) using a homemade device

(Böckmann et al. 2009).

Solid-state NMR spectroscopy

Solid-state NMR spectra were acquired at 18.8 and 20.0 T

static magnetic field strengths using 3.2 mm Bruker Bios-

pin ‘‘E-free’’ probes (Gor’kov et al. 2007). The MAS

spinning frequency was set to 17.5 and 17.0 kHz for the

two fields, respectively. The 2D and 3D spectra were

processed with the software TOPSPIN (version 3.2, Bruker

Biospin) with a shifted (2.0–2.8) squared cosine apodiza-

tion function and automated baseline correction in the

direct dimension. The sample temperature was set to

278 K, for more details of the conducted experiments see

Table 1. 13C and 15N resonance assignments were obtained

by using a previously established assignment strategy

based on a sequential walk applying 3D NMR spectra

(Habenstein et al. 2011; Schuetz et al. 2010) which were

analyzed with the software CcpNmr (Fogh et al. 2002;

Stevens et al. 2011; Vranken et al. 2005). Many resonances

were assigned applying conventional experiments, such as

NCACB, NCACX, NCOCX and CANCO. In case of

spectral overlap, it was essential to complement the

assignment strategy with relayed NMR experiments, such

as NcoCACB, CANcoCA and NcaCBCX. Although those

experiments are less sensitive due to four polarization

transfer steps, they strongly benefit from a larger spectral

dispersion (Schuetz et al. 2010), and the signal/noise ratio

achieved under the conditions used here (high field, full

rotor, moderate-sized protein) is good. A selective C0–Ca
polarization transfer in those experiments was achieved by

a modified band-selective homonuclear cross-polarization

step (Chevelkov et al. 2013). The spectra used for assign-

ment were all recorded on a single sample, whereas

reproducibility was carefully checked by 2D measurements

0
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PIDENFIRQK MPKDKQIKEE DLVAIFAASP IDNIEAYVEE IKNASIKRKL FGLANTIREQ

       130        140        150
ALESAQKSSD ILGAVEREVY ALLNGSTIEG FRN

Fig. 1 Amino-acid sequence of the N-terminus of HpDnaB as

extracted from the uniprot database (The UniProt Consortium-

Activities at the Universal Protein Resource (UniProt) 2014). At the

N-terminal domain a part of the tag (amino acid sequence GIDPFT) is

still present after the cleavage of the tag with TEV protease (shown in

grey). Residues highlighted in red are located in a-helices as

determined from NMR secondary chemical shifts (see Fig. 9)
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Table 1 Overview about experimental parameters of the performed solid-state NMR experiments

Experiment DARR NCA NCACB NCACX NCOCX

(a)

MAS frequency/kHz 17.0 17.0 17.5 17.0 17.0

Field/T 20.0 20.0 18.8 20.0 20.0

Transfer I HC-CP HN-CP HN-CP HN-CP HN-CP
1H field/kHz 59.4 60.8 58.5 60.8 60.8

X field/kHz 40.9 43.1 44.0 43.1 43.1

Shape Tangent 1H Tangent 1H Tangent 1H Tangent 1H Tangent 1H
13C carrier/ppm 95 – – – –

Time/ms 0.5 0.6 0.6 0.6 0.6

Transfer II DARR NC-CP NC-CP NC-CP NC-CP
1H field/kHz 17.0 – – – –
13C field/kHz – 6.1 10.0 6.1 6.1
15N field/kHz – 10.2 27.0 10.2 10.6

Shape – Tangent 13C Tangent 13C Tangent 13C Tangent 13C

Carrier/ppm 95 60 56 60 178

Time/ms 10 6 4 6 4

Transfer 3 – – DREAM DARR DARR
1H field/kHz – – – 25.1 25.1
13C field/kHz – – 7.9 – –
15N field/kHz – – – – –

Shape – – Tangent 13C – –

Carrier/ppm – – 56 178 178

Time/ms – – 4 60 30

t1 increments 2000 2000 80 108 108

Sweep width (t1)/kHz 100 66.7 5.7 6.0 6.0

Acquisition time (t1)/ms 10 15 7.1 9.0 9.0

t2 increments 2988 3072 116 136 116

Sweep width (t2)/kHz 100 100 10.9 8.6 6.4

Acquisition time (t2)/ms 14.9 15.4 5.3 8.0 9.0

t3 increments – – 1988 3072 3072

Sweep width (t3)/kHz – – 100 100 100

Acquisition time (t3)/ms – – 9.9 15.4 15.4
1H Spinal64 (Fung et al. 2000)

decoupling power/kHz

89 89 90 89 89

Interscan delay/s 2.1 3 2.5 2.6 2.6

Number of scans 12 8 24 8 8

Measurement time/h 14 13 157 87 74

Experiment CANCO NcoCACB CANcoCA NcaCBCX CCC

(b)

MAS frequency/kHZ 17.0 17.0 17.0 17.0 17.5

Field/T 20.0 20.0 20.0 20.0 18.8

Transfer I HC-CP HN-CP HC-CP HN-CP HC-CP
1H field/kHz 59.4 60.8 58.4 58.4 66.0

X field/kHz 40.9 43.1 40.8 45.2 50.0

Shape Tangent 1H Tangent 1H Tangent 1H Tangent 1H Tangent 1H
13C carrier/ppm 95 – 103 – 58.5

Time/ms 0.5 0.6 0.5 0.6 0.7

Transfer II CN-CP NC-CP CN-CP NC-CP DREAM

Solid-state NMR sequential assignments of the N-terminal domain of HpDnaB helicase 15
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on samples from different preparations which yield com-

parable spectra in all cases. Spectra were also recorded on

samples with the His-tag, and showed differences large

enough to discard the further use of this sample.

TALOS? calculations were performed using version 3.8

(Shen et al. 2009). The DSSP algorithm (Kabsch and

Sander 1983) was applied using the corresponding web

interface (http://www.cmbi.ru.nl/dssp.html) with the 3D

atomic coordinates extracted from the pdb file 3GXV

(Kashav et al. 2009).

Solid-state FLYA calculations (Schmidt et al. 2013;

Schmidt and Güntert 2012) were performed with CYANA

version 3.97. The tolerance value for chemical shift

matching was set to 0.55 ppm for 13C and 15N. The cal-

culations are based on experimental peak lists as obtained

from the manual assignment procedure.

Assignment and data deposition

The solid-state NMR spectra of the N-terminal domain of

HpDnaB (residues 1–153) reveal significant spectral

overlap as expected for a protein of 153 amino acids, even

though also many isolated, well resolved signals are

Table 1 continued

Experiment CANCO NcoCACB CANcoCA NcaCBCX CCC

1H field/kHz – – – – –
13C field/kHz 6.0 6.1 6.0 5.9 5.4
15N field/kHz 20.0 10.6 11.4 11.4 –

Shape Tangent 13C Tangent 13C Tangent 13C Tangent 13C Tangent 13C
13C Carrier/ppm 60 178 60 60 56

Time/ms 4 4 5.5 5.5 4

Transfer 3 NC-CP Mod. band-selective CP

(Chevelkov et al. 2013)

NC-CP DREAM DARR

1H field/kHz – – – – 17.5
13C field/kHz 6.0 8.5 6.0 7.6 –
15N field/kHz 20.0 – 11.9 – –

Shape Tangent 13C Tangent 13C Tangent 13C Tangent 13C –
13C Carrier/ppm 178 176 178 51 40

Time/ms 4 3.5 2 80

Transfer 4 – DREAM Mod. band-selective CP

(Chevelkov et al. 2013)

DREAM –

1H field/kHz – – – – –
13C field/kHz – 7.7 8.3 7.6 –
15N field/kHz – – – – –

Shape – Tangent 13C Tangent 13C Tangent 13C –
13C Carrier/ppm – 51 178 26 –

Time/ms – 2.75 5 4 –

t1 increments 130 62 150 68 172

Sweep width (t1)/kHz 8.5 3.4 8.6 4.3 15.7

Acquisition time (t1)/ms 7.6 9.0 8.8 7.9 5.5

t2 increments 98 154 80 156 172

Sweep width (t2)/kHz 6.03 8.6 4.3 12.8 15.7

Acquisition time (t2)/ms 8.1 9.0 9.3 6.1 5.5

t3 increments 3072 3072 3072 3072 1864

Sweep width (t3)/kHz 100 100 100 100 93.8

Acquisition time (t3)/ms 15.3 15.4 15.4 15.4 9.9
1H Spinal64 (Fung et al. 2000)

decoupling power/kHz

89.0 89.0 91.1 91.1 90.0

Interscan delay/s 2.7 3 3 3 2.1

Number of scans 8 16 16 16 8

Measurement time/h 77 128 162 143 145

16 T. Wiegand et al.
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detected as can be seen in the 2D dipolar correlation NMR

spectra shown in Fig. 2. Those 13C resonances are quite

narrow with a line width at half height in the order of

0.6 ppm. Figure 2a shows the 2D 13C,13C DARR spectrum

and Fig. 2b the 2D 15N,13C NCA spectrum, both with good

signal-to-noise ratio which allows also to acquire 3D

assignment NMR spectra even with four polarization-

transfer steps. The assignment was mainly achieved by
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Fig. 2 a 2D 13C,13C DARR

spectrum of the N-terminus of

HpDnaB measured at 20.0 T

with a spinning frequency of

17.0 kHz and 10 ms DARR

mixing. The spectrum includes

the labels for the Ca–Cb peaks

as predicted from the manually

created shift list using the

CcpNmr software (black chain

A, green chain B). In the Ca/Cb
region seven isolated peaks

could not be assigned, most

probably because the

corresponding residues are

located in flexible parts of the

protein. b 2D NCA spectrum of

the N-terminus of HpDnaB

acquired at 20.0 T with a

spinning frequency of 17.0 kHz.

The spectrum includes the

labels for the peaks as predicted

from the manually created shift

list using the CcpNmr software

(black chain A, green chain B)

assuming that only intraresidual

peaks with a through-space limit

corresponding to one bond are

visible (x), peaks labeled with

plus indicate N–Cb resonances
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using a combination of two strategies. The first one is based

on 3D NMR spectra such as NCACB, NCACX, NCOCX

and CANCO (Schuetz et al. 2010). A representative

example for the backbone walk using this ‘‘classical’’

strategy is given in Fig. 3. The spectral overlap observed in

the NMR spectra requires the largest possible spectral

dispersion in all dimensions, which is in terms of 3D NMR

spectra given by circumventing the detection of the CO-

dimension which possesses the smallest chemical shift

dispersion. For fulfilling this objective, an assignment
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Fig. 3 Example for the sequential walk along the protein backbone (from the C- to the N-terminus) by using NCACB (negative peaks are shown

in magenta), CANCO (positive peaks are illustrated in blue) and NCOCX (positive peaks are shown in green) spectra
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Fig. 4 Example for the sequential walk along the protein backbone

(from the N- to the C-terminus) of the N-terminus of DnaB by using

NCACB (negative peaks represented in magenta), NcoCACB

(negative peaks shown in turquoise) and CANcoCA (positive peaks

represented in pink) spectra
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strategy based on NCACB, NcoCACB and CANcoCA

experiments (Schuetz et al. 2010) was applied, a repre-

sentative example of a sequential walk is given in Fig. 4.

This assignment procedure could clarify many assignments

which remained ambiguous after the firstly described

assignment strategy. The selective C0–Ca polarization

transfer step in the relayed experiments (Chevelkov et al.

2013) yields a good signal-to-noise ratio also for these

types of experiments (see Fig. 4). Nevertheless, it has to be

noted that a small number of resonances could not be

assigned, mainly due to the spectral overlap as especially

visible in the leucine, glutamic acid and glutamine region.

The sidechains are mainly assigned by analyzing CCC

(DREAM and DARR transfer) and NcaCBCX (two
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Fig. 6 Assignment graph of the N-terminus of HpDnaB created using

the CcpNmr software. Residues marked in red show significant peak

doubling. Black or red dots indicate assigned spins, grey dots

unassigned spins. Residues highlighted by red rectangles are located

in a-helices as determined from NMR secondary chemical shifts (see

Fig. 9)
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DREAM transfers) spectra (see Fig. 5). On basis of the

acquired spectra and the applied assignment strategies,

approximately 70 % of the backbone carbon and nitrogen

atoms could be assigned (see Fig. 6; Table 2). 77 % of the

residues for which 15N, 13Ca and 13Cb chemical shifts were

assigned are located in a-helices as indicated by the NMR

results (vide infra). The resonances of most of the unas-

signed residues could not be detected in the 3D NMR

spectra, most probably because they are located in flexible

parts of the protein (those resonances were also not

detected in 13C,1H INEPT and 15N,1H HSQC spectra

indicating intermediate dynamics in this protein). Notably,

the resonances of Thr147 are clearly detected in the 2D

DARR spectrum (see Fig. 2a), but appear only very weakly

in the 3D NCACB and CCC spectra and are even absent in

the other 3D NMR spectra. Since the second threonine

residue (Thr116) present in the N-terminus of HpDnaB

could be assigned on the basis of the before described

assignment strategies, the remaining Thr signal can be

assigned to Thr147, and weak correlations visible in the 2D

DARR spectrum at long mixing times support this con-

clusion. The Ca and Cb chemical shifts of these two

threonine residues already reveal that Thr116 is located in

an a-helix, whereas Thr147 is most probably located in a

loop in agreement with the observed flexible character. The

chemical shifts have been deposited in the BMRB database

under the accession number 26548.

As indicated in Fig. 6, for some resonances in the

amino-acid region Thr116-Lys127 a peak doubling is

observed which is exemplarily illustrated by analyzing the

unique serine-alanine amino acid pair (residues Ser124 and

Ala125). The sequential backbone walk for these residues

using NCACB, NcoCACB and CANcoCA spectra is

illustrated in Fig. 7 and clearly demonstrates the presence

of two sets of resonances. Pronounced spectroscopic dif-

ferences are mainly observed for the 15N frequencies. The

observed peak doubling might indicate crystallographically

distinct molecules in the asymmetric unit, which would

agree with the previously published crystal structure for the

residues 1–121 consisting of a dimer in the asymmetric unit

(Kashav et al. 2009).

The results of the manual assignment procedure are

validated by automated peak assignments as implemented

in the solid-state FLYA algorithm (Schmidt et al. 2013).

Figure 8 illustrates the good agreement between the man-

ually assigned residues and the assignments obtained by

FLYA calculations based on the peak lists from the manual

assignment procedure. Only a few significant differences

(e.g. for the two prolines Pro43 and Pro44, as well as for

Thr147, and the C0 resonances of Ser89 and Val135) were

observed and in those cases the manually assignment was

carefully rechecked and its resonances were taken for the

final assignment as they unambiguously result from the

performed sequential walk.

Secondary structure

Secondary chemical shifts were obtained by subtracting the

random-coil shifts (Wang and Jardetzky 2002) from the

observed solid-state NMR chemical shifts (Wishart et al.

1992) and are visualized in Fig. 9. These data clearly

illustrate the dominant a-helical character of the N-termi-

nus of HpDnaB. Seven a-helices are identified in total, the

longest one is reaching from residue 95 to 117. Our results

indicate an interruption after the sixth a-helix and a suc-

ceeding seventh a-helix with positive secondary chemical

shifts observed for residues 120–135. It is reasonable to

assume that the C-terminal part of the protein is mainly

flexible, since most resonances are not detected in the

performed NMR experiments. The visible residue Thr147

shows Ca/Cb chemical shifts more typical for a loop or

extended conformation than an a-helical arrangement

Table 2 Statistics of the

manually performed peak

assignments

Category Assigned/%

C 69.3

CA 70.6

CB 69.4

CG 61.7

CD 54.5

CE 34.5

CZ 17.6

N 69.9

Residue Ala 91.7

Residue Arg 50.0

Residue Asn 55.6

Residue Asp 62.5

Residue Cys 100.0

Residue Gln 42.9

Residue Glu 72.2

Residue Gly 66.7

Residue His 60.0

Residue Ile 81.3

Residue Leu 68.8

Residue Lys 72.7

Residue Met 50.0

Residue Phe 85.7

Residue Pro 66.7

Residue Ser 88.9

Residue Thr 100.0

Residue Tyr 75.0

Residue Val 75.0

Data created with the CcpNmr

software
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(Wang and Jardetzky 2002). The secondary chemical shifts

for the doubled resonances have the same sign and

approximate magnitude for both partners, indicating no

significant differences in the secondary structure elements

(see Fig. 9).

A complete comparison of the secondary structure ele-

ments obtained from solid-state NMR with those found in

the published crystal structure is hampered by the fact that

the latter one consists only of residues 1–121 (Kashav et al.

2009) and might crystallize differently than the full-length

N-terminal domain (no diffracting crystals could be

obtained for the full-length N-terminal domain). Never-

theless, the structure of the globular N-terminal domain

seems to be roughly similar between the 1–121 and 1–153

residues samples, since in general a good agreement

between NMR data [secondary chemicals shifts and

TALOS? backbone torsion angle calculations (Shen et al.

2009)] and the X-Ray structure is observed (see Table 3).

Conclusions

We describe the sequential resonance assignment of the

N-terminal domain of HpDnaB (residues 1–153) based on

3D solid-state NMR experiments leading to a site-specific

chemical shift assignment of approximately 70 % of the

backbone resonances. Those manually obtained peak

assignments are validated by solid-state FLYA calcula-

tions. Seven a-helices where identified by a secondary

chemical shift analysis which mostly agrees with the single

crystal structure published for the residues 1–121 (PDB

3GXV). The observed peak doubling might point to crys-

tallographically distinct molecules in the asymmetric unit.
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Böckmann A et al (2009) Characterization of different water pools in

solid-state NMR protein samples. J Biomol NMR 45:319–327

Chevelkov V, Giller K, Becker S, Lange A (2013) Efficient CO–CA

transfer in highly deuterated proteins by band-selective homonu-

clear cross-polarization. J Magn Reson 230:205–211

Corn JE, Berger JM (2006) Regulation of bacterial priming and

daughter strand synthesis through helicase–primase interactions.

Nucleic Acids Res 34:4082–4088

20 30 40 50 60 70 80 90 100 110 120 130 140

-4

-2

0

2

4

6

8
+

+
+

+

(
C

-
C

mpp/)

+

1

Fig. 9 Secondary 13C chemical

shifts (obtained by subtracting

the random-coil shifts (Wang

and Jardetzky 2002) from the

observed chemical shifts).

Glycines are marked in black

(and DdCa is plotted) and

residues for which significant

peak doubling was observed are

highlighted with a? and the

corresponding secondary

chemical shifts are shown in

green

Table 3 a-Helices determined from the secondary chemical shifts

and from the 3D atomic coordinates deposited in the pdb file 3GXV

using the DSSP algorithm (Kabsch and Sander 1983) via the corre-

sponding web interface

a-Helix NMR TALOS?a DSSPb

1 Glu14-Leu23 Arg15-Leu23 His3-Leu23

2 Asn25-Val31c His26-His32 Ile28-His32d

3 Pro43-Glu57 Pro44-Glu57 Pro43-Glu57

4 Glu64-Gln69 Glu64-Gln69 Glu64-Gln69

5 Glu79-Phe86 Glu79-Phe86 Glu79-Phe86

6 Glu95-Ile117 Ile101-Ile117 Glu95-Gln120

7 120Gln–135Val 120Gln-135Val –

a Calculated from the solid-state NMR chemical shifts described in

this work using the TALOS? software (Shen et al. 2009)
b Data for chain A are given
c Data do not allow a distinction between 3/10 helix and a-helix
d A 3/10 helix is predicted for residues Asn25-Lys27

22 T. Wiegand et al.

123



Fogh R et al (2002) The CCPN project: an interim report on a data

model for the NMR community. Nat Struct Mol Biol 9:416–418

Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband

decoupling sequence for liquid crystals and solids. J Magn Reson

142:97–101
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