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Specifications table [please fill in right-hand column of the table below]
M

T
H

D
E

E

D

Subject area
 Physical chemistry, structural biology
ore specific sub-
ject area
Nuclear magnetic resonance, NMR
ype of data
 Exact NOE distance restraints, J couplings, RDCs files, table, figure

ow data was
acquired
Solution NMR
ata format
 CYANA input files

xperimental
factors
–

xperimental
features
All data has been acquired at 298 K; typically, the GB3 NMR samples contained
350–500 ml of 2–4 mM protein solution in 97%/3% or 95%/5% H2O/D2O, 50 mM
potassium phosphate buffer, pH 6.5–7.0, and 0.5 mg/ml sodium azide
ata source
location
Zurich, Switzerland; Bethesda, MD, USA
ata accessibility
 data is with this article
D

Value of the data [describe in 3–5 bulleted points why this data is of value to the scientific community]

� one of the largest and most diverse NMR data sets for characterizing the structure and dynamics of
a protein to date

� extensive error analysis guarantees high reliability of the data set
� ideal for validation of structure calculation programs and molecular dynamics simulations
1. Data

We compiled 923 exact nuclear eNOEs distance limits (upper distance limits in CYANA format in
file ‘GB3.upl’; lower distance limits in CYANA format in file ‘GB3.lol’), 61 conventional NOEs for
aromatics (upper distance limits in CYANA format in file ‘GB3.upl’), 1477 RDCs (file ‘GB3.rdc’), 225 3J
scalar couplings (‘GB3.cco’), and 52 torsion angle restraints (‘GB3.aco’) for the third immunoglobulin
binding domain of protein G (GB3) (Table 1) [1]. To that purpose, the previously published set con-
sisting of 884 eNOEs [2,3] was supplemented by eNOEs involving methylenes with a degenerate
proton pair and Val with a degenerate pair of methyl groups. The RDCs were collected from the
literature, in total originating from 8 different alignment conditions. 1335 RDCs were obtained from
spin pairs located in the backbone, 129 in side chains, and 13 bridging the backbone and side chains.
All J couplings, most of which are taken from the literature, extend over three covalent bonds, of
which 147 are from the backbone, and 78 between a backbone and a side-chain spin. In the distance
limit, RDC and J coupling CYANA input files, the first six columns describe the two involved atoms. For
the distance restraints, the seventh column is the upper or lower distance restraint. In the RDC file,
the seventh to eleventh columns contain the measured value, the experimental error, the relative
weight (always 1), the alignment tensor number and a constant collecting physical constants of the
specific coupling. The magnitudes and rhombicities of the alignment tensors are indicated in the file
header. In the J coupling file, the seventh to twelfth columns contain the measured value, the
experimental error, the relative weight (always 1), and the coefficients C, B and A of the Karplus
equations. In the torsion angle restraint CYANA input file, the first three columns identify the torsion
angle, and the fourth and fifth columns list the lower and upper bounds. We also added 41 intrar-
esidual and 46 sequential DHNHα RDCs, which cannot be used in CYANA structure calculations due to
the flexible distances between the nuclei (files ‘GB3_rdc_3Dhnha.f’ and ‘GB3_rdc_4Dhnha.f’,
respectively).



Table 1
Compiled CYANA restraints from GB3.

Type #

eNOEs upper/lower
distance limit

total 984

bidirectional total 355
involving
pseudo-
atoma

31

else 324
unidirectional total 568

involving
pseudo-
atoma

69

else 499
NOEs upper dis-

tance limit
aromaticsb 61

scalar
couplings

total 225

backbone total 147
3JHN,Hα 49
3JHN,Cβ 49
3JHN,C′ 49

backbone-
side chain

total 78

3JHα,Hβ2/3 24
3JN,Cγ(1/2) 27
3JC’,Cγ(1/2) 27

RDCs total 1477
backbone 1DHN,N total 372

medium 1 50
medium 2 54
medium 3 54
medium 4 52
medium 5 54
medium 6 54
medium 7 54

1DCα,Hα total 387
medium 1 43
medium 2 50
medium 3 49
medium 4 47
medium 5 50
medium 6 49
medium 7 50
medium 8 49

1DCα,C’ total 320
medium 2 54
medium 3 54
medium 4 50
medium 5 54
medium 6 54
medium 7 54

1DHN,C’ total 256
medium 2 52
medium 3 51
medium 4 47
medium 5 54
medium 6 52

backbone-
side chain

2DCβ,Hα medium 1 13 13

side chain 1DCβ,Hβ(2/3) total 54
medium 1 38
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Table 1 (continued )

Type #

medium 8 16
1DHβ2,Hβ3 medium 1 11 11
1DCm,Hm3 total 64

medium 1 32
medium 8 32

Angular
restraints

total 52

phi 26
psi 26

a Pseudo-methylene atom or pseudo-atom for both methyl groups in Val and Leu.
b NOEs involving aromatic groups, set to o8 Å.
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2. Experimental design, materials and methods

2.1. eNOEs

All cross-relaxation rate constants presented in references [2,3] were taken. Upper and lower
limits of the distance restraints were set with an allowed distance range of 0% and þ15 and �15% for
bidirectional and unidirectional eNOEs, respectively. However, NOEs involving methyl groups were
processed differently. In this study, the CYANA protocol was executed with an individual treatment of
each methyl proton by r�6 summation of the corresponding distances. Therefore, previous input
distance restraints were scaled by a factor of 3�1/6¼0.83268 per methyl group such that the corre-
sponding cross-relaxation rate constant is a sum over all individual contributions. This would be
strictly true if the methyl motion was slow (slower than nanoseconds). Since there is fast rotation
present as well, we added an additional tolerance of 78.5%.

eNOEs that involve either methylene groups with degenerate chemical shifts or chemically
equivalent methyl groups in Val and Leu were added to the previous data set. The apparent cross-
relaxation rate constants were fitted to the same formulae as used for single atoms or methyl groups,
corrected for spin diffusion [4] and normalized to the equivalent of a superposition of contributions
from all pairs of single atoms. Note that this is an approximation because the spins do not undergo
fast exchange. Instead, the spectral peaks are superpositions of the individual buildup/decay curves.
Therefore, all upper limits and lower limits were given an additional tolerance of 5% in addition to the
0/15% for bidirectional/unidirectional eNOEs.

2.2. Residual dipolar couplings

1DHN,N (43 Hz range) and 1DCα,Hα (92 Hz range) RDCs of wild-type GB3 under alignment induced
by Pf1 filamentous phages (tensor 1) were taken from reference [5]. For 1DHN,N, the errors were
uniformly set to 0.5 Hz because half the pairwise r.m.s. deviation from values obtained from a new
sample was 0.57 Hz, and singular value decomposition (SVD) fits of the RDCs to a 160-member multi-
state ensemble [6], the RDC-refined X-ray structure (PDB 2OED) [7], and RDC-proton optimized 2OED
[8–10] yield fitting errors of 0.54 Hz, 0.76 Hz, and 1.29 Hz, respectively. Analogously, the errors for
1DCα,Hα were uniformly set to 1.5 Hz because SVD fits to the same structures yield fitting errors of
1.67 Hz, 2.02 Hz, and 2.51 Hz, respectively, and if the alignment tensor is taken from the HN–N RDCs,
only slightly larger errors are observed with 2.07 Hz, 2.40 Hz, and 3.52 Hz. An initial tensor estimate
was obtained from SVD fit of the HN–N RDCs to the RDC-refined X-ray structure [8–10] and omission
of the highly mobile residues 12, 40, and 41. This tensor was then used for both 1DHN,N and 1DCα,Hα.
The relative scaling is –2.0327 (corresponding to the bond lengths of 1.02 Å and 1.09 Å).

For the deuterated mutants K19AD47K (tensor 2), K19ED40N (tensor 3), K19EK4A-C-His6 (tensor
4), K19EK4A-N-His6 (tensor 5), and K19AT11K (tensor 6) two slightly different experiments were run
to obtain HN–N and Cα–C’ RDCs under alignment via Pf1 [10]. For these data sets, the averages are



B. Vögeli et al. / Data in Brief 5 (2015) 99–106 103
used and the errors are half the individual pairwise differences. For the 54, 54, 52, 54, 54 1DHN,N

values, the overall r.m.s. deviations for the sets corresponding to tensors 2, 3, 4, 5, 6 are 0.14, 0.17, 0.16,
0.11, 0.07 Hz for ranges of 28, 30, 35, 27, 30 Hz, respectively. If only one value was available, the error
was set to twice the overall r.m.s. deviation. For the 54, 54, 50, 54, 54 1DCα,C’ values the errors for the
sets corresponding to tensors 2, 3, 4, 5, 6 are 0.041, 0.078, 0.152, 0.073, 0.047 Hz for ranges of 6.2, 6.2,
7.4, 6.7, 7.3 Hz, respectively. If only one value was available, the error was set to twice the overall r.m.s.
deviation. The scaling of 1DCα,C’ relative to 1DHN,N is �0.1866 (corresponding to the bond lengths of
1.525 Å and 1.02 Å). For a seventh alignment condition under Pf1 (tensor 7, mutant K19EK4A), only
one data set of 1DHN,N (37 Hz range) and 1DCα,C’ (8.1 Hz range) is available. The error was set uniformly
to twice the largest error of the other five data sets (0.34 Hz and 0.30 Hz).

For HN–C’, one set of RDCs is available for each mutant yielding tensors 2–6 [10]. The relative
scaling of the coupling is �0.3123, assuming an interatomic distance of 2.035 Å corresponding to
lengths of 1.020 Å and 1.329 Å for the HN–N and C’–N bonds and a bond angle of 119.5° [11]. R.m.s.
deviations from back-calculated values obtained from SVD are typically 0.4 Hz (using a directly fitted
tensor or a tensor obtained from 1DHN,N). Therefore, the errors were uniformly set to 0.2 Hz.

For each of the protonated mutants K19AD47K (tensor 2), K19ED40N (tensor 3), K19EK4A-C-His6
(tensor 4), K19EK4A-N-His6 (tensor 5), K19AT11K (tensor 6), and K19EK4A (tensor 7), one 1DCα,Hα
data set is available [9]. To account for Pf1 concentration differences, the values were rescaled by the
slopes between the 1DH,N values obtained from the protonated samples (not used in this study) and
the deuterated samples (see above). The alignment tensors are assumed to be the same as those
determined from the 1DHN,N sets of the deuterated samples. R.m.s. deviations from back-calculated
values obtained by SVD are typically 1.5 Hz (or ca. 2.0–3.5 Hz using the tensors obtained from 1DHN,N).
Therefore, the errors are uniformly set to 1.0 Hz.

For the structure calculations, tensors 2–7 were determined from SVD with all measured RDCs in
the backbone.

2DCβ,Hα,
1DCβ,Hβ2,

1DCβ,Hβ3 and
1DHβ2,Hβ3 values were obtained from alignment with Pf1 phage [12].

A 3D HBCBCA type experiment provided four independent values for 2DCβ,Hα, which allows for an
estimation of individual errors. 1DCβ,Hβ2,

1DCβ,Hβ3 and 1DHβ2,Hβ3 values are obtained from linear
combinations of the effectively measured 1DCβ,Hβ2–

1DHβ2,Hβ3,
1DCβ,Hβ3–

1DHβ2,Hβ3, and
1DCβ,Hβ2þ1DCβ,Hβ3 values. Here, the errors of these values were propagated into individual errors of
the couplings of interest. Sample conditions were similar to those of the previously mentioned
measurement of 1DHN,N with Pf1 yielding tensor 1. 1DCα,Hα couplings obtained from the same
experiment were compared (Pearson’s correlation coefficient 0.99) and rescaled to the 1DCα,Hα cou-
plings mentioned above in order to estimate the alignment tensor magnitude relative to tensor 1.
Then, tensor 1 was used for the structure calculations (the scaling factor was 0.814 and the errors
were not scaled).

1DCβ,Hβ (Val, Ile, Thr), 1DCβ,H3β (Ala), 1DCγ1/2,H3γ1/2 (Val, Ile, Thr) and 1DCδ1/2,H3δ1/2 (Leu, Ile) values
were obtained from alignments with Pf1 phage and PEG [6]. For Pf1, a set of 1DCα,Hα recorded on the
same sample was used to scale the couplings such that the previously mentioned tensor 1 for
alignment with Pf1 could be used (scaling factor 0.90 to account for Pf1 concentration difference,
Pearson’s correlation coefficient 0.99) and also for the estimate of the error (r.m.s. deviation between
those two sets is 2.32 Hz, which gives an error of ca. 2.32/21/2 Hz¼1.5 Hz here). The couplings within
methyl groups were scaled by �1/3.17 such that they could be used as effective 1DCα,Cβ,

1DCβ,Cγ1/2 and
1DCγ(1),Cδ1/2 couplings in the structure calculation [13]. The rescaled errors would be ca. 0.2 Hz, but
were uniformly set to 0.5 Hz. For PEG, no 1DHN,N couplings were available and the alignment tensor
was determined from a set of 1DCα,Hα obtained in the same experiment (tensor 8). The measurements
were carried out once. The errors were estimated as follows: An SVD from the 1DCα,Hα couplings of Pf1
gave an r.m.s. deviation of ca. 2.7 Hz (this tensor was not used in the structure calculations). An
analogous SVD from the 1DCα,Hα couplings of PEG yielded an r.m.s. deviation of ca. 1 Hz, while the
coupling amplitude is half as large. Thus, the RDC data from PEG appear 1.5 times better and if it is
assumed that the absolute measuring errors are similar for PF1 and PEG, it would be safe to use the
same errors for PEG as for Pf1. However, it is likely that tensor 8 obtained from 1DCα,Hα is not as
accurate as tensor 1, which is obtained from 1DHN,N. Therefore, a uniform error of 2 Hz was chosen for
1DCα,Hα and 1DCβ,Hβ. The errors of the couplings involving methyl groups were uniformly set to 0.5 Hz.
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Next, all fitted alignment tensors were corrected for the rescaling due to uniform motion
throughout the molecule. Iterative re-determination of the tensors increases them by 4% in the first
cycle of a two-state ensemble calculation (CYANA target function value changes by þ0.91 Å2, or �
1.08 Å2 when using effective bond lengths) and converges to an increase of about 5% after the second
cycle. This result is in good agreement with a tensor rescaling by 1/0.95 based on SVD of the 160-
member ensemble calculated by Schwieters and Clore [6]. Here, we use the re-determined tensor
after the initial two-state ensemble calculation.

In addition, intraresidual 3DHN,Hα and sequential 4DHN,Hα RDCs taken from Ref. [5] were used for
validation only.

2.3. Scalar couplings

3JHN,Hα values are averages over couplings derived from CT-MQ(1HN,13Cα)þSQ(1HN)-HNCA spectra
and J-modulated HMQC spectra [14,15]. Based on the pairwise r.m.s. deviation between the values
obtained from the two types of measurements, the error of their averaged values equals 0.14 Hz [14].
For each coupling, we use the averages over two sets of each type as CYANA input and the standard
deviation as input error (overall 0.15 Hz). If both data sets of one type (in our case only J-modulated
HMQC spectra) are missing the error was set to 0.3 Hz. The averaged measured values were corrected
for the residual dipolar couplings between HN and Hα due to the natural alignment of GB3 in the
magnetic field at 600 MHz. The alignment tensor was estimated from sums of HN–N residual dipolar
and scalar couplings at 500 and 800 MHz fields. The HN–Hα RDCs were back-predicted from an RDC-
refined X-ray structure [8–10].

3JHN,Cβ values are averages over couplings derived from a CT-MQ(1HN,13Cα)-HNCA and a HNCA[CB]
E.COSY experiment [14]. The individual errors were based on the pairwise r.m.s. deviation between
these two sets of values, with an overall error of their averaged values of 0.07 Hz [14]. If the value of
one data set was missing, 0.1 Hz was used.

3JHN,C′ values are averages over couplings derived from a CT-MQ(1HN,13Cα)-HNCA and a HNCA[C′] E.
COSY experiment [14]. The individual errors were based on the pairwise r.m.s. deviation between
these two sets of values, with an overall error of their averaged values of 0.1 Hz [14]. If the value of
one data set was missing, 0.2 Hz was used.

The Karplus curve coefficients for 3JHN,Hα,
3JHN,Cβ and

3JHN,C′ were determined from fits to the RDC-
refined X-ray structure [8–10] under the assumption of uniform fluctuations of 10° of the ϕ angles
[16]. The highly dynamic residues 12 and 40 were excluded, and three ubiquitin residues with
positive ϕ angles, namely residues 46, 60 and 64, were included in the fits, using angles from an
NMR-refined X-ray structure [17]. The Karplus curve coefficients 3JHN,Hα(ϕ)¼8.754 cos2ϕ�1.222
cosϕþ0.111 Hz, 3JHN,Cβ(ϕ)¼3.693 cos2ϕ�0.514 cosϕþ0.043 Hz, and 3JHN,C′(ϕ)¼4.516 cos2ϕ�1.166
cosϕ�0.038 Hz were obtained.

It has been shown that the values for 3JHN,Hα,
3JHN,Cβ and

3JHN,C′ of GB3 can be predicted somewhat
better if density functional theory (DFT) calculations are performed on the structure of the RDC
refined X-ray structure (PDB 2OED) than from simple parametrization of the experimental data by
Karplus curves [18]. This demonstrates that some discrepancy between the Karplus curves and
experimental data is caused by hydrogen bonding, substituent and electrostatic effects rather than
fluctuation of the dihedral angles. These errors are very small for 3JHN,Hα and 3JHN,C′ and are clearly
dominated by the experimental errors (which are used for the width of the flat bottom CYANA
potential). The situation is somewhat different for 3JHN,Cβ. Here, the error due to the substituent effect
is ca. 0.08 Hz. Thus, the errors for 3JHN,Cβ were set to the propagated errors obtained from the indi-
vidual random experimental errors plus a uniform error of 0.08 Hz. This increases the overall error
from 0.07 Hz to 0.11 Hz.

3JHα,Hβ2 and 3JHα,Hβ3 values were taken from reference [12], where a 3D HBCBCA type experiment
provides two independent values allowing for a cross-check. A systematic error arises from the errors
in the extracted peak positions caused by 1Hα transverse relaxation during the S3CT element and is
estimated to be 1 Hz (see Fig. 4 in the Supplemental information in Ref. [12]). The systematic and
individual random errors were propagated into an overall error. All couplings are in agreement with
our previously calculated ensemble [2,3] except for residues 8 and 52. Residue 8 seems to undergo
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averaging as indicated by the two nearly identical values of 3JHα,Hβ2 and 3JHα,Hβ3 close to 7 Hz. These
values are used here since a potentially wrong stereoassignment would not have an impact. The
couplings of residue 52 are also in disagreement with the data set in reference [19], the X-ray
structure [8], and our eNOE-based stereospecific assignment [20], all of which suggest a single
rotamer state. On the other hand, the 3JC’,Cγ and

3JN,Cγ couplings for residue 52 in reference [2] appear
to be slightly averaged over at least two rotamer states. Due to these inconsistencies, the 3JHα,Hβ2 and
3JHα,Hβ3 couplings of residue 52 are not used here. The substituent-effect-corrected Karplus para-
metrization (A, B, C)¼(7.23, �1.37, 2.40) is used as proposed for Arg, Asx, Glx, His, Leu, Lys, Met, Phe,
Pro, Trp and Tyr in Ref. [21].

We determined 3JC’,Cγ and 3JN,Cγ couplings for aromatic residues using the pulse sequences pro-
posed in Ref. [22]. 3JC’,Cγ(1/2) and

3JN,Cγ(1/2) couplings for Val, Ile and Thr residues were taken from Ref.
[23]. The Karplus coefficients for the aromatic residues were taken from Ref. [21] proposing (A, B, C) to
be (2.31, �0.87, 0.49/1.29, �0.49, 0.34), and for the methyl bearing residues (2.76, �0.67, 0.19/2.01,
0.21, �0.12) for Thr and (3.42, �0.59, 0.17/2.64, 0.26, �0.22) for Val and Ile as proposed in Ref. [23].

2.4. Torsion angle restraints from Cα chemical shifts

Restraints for the ϕ and ψ backbone torsion angles were generated from 13Cα chemical shifts with
CYANA [24,25]. The allowed ranges were chosen conservatively [26] and are either �200° to �80° for
ϕ and 40–220° for ψ if the 13Cα secondary chemical shift was larger than 2 ppm, �120° to –20° for ϕ
and –100° to 0° for ψ if the 13Cα secondary chemical shift was less than –1.5 ppm, or �120° to 80° for
ϕ and �100° to 60° for ψ if the 13Cα secondary chemical shift was between 1.5 and 2 ppm. No torsion
angle restraints were generated if the 13Cα secondary chemical shift was between –1.5 and þ1.5 ppm.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2015.08.020.
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