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1H-detected solid-state NMR experiments feasible at fast magic-angle spinning (MAS)
frequencies allow accessing 1H chemical shifts of proteins in solids, which enables their
interpretation in terms of secondary structure. Here we present 1H and 13C-detected
NMR spectra of the RNA polymerase subunit Rpo7 in complex with unlabeled Rpo4
and use the 13C, 15N, and 1H chemical-shift values deduced from them to study the
secondary structure of the protein in comparison to a known crystal structure. We applied
the automated resonance assignment approach FLYA including 1H-detected solid-state
NMR spectra and show its success in comparison to manual spectral assignment. Our
results show that reasonably reliable secondary-structure information can be obtained
from 1H secondary chemical shifts (SCS) alone by using the sum of 1Hα and 1HN SCS
rather than by TALOS. The confidence, especially at the boundaries of the observed
secondary structure elements, is found to increase when evaluating 13C chemical shifts,
here either by using TALOS or in terms of 13C SCS.

Keywords: Rpo4/7, solid-state NMR, carbon and proton assignments, secondary chemical shifts, ssFLYA

INTRODUCTION

Solid-state NMR and, in particular, proton-detected spectroscopy under fast MAS allows to
characterize larger and larger proteins and protein complexes (Linser et al., 2011; Andreas et al.,
2015; Struppe et al., 2017; Schubeis et al., 2018; Bougault et al., 2019). Here, we demonstrate the
resonance assignment and secondary-structure determination of the subunit Rpo7 of the archaeal
DNA-dependent RNA polymerase (RNAP) in the context of the protein complex Rpo4/Rpo7 (33.5
kDa). RNAPs from bacteria, archaea, and eukarya are well-characterized in terms of their subunit
composition, as well as their structure, and much is known about the regulation mechanisms
and complex interplay of transcription factors throughout the transcription cycle of initiation,
elongation, and transcription termination (Werner and Grohmann, 2011; Sainsbury et al., 2015;
Hantsche and Cramer, 2016). Especially the archaeal RNAP has served as a model system for
dissecting the functions of the individual subunits of the human RNAP II (Werner, 2007, 2008).
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Two of these subunits, Rpb4/Rpb7, that form a stalk-like
protrusion in RNAP II, or rather their archaeal homologs
Rpo4/Rpo7 (or Rpo4/7), are known to bind the nascent
single-stranded RNA, contribute to transcription initiation as
well as termination efficiency and increase processivity during
elongation (Meka, 2005; Újvári and Luse, 2006; Grohmann and
Werner, 2010, 2011). Yet, how these functions are achieved in
molecular detail remains elusive, and conformational changes
of Rpo4/7 in response to RNA binding have not been detected
when probed by labeling techniques, such as fluorescence and
electron paramagnetic resonance spectroscopy (Grohmann et al.,
2010). NMR spectroscopy could provide further information at
the atomic level.

As a first step, we present the 1H, 13C, and 15N
protein resonance assignment employing solid-state MAS
experiments of a sedimented Rpo4/7 complex from the archeon
Methanocaldococcus jannaschii. For this, we labeled the Rpo7
subunit uniformly with 13C/15N, while Rpo4 was employed at
natural isotopic abundance. This enabled us to selectively study
the Rpo7 subunit within the complex. We assigned, on the basis
of the acquired spectra and using different assignment strategies,
∼80% of the Cα, Cβ, and backbone nitrogen atoms. It has been
demonstrated that NMR chemical-shift values encode for the
secondary structure (Wishart et al., 1992; Wishart and Sykes,
1994;Wang, 2002; Shen et al., 2009).We compared the secondary
structure predictions based on the different chemical shifts, and
compared them also to the known crystal structure. We found
that for proton resonances, the most reliable information can be
derived from 1H secondary chemical shifts (SCS) using the sum
of 1Hα and 1HN SCS. Nevertheless, 13C chemical shifts are found
to be more reliable in terms of secondary-structure information,
both directly from SCS and from TALOS.

MATERIALS AND METHODS

Protein Expression and Purification,
Sample Preparation
Plasmids pET21_Rpo7 and gGEX_2k_Rpo4 were transformed
into E. coli BL21 (DE3) cells separately for Rpo4 and Rpo7. Rpo4
was overexpressed with an N-terminal glutathione S-transferase
(GST)-tag in rich medium (Terrific Broth, 2006) and purified via
affinity chromatography using glutathione agarose (GSTrap, GE
Healthcare, Glattbrugg, Switzerland) using P100 buffer (20mM
tris/acetate pH 7.9, 100mMK acetate, 10mMMg acetate, 0.1mM
ZnSO4, 5mM DTT, 10% (w/v) glycerol) and 10mM reduced
glutathione for elution, similar to previous protocols (Werner
and Weinzierl, 2002; Klose et al., 2012). The GST-tag was
cleaved by overnight incubation with thrombin at 37◦C. To
deactivate and remove the GST-tag, a 20-min heat shock of the
cleaved elution fractions at 65◦C was applied with subsequent
centrifugation (13,000 rpm, 20min, 4◦C), leaving purified Rpo4
in the supernatant. For isotope labeling with 15N and 13C, Rpo7
mutant S65C was expressed in M9-minimal medium (Studier,
2005) consisting of 6.8 g Na2HPO4, 3 g KH2PO4, 0.5 g NaCl, 1ml
of each 1M MgSO4, 10mM ZnCl2, 1mM FeCl3, and 100mM
CaCl2 per 1 L medium, supplemented with 10ml MEM vitamin

solution (100×). One gram 15NH4Cl and 2.5 g 13C-glucose
(Cambridge Isotope Laboratories, Tewksbury, USA) were the
only nitrogen and carbon sources. Rpo7∗ (the asterisk denotes
isotope labeling) purification from inclusion bodies was carried
out as described previously (Werner and Weinzierl, 2002; Klose
et al., 2012).

The complex formation of Rpo4 and Rpo7∗ (with 20% excess)
was carried out by unfolding and stepwise refolding dialysis
in P100 buffer using urea (6, 4, 3, 2, 1, 0.5, and 0M urea
concentrations, 1 h per step, room temperature). Subsequently,
a 20min heat shock at 65◦C and a subsequent centrifugation
step (8,000 × g, 20min, 4◦C) was applied to remove excess or
misfolded Rpo7∗ after the dialysis. Purity and stability of the
complex was confirmed by SDS and native page (Figure S1). All
chemicals were of p.a. grade and purchased from Sigma Aldrich
(Buchs, Switzerland), unless stated otherwise.

Solid-State NMR Spectroscopy
Rpo4/7∗ supplemented with DSS and sodium azide was
sedimented into NMR rotors (0.7 and 3.2mm, Bruker Biospin,
Rheinstetten, Germany) by ultracentrifugation (35,000 rpm, 4◦C,
16 h) using home-made filling tools (Böckmann et al., 2009)
resulting in 0.6 and 24mg protein in the rotors with 0.7 and
3.2mm diameter, respectively. Solid-state NMR spectra were
recorded on a Bruker AVANCE III 850 MHz NMR spectrometer
using either a 3.2mm Bruker “E-free” probe or a 0.7mm Bruker
triple-resonance probe. The MAS spinning frequencies were
set to 17.0 kHz for the 3.2mm rotor and 110 kHz for the
0.7mm rotor, with sample temperatures of 16◦C (lowest possible
temperature in this set-up) and 5◦C for the 0.7 and 3.2mm
rotors, respectively. The 2D and 3D spectra were processed with
TopSpin (version 3.5, Bruker Biospin, Rheinstetten, Germany)
and analyzed in CcpNmr Analysis 2.4.2 (Stevens et al., 2011).
More details of the conducted experiments are presented in
Table S1. Polarization transfers between H-C and H-N used
adiabatic cross polarization (Hediger et al., 1995), as did N-C
polarization transfers (Baldus et al., 1996), while C-C transfers
used either DARR (Takegoshi et al., 2003) or DREAM (Verel
et al., 2001).

The 13C-detected spectra used for the assignment were all
recorded on a single sample (3.2mm rotor). Reproducibility was
checked by 2D measurements on samples from two different
preparations in 0.7mm rotors, which yielded identical spectra in
all cases.

The obtained assignment was deposited in the
BioMagResBank under accession number 27959.

TALOS+ Predictions and FLYA Calculations
TALOS+ predictions were performed using version 3.8 (Shen
et al., 2009). The secondary structure assignments based on the
DSSP algorithm (Kabsch and Sander, 1983) were used as given
in the corresponding PDB entry 1GO3 (Todone et al., 2001) and
the 3D atomic coordinates were extracted from the same PDB
entry. Solid-state FLYA calculations (Schmidt and Güntert, 2012;
Schmidt et al., 2013) were performed with CYANA version 3.97
(Güntert and Buchner, 2015). Peak lists of 13C and 1H-detected
spectra were used, using the peak lists from the resonance
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FIGURE 1 | (A) Example of a 13C, 15N sequential resonance walk. (B) 2D 13C, 13C DARR spectrum of Rpo4/7* measured at 20.0 T with a MAS frequency of 17 kHz
and a DARR mixing time of 20ms. (C) 2D NCA spectrum of Rpo4/7* measured at 20.0 T with a MAS frequency of 17 kHz. In (B,C), Cα, and Cβ peaks are labeled
according to the manually created shift list using the CcpNmr software.

assignment (manual peak lists) or using automatically generated
peak lists. Automated peak picking has been performed in
CcpNmr using the implemented picking routine. The lowest
contour level was set to 2.0–3.0 time noise RMSD for this process.
The tolerance value for chemical-shift matching was set to 0.55
ppm for 13C, 15N, and 0.3 ppm for 1H.

RESULTS AND DISCUSSION

Assignment of 13C Detected Solid-State
NMR Spectra
The 13C and 15N-MAS solid-state NMR spectra of Rpo4/7∗ show
well-dispersed signals and roughly the expected number of peaks
(Figure S2) in the region of serine (four out of six expected
peaks), threonine (4/4), alanine (7/8), and glycine (12/16) as
can be seen in the 2D dipolar correlation spectra in Figure 1,

suggesting that the sample contains Rpo4/7∗ in a single, well-
defined conformation. The 13C-linewidths are on the order of
115Hz, which points to a homogeneous sample.

Seven 3D 13C-detected spectra (NCACB, NCACX, CANCO,
NCOCX, NcoCACB, CANcoCA, and CCC) were measured
to obtain the 13C and 15N assignment. The 13C and 15N
assignment was mainly achieved by a combination of two
strategies described earlier (Schuetz et al., 2010) and shown in
Figure 1A. The first is based on a sequential walk using NCACB,
CANCO, NCOCX, the second uses the relayed experiments
NcoCACB and CANcoCA, in combination with NCACB. The
side chains were mainly assigned by analyzing NCACX and CCC
spectra [employing Dipolar Recoupling Enhanced by Amplitude
Modulation (DREAM) (Verel et al., 2001; Westfeld et al., 2012)
and Dipolar Assisted Rotational Resonance (DARR) (Takegoshi
et al., 2003) transfer steps].
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FIGURE 2 | X-ray crystal structure of Rpo4/7 (PDB: 1GO3). Rpo4 is shown as white ribbons. (A) Rpo7 (ribbons), colored according to the crystallographic B factor
(see scale bar, in Å2). (B) Rpo7 (ribbons), colored blue and red for backbone-assigned and unassigned residues, respectively. The RNA-binding loop, the region with
the highest flexibility, for which no coordinates are available, is indicated by the flanking residues S151 and S159.

Manual analysis of all 3D spectra resulted in the assignment
shown in the 2D 13C, 13C DARR (Figure 1B) and 2D 15N,
13C NCA (Figure 1C) spectra, where 99% of all visible peaks
are assigned. The assignment graph is shown in Figure S3.
Statistics of the manually performed peak assignment is shown
in Table S2. The resonances of most of the unassigned residues
could thus neither be detected in 3D nor in 2D spectra,
most probably because they are located in flexible parts of
the protein. Figure 2 illustrates the spatial correlation between
unassigned residues and the crystallographic B-factor, which
shows that the most flexible part, the RNA binding loop
(Meka, 2005), which is not resolved in the crystal structure
(Todone et al., 2001), is found to be close to the unassigned
residues Ser151–Ser159. The invisible residues are, however,
not flexible enough to be visible in an INEPT spectrum (data
not shown).

Assignment of 1H-detected Solid-State
NMR Spectra
To assign the amide HN and aliphatic Hα protons of
fully protonated Rpo7∗ in complex with Rpo4, we used
proton-detected spectroscopy at 110 kHz MAS frequency. The
assignment of the 2D hNH fingerprint spectrum is shown in
Figure 3. The assignment was done using three 3D spectra,
namely hCANH, hNCAH, and hCONH (Barbet-Massin et al.,
2014; Penzel et al., 2015), and taking advantage of the 13C
and 15N peak assignment described above. Details of the
experiments are given in Table S1. The assignment of the
NCA spectrum was transferred peak by peak to hCANH
(Figures 3A,D) and hNCAH (Figures 3B,D) spectra. To confirm
the assignment of amide protons, an additional hCONH
spectrum was used to verify the CO chemical shift of the

previous residue (Figures 3C,D). In total, 97% of the amide
protons and 93% of the Hα protons for which Cα and
N assignments exist could be assigned. In the assignment
graph of Figure S2 those atoms are highlighted in blue and
red, respectively.

The mean value and standard deviation of the 1H linewidths
of the fully protonated hNH spectrum are 156 ± 40Hz for all
the peaks marked in Figure 3E. On the right side of the spectra
1D traces of 1H are shown at the corresponding 15N frequencies
with linewidths of selected peaks.

The results of the manual assignment procedure were
validated by automated resonance assignments as implemented
in the solid-state FLYA algorithm (Schmidt and Güntert, 2012;
Schmidt et al., 2013). In addition to the 13C and 15N chemical
shifts, 1H solid-state chemical shifts were assigned as well in an
automated process. Figure S4A illustrates the good agreement
between the manual assignments and the assignments obtained
by FLYA. For residues shown in green, the FLYA assignment
agreed with the manual assignment (within a tolerance of 0.55
ppm for 13C, 15N, and 0.3 ppm for 1H). A few significant
differences (red) were observed. In those cases, the manual
assignment was carefully verified and found to be consistent.
Agreement (including both dark and light green residues)
between FLYA and the manually assigned backbone atoms
was found for 95% of 15N, 92% of 13C’, 95% of 13Cα, 87%
of HN, and 89% of Hα atoms. The FLYA algorithm was
also applied using automatically picked peak lists as input,
and we found agreement to 82% of 15N, 84% of 13C’, 82%
of 13Cα, 75% of HN, and 76% of Hα atoms (Figure S4B).
We conclude that the automatic assignment provides a good
starting point for manual assignment or a good check of
manual results.
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FIGURE 3 | (A) 2D NCA spectrum (gray) and 2D plane of a 3D hCANH (cyan) spectrum at δ(1H) = 7.6 ppm showing an example of the assignment transfer for
133Gly; (B) 2D NCA (gray) spectrum and 2D plane of a 3D hNCAH (blue) spectra at δ(1H) = 3.7 ppm showing the example of the assignment transfer for 133Gly;
(C) 2D plane of hCONH spectrum δ(1H) = 7.6 ppm; (D) schematic representation of the assignment transfer for HN and Hα atoms; (E) 2D hNH correlation spectrum
of fully protonated Rpo4/7* at 110 kHz MAS. The spectrum includes labels for the 15N-1H peaks as predicted from the manually created shift list. On the right side of
the figure 1D traces for 1H are presented at the corresponding 15N frequencies. The 1H linewidth characteristics of the full population of marked cross-peaks are
summarized in the boxplot in the bottom right, indicating the maximum, 3rd quartile, mean, 1st quartile and minimum value of proton FWHM linewidth in Hz with a
mean value of 160 ± 40Hz. (F) 2D hCH correlation spectrum of fully protonated Rpo4/7* at 110 kHz MAS with peaks labeled as in (E).

Secondary Structure From 13C- and
1H-detected Spectra
In order to compare the secondary structure determined by
different approaches from solid-state NMR chemical shifts, either
using SCS or by backbone dihedral angle statistics [TALOS+
(Shen et al., 2009)], we used the X-ray crystal structure of Rpo4/7
determined at 1.75 Å [PDB: 1GO3 (Todone et al., 2001)] as
a common reference. The positions of the secondary structure
elements were determined from the X-ray coordinates via the
algorithm DSSP (Kabsch and Sander, 1983). The results are
indicated at the top of Figure 4, Figures S5, S6 as well as by the
gray bars.

As an indicator for the secondary structure, the SCS of
Cα, Cβ, CO, as well the SCS difference of Cα and Cβ were
calculated and are visualized in Figures S5, S6. For solid-state
NMR, the most commonly used indicator is 1δCα-1δCβ which
has the advantage of being independent from reference errors
(Spera and Bax, 1991). Three or more negative values in a

row indicate a β-sheet, four or more positive values an α-helix.
For reference, the positions of the secondary structure elements
were determined from the X-ray coordinates. The results are
indicated in Figure 4A, Figures S5A, S6A, andTable S3. Overall,
the correspondence is good, with some significant deviations
in the β-strands, in particular β2. Upon visual inspection of
the structure of β2 and β3 in the crystal structure (Figure S7),
it becomes clear that this is related to the fact that β2 is
rather distorted and irregular, while β3 is more regular. The
difference between these two β-sheets is also clearly seen in the
Ramachandran plots (Figure S8). The differences in the NMR
SCS are therefore based on actual structural properties.

To obtain secondary-structure information from proton-
detected fingerprint spectra, SCS of both 1Hα and 1HN

were used (Figure 4B, Figures S5B, S6A, Table S3). It
is well-known (Wang, 2002), that 15N SCS is a poor
indicator for secondary structure (Figures S5, S6, orange).
Instead, the sum of 1Hα and 1HN SCS appears to be a
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FIGURE 4 | (A) Difference of 1δ(13Cα) and 1δ(13Cβ) secondary chemical shifts (SCS) (red). (B) Negative sum of 1Hα and 1HN SCS (purple). SCS are obtained by
subtracting the random-coil shifts from the observed chemical shifts. Positive SCS differences indicate α-helices, negative SCS difference β-sheets. (C) Secondary
structure based on 13C and 15N (light red), 1H and 15N (light blue) and all (light green) chemical shifts using TALOS+ (Shen et al., 2009). Secondary structure
elements observed by crystallography are shown as dark (α-helix) and light (β-sheet) gray shaded areas, according to PDB 1GO3 (Todone et al., 2001).

suitable measure for secondary structure identification
(Figure 4, Figures S5, S6, purple), even though summing
up doesn’t compensate for referencing errors. While not
as precise as the 13C chemical shifts, the sum of the
two proton SCS still provides useful information about
secondary structure.

Our results are similar to solution NMR in that SCS data
of 1Hα for α-helices were found more reliable than that of
1HN (Wang, 2002). We found the 13Cα-13Cβ SCS data to be
a more suitable indicator than SCS sum 1Hα + 1HN data.
Similarly, 1Hα SCS were shown (Wang, 2002) to be on average
more sensitive in distinguishing β-sheets from random coil
conformations than 13Cα and 13Cβ chemical shifts. In our case
13Cα-13Cβ SCS data were the most reliable. However, for big
proteins where transfer efficiencies are not always good, 13Cβ

data may be unavailable (Penzel et al., 2015; Stöppler et al.,
2018). We identified that, besides of 13Cα SCS, the sum of
1Hα and 1HN SCS is a suitable alternative parameter to derive
secondary structure.

Additionally, secondary-structure elements were predicted
using the software TALOS+ (Shen et al., 2009) and are shown
in Figure 4C. Three different combinations of chemical shifts
derived from manual assignment were used: 13C and 15N, 1H
and 15N, and all three available shifts. The combination of 13C
and 15N data extracted using TALOS+ (light red) yielded the
most promising results, as the predicted secondary structure fits
well with the crystal structure, including strand β2 and β10 that
were only incompletely recognized by the SCS data. Surprisingly,
TALOS+ results did not improve upon inclusion of 1H chemical
shifts (light green); instead a disruption for strand β4 appeared
and strands β2, β5, and β10 became shorter (see also Figure S9

for a comparison in terms of backbone dihedrals). In order to
check the reliability of TALOS+ secondary structure results for
cases where 13C data are absent, we evaluated the combination
of 1H and 15N chemical-shift values (light blue). The calculation
resulted in two additional misplaced α-helices, which was not
the case for other chemical-shift combinations that included 13C
data. Therefore, while TALOS+ predictions that included 13C
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chemical shifts were successful, calculations including only 1H
and 15N chemical shifts were here found to be less reliable than
SCS analysis when the sum of 1Hα and 1HN SCS is used.

CONCLUSIONS

Using MAS solid-state NMR, we sequentially assigned 78% of
the 13C, 15N resonances of the RNA polymerase subunit Rpo7
in complex with unlabeled Rpo4, and successfully transferred
these to 1H detected NMR spectra assigning ∼70% of the 1HN

and 1Hα resonances. Further assessing the secondary structure in
comparison to the known crystal structure, our results confirm
that 13C SCS are a bona fide predictor of secondary structure
elements. While using only 1Hα or 1HN SCS alone showed an
increased uncertainty in the boundaries of observed secondary
structure elements compared to the crystal structure, in cases
where 13Cβ chemical shifts are not available, secondary structure
elements can be identified using either 13Cα or the sum of 1Hα

and 1HN SCS.
The proton assignment forms the basis for protein-nucleic

acid interaction studies to identify the RNA-binding sites
of Rpo4/7 through 1H chemical-shift perturbations. Proton
chemical-shift values are in particular sensitive to non-covalent
interactions involved in molecular recognition and thus serve
as sensitive reporters. Also, the investigation of the molecular
dynamics becomes accessible, in the presence and absence of
nucleotides, through 15N R1ρ and R2’ relaxation-rate constants
that, once protons are assigned, are measured most efficiently in
a series of hNH fingerprint spectra or, with higher resolution, in
hCANH spectra.
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