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SUMMARY

The Rcs-signaling system is one of the most remark-
able phosphorelay pathways in Enterobacteriaceae,
comprising several membrane-bound and soluble
proteins. Within the complex phosphotransfer path-
way, the histidine phosphotransferase (HPt) domain
of the RcsD membrane-bound component serves
as a crucial factor in modulating the phosphorylation
state of the transcription factor RcsB. We have iden-
tified a new domain, RcsD-ABL, located N terminally
to RcsD-HPt that interacts with RcsB as well. We
have determined its structure, characterized its inter-
action interface with RcsB, and built a structural
model of the complex of the RcsD-ABL domain
with RcsB. Our results indicate that the effector
domain of RcsB, which normally binds to DNA, is
recognized by RcsD-ABL, whereas the HPt domain
interacts with the phosphoreceiver domain of RcsB.

INTRODUCTION

Bacteria live in habitats with frequently changing environmental

conditions and, consequently, have developed elaborate strate-

gies to survive. To obtain information about changes in the

environment, bacteria use a whole array of membrane-bound

receptors that transfer information to the cellular interior by

a phosphorylation cascade. These phosphotransfer pathways

are referred to as two-component systems (West and Stock,

2001) and usually involve two proteins: a membrane-bound

sensor histidine kinase (HK), and a cytoplasmic-response regu-

lator. After receiving an external stimulus, for example, via

a signal recognition domain, the signal response is generated

by autophosphorylation of a conserved histidine residue in the

HK domain. Subsequently, this phosphoryl group is transferred

to a conserved aspartic acid in the phosphoreceiver (PR) domain

of a response regulator, usually a soluble transcription factor in

the cytoplasm. The phosphorylation of this aspartic acid leads

to conformational changes in the effector domain, followed by

binding to specific promoter regions on the DNA (Stock et al.,
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1989). An additional regulatory level is the requirement for

most transcription factors and HKs to form homodimers (and

also heterodimers in the case of some transcription factors) to

interact effectively with the DNA or to promote the phosphorelay

(Clarke et al., 2002; Khorchid et al., 2005; Maris et al., 2005;

Tomomori et al., 1999; Wehland et al., 1999). Prominent exam-

ples for such two-component systems are the EnvZ/OmpR

(Egger et al., 1997) and FixL/FixJ (Nixon et al., 1986) systems.

Besides the basic two-component systems, more complex

HKs exist that contain in addition to the HK domain a PR domain

and a histidine phosphotransferase (HPt) domain, which can also

exist as a separate protein (Dutta et al., 1999). These so-called

hybrid sensor kinases contain multiple phosphodonor and

acceptor sites and use multistep phosphorelay schemes medi-

ated by a His-Asp-His-Asp cascade rather than promoting

a single phosphotransfer. They likely provide advantages such

as increasing the variety of signaling strategies, allowing greater

levels of control, and more checkpoints for the input of informa-

tion (Grebe and Stock, 1999; Zhang and Shi, 2005). Some

prominent examples are the multistep phosphorelays of

Sln1-Ypd1-Ssk1 from S. cerevisiae (Zhao et al., 2008) and of

KinA-Spo0F-Spo0B-Spo0A from B. subtilis (Stephenson and

Hoch, 2002; Varughese et al., 2006; Zapf et al., 2000), as well

as the ArcB/ArcA (Iuchi, 1993; Iuchi and Lin, 1992) and BvgS/

BvgA (Uhl and Miller, 1996) systems. Especially for the KinA-

Spo0F-Spo0B-Spo0A phosphorelay, many kinases and phos-

phatases have been discovered that clearly demonstrate the

additional level of control (Krell et al., 2010). Among multistep

phosphorelays, the highly complex regulator system Rcs is

unique. Originally believed to be a regulator of capsule syn-

thesis in Enterobacteriaceae, the Rcs phosphorelay has also

been found to be involved in transcriptional networks in cell divi-

sion, motility, biofilm formation, and virulence (Majdalani and

Gottesman, 2005). Recently, the Rcs phosphorelay has been

implicated in the peptidoglycan stress response induced

either by b-lactam antibiotics or by exposure to lysozyme

followed by regulation of expression of lysozyme inhibitors

(Callewaert et al., 2009; Laubacher and Ades, 2008). However,

the exact stimulus of this complex pathway is still unknown.

Therefore, investigation of the regulatory mechanisms of the

phosphorelay is of particular importance. Contrary to classical

two-component systems, the Rcs-signaling pathway in E. coli
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Figure 1. Scheme of the Rcs Phosphorelay System in E. coli

It comprises the components RcsF, RcsC, RcsD, RcsB, and RcsA. After the

Rcs system has been activated by an external stimulus, probably via the

lipoprotein RcsF, the hybrid sensor HK RcsC autophosphorylates via

a conserved histidine residue. As indicated by the arrows, the phosphoryl

group is transferred to the PR domain RcsC-PR and from there to the HPt

domain of the protein RcsD. Finally, the phosphoryl group is transferred to the

transcription factor RcsB. RcsB can either interact alone with the DNA via the

RcsB-Box or in complex with RcsA via the RcsAB-Box. In contrast to RcsC,

RcsD does not show autophosphorylation activity because the active site

histidine residue is missing.

Figure 2. Comparison of the Structures of RcsD-ABL and RcsC-ABL

The ribbon diagrams of the RcsD-ABL (PDB ID 2KX7) (A) and RcsC-ABL (PDB

ID 2AYY) (B) structures are shown in the same orientation. Themajor structural

differences—b strand b5 in RcsD-ABL and loop L3 in RcsC-ABL—are shown

in orange. A schematic representation of the secondary structure organization

of both proteins is shown below the structures. Additional information is

available in Figures S1 and S2.
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involves aHis-Asp-His-Asp cascade (Figure 1) (Chen et al., 2001)

and is composed of the five proteins RcsF, RcsC, RcsD, RcsB,

and RcsA. The outer membrane protein RcsF is described as

a lipoprotein involved in activation of RcsC (Castanie-Cornet

et al., 2006; Majdalani et al., 2005). After activation, the signal

is passed on to the sensor domains of the membrane-bound

RcsC and/or RcsD proteins. The hybrid sensor kinase RcsC

gets autophosphorylated at His479 before the phosphoryl group

is transferred to Asp875 in its PR domain. From here, the phos-

phoryl group is transferred to His842 in the HPt domain of RcsD,

which cannot autophosphorylate because its kinase domain

does not contain the canonical active site histidine (Takeda

et al., 2001) (Figure 1). The HPt domain facilitates the transfer

of the phosphoryl group from RcsD to the conserved aspartic

residue Asp56 of the PR domain of the transcription factor

RcsB. Depending on its phosphorylation state, RcsB binds either

alone to the DNA or together with the accessory protein RcsA to

the RcsAB box motif (Pristovsek et al., 2003; Wehland and Bern-

hard, 2000). The Rcs system has been intensively investigated

by microbiological and mutational analysis. In contrast, many

aspects of the structural organization of this system and its

phosphotransfer reactions still have to be investigated. Recently,

we reported the structures of the RcsD-HPt domain (Rogov

et al., 2004), the RcsC-PR domain, and of the novel RcsC-ABL

domain (Rogov et al., 2006). Here, we focus on the interface

between RcsD and RcsB and report the discovery of the new

domain RcsD-ABL, located N terminally to the HPt domain. We
578 Structure 19, 577–587, April 13, 2011 ª2011 Elsevier Ltd All righ
present the structure of this domain determined by liquid-state

NMR spectroscopy and demonstrate that it interacts with

RcsB. In addition we characterize the complex via analysis of

chemical shift perturbations. We also compare the binding prop-

erties of RcsD-HPt and RcsD-ABL to RcsB, which provides

insight into the function of the newly discovered domain RcsD-

ABL.
RESULTS

Identification and Structure Determination of RcsD-ABL
Analysis of the linker region between the HK and HPt domains of

RcsD indicated the presence of a, so far, unknown structural

region (residues 688–795). Secondary structure predictions in

this region suggested the existence of both b strands and

a helices. In order to characterize this potentially structured

domain, we expressed it in E. coli and determined the three

dimensional structure of this 13.3 kDa domain by liquid-state

NMR spectroscopy (Figure 2A). The statistics are summarized

in Table 1. The central structural element of theprotein is a b sheet

composed of six b strands with a b2-b1-b3-b4-b6-b5 topology.

The b sheet is surrounded by two a helices: a1 and a2. Interest-

ingly, the b strand b5 has an antiparallel orientation, whereas all

other b strands form a parallel b sheet. This antiparallel b strand

b5 contains charged arginine and glutamate residues, whereas

the other five b strands are predominantly hydrophobic. In

some of the calculated structures for RcsD-ABL, the loop L2

contains also a small 3
10-helical section, including residues

S741 and N742 following Pro 740. In analogy to the recently

discovered ABL domain of RcsC, which was found to be an
ts reserved



Table 1. Structural Statistics of 25 Energy-Minimized

Conformers of RcsD-ABL

Input Restraint Statistics

Total number of meaningful

distance restraints

1672 (82)a

Intraresidual (i = j) 190

Sequential (ji � jj = 1) 414

Medium range (1 < ji � jj < 4) 412 (44)a

Long range (ji � jj > 4) 656 (38)a

Restraint violations in DYANA

ensemble (50 conformers) total

0.0

Maximal violations (A) 0.0

Restraint Statistics in Final Ensemble

Rmsd from experimental restraints 0.0118 ± 0.0013

Distance (A) 0.3160 ± 0.0660

Angle (�) 0.0033 ± 0.0001

Rmsd from idealized covalent geometry

Bond lengths (A) 0.4320 ± 0.0150

Bond angles (�) 1.1050 ± 0.1100

Improper angles (�) 89.1

PROCHECK Ramachandran plot analysis (%)b

Residues in most favored regions

Residues in additional regions 7.6

Residues in generously allowed regions 1.6

Residues in disallowed regions 1.6

Structural precision, rmsd (A) to mean structure

Backbone atoms (residues 696–790)c 0.58 ± 0.08

All heavy atoms (residues 696–790) 0.97 ± 0.08
a The number of included H-bond restraints is indicated in parentheses.
b Values for the structured part only (696–790).
cN, Ca, and C0.
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independent structural domain with a new a/b organization (Ro-

govetal., 2006),wenamed thisnewdomainRcsD-ABL (a/b/loop).

To classify the fold of RcsD-ABL, we performed a structural

similarity search using DALI and identified about 560 different

structures with homology to RcsD-ABL.Most of the homologous
Figure 3. Sequence Alignment of Domains with Homology to RcsD-AB

E. coli RcsC-ABL

Secondary structure elements and loops determined in this work for the E. coli Rc

secondary structure elements are shown at the bottom.
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structures belong to the flavodoxin-like fold, which consists of

a five-stranded parallel b sheet sandwiched between two

a-helical layers. This is the classical fold for response-regulator

PR domains represented by the CheY-like superfamily.

However, RcsD-ABL diverges from this classical PR domain

fold by the presence of the sixth b strand, which replaces a helix

a3 of a typical PR domain, and furthermore, by the replacement

of a helices a1 and a2 with the loops L1 and L2.
Comparison of the RcsD-ABL and RcsC-ABL Domains
Recently, we identified RcsC-ABL as a folded domain of RcsC

(Rogov et al., 2006). Figure 2 shows a comparison of the struc-

tures of the RcsD-ABL and RcsC-ABL domains. Both proteins

are of similar size (RcsD-ABL: 13.3 kDa, residues 688–795;

RcsC-ABL: 12 kDa, residues 705–805) and are located

C terminal to their respective HK domains. Both structures

consist of a central b sheet with two a helices located on one

side (the five central b strands and the first a helix can be super-

imposed with an rmsd value of 1.43 Å) (see Figure S1 available

online). However, both structures differ in the number of

b strands. As described above, RcsD-ABL contains five parallel

b strands with a sixth b strand (b5) attached in an antiparallel

orientation to b strand b6. The existence of a sixth antiparallel

b strand is, so far, unique within the CheY super family. In

RcsC-ABL this antiparallel b strand is replaced with the loop

L3 connecting b4 and b5 (Figures 2 and 3). An important simi-

larity between RcsC-ABL and RcsD-ABL is that the aspartic

residue that forms the active site, and that accepts the phos-

phoryl group in classical PR domains, is missing, suggesting

that it is unlikely that these ABL domains act as PR domains.

To search for other potential ABL domains, we screened the

GenBank database for sequences homologous to RcsD-ABL.

This search resulted in 20 entries with high similarity, all of which

belong to potential sensor kinases from Enterobacteriaceae. The

alignment of these potential ABL sequences from different

species revealed a high conservation, except for the antipar-

allel-oriented b strand b5, which does not show any significant

conservation. A comparable alignment of all potential ABL

sequences with the RcsC-ABL sequence from E. coli shows

only low conservation in the primary sequence (Figure 3).
L from Different Species of Enterobacteriaceaewith the Sequence of

sD-ABL are shown on top of the alignment. The sequence of RcsC-ABL and its
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Figure 4. Mapping of the RcsD-ABL:RcsB-

Binding Site

In (A), a ribbon diagram and a surface represen-

tation are shown for RcsD-ABL, and in (B), the

corresponding representations are shown for

RcsB. For RcsD-ABL all residues with shifts >0.17

ppm are colored in orange, and those with shifts

between 0.17 and 0.08 ppm are labeled in yellow.

For RcsB all residues that showed differences in

chemical shift and could be identified by the HNCO

experiments are labeled in orange. Structures

shown on the right were obtained by 180� rotation
of the structures shown on the left. In (C), a selec-

tive area of a multiple overlay of 2D 15N-1H-

TROSY-HSQC spectra obtained from the titration

of RcsD-ABL (0.2 mM) with increasing concentra-

tion of RcsB (0.02–0.4 mM) is shown. (D) The

corresponding titration experiments of RcsB

(0.2 mM) with increasing concentration of RcsD-

ABL (0.02–0.3 mM). RcsB was selectively labeled

with 15N leucine. Amino acid pairs that could be

identified by HNCO experiments are indicated. In

both (C) and (D), the molar ratios are indicated in

different colors (from 1: 0.1 to 1:2). Additional

information is available in Figures S3–S5.

Structure
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It has been speculated that RcsC and RcsD form a heterodi-

meric unit (Takeda et al., 2001). To investigate if this heterodime-

rization is promoted by the ABL domains of both proteins, we

carried out NMR titration experiments with the isolated RcsC-

ABL and RcsD-ABL domains. However, these experiments did

not provide any evidence for interaction between the ABL

domains (Figure S2). Further interaction studies also indicated

no interaction of the RcsD-ABL domain and the PR domain of

RcsC or the HPt domain of RcsD. Interaction studies with the

HK domains could not be carried out because expression of

these domains in high amounts was not possible. The results

obtained so far do not support a model in which the RcsD-ABL

domain promotes domain-domain interaction within RcsD or

between RcsD and RcsC.

Interaction of RcsD-ABL and RcsB—Characterization
of the Binding Interfaces
RcsD interacts not only with RcsC but also with the transcrip-

tional regulator RcsB, which controls more than 150 different

genes in E. coli (Hagiwara et al., 2003). NMR titration experi-

ments of the RcsD-ABL domain showed interaction with RcsB.

RcsB is a classical transcription factor of bacterial two-
580 Structure 19, 577–587, April 13, 2011 ª2011 Elsevier Ltd All rights reserved
component systems with homology to

members of the LuxR family. It consists

of a typical N-terminal PR domain with

an a/b sandwich fold, the conserved

aspartic residue Asp56 in the active

center, and a C-terminal effector domain

with a helix-turn-helix DNA-binding mo-

tif (Kahn and Ditta, 1991; Pristovsek

et al., 2003; Robinson et al., 2000). Unfor-

tunately, so far, the full structural charac-

terization of RcsBwas not possible. While

crystallization experiments have not been

successful, only 60% of the residues,
mainly in the C-terminal DNA-binding domain, could be assigned

by NMR spectroscopy. Nevertheless the structure of the DNA-

binding domain of the highly homologous RcsB protein from

E. amylovora (Pristovsek et al., 2003) (but not of its PR domain)

has been determined. To be able to interpret NMR-based titra-

tion experiments between the E. coli RcsB protein and the

RcsD-ABL domain, we built a homology model of RcsB based

on the DNA-binding domain from E. amylovora RcsB and on

the PR domain of the homologous transcription factor NarL

(Baikalov et al., 1996) (Figure S3). To characterize the interaction

interface in the RcsD-ABL:RcsB complex, we first carried out

NMR titration experiments with 15N-labeled RcsD-ABL and

unlabelled RcsB. Figure 4C shows an overlay of several titration

steps, indicating that both proteins interact with each other and

that this interaction is in fast exchange on the NMR timescale.

Mapping the chemical shift differences onto the structure of

RcsD-ABL demonstrated that the interaction interface includes

the C-terminal end of helix a1, the following strand b2, and large

parts of helix a2 (Figure 4A).

To confirm the importance of the identified binding interface,

we created the triple mutation N715A, Q776A, L780A. Investi-

gating the interaction of this mutant with RcsB by isothermal



Figure 5. Effect of Overexpression of RcsD-ABL in E. coli on the

Transcriptional Activity of RcsB on the rprA:lacZ Reporter Gene as

Determined by b-Galactosidase Activity

Data are given in Miller units and were repeated in triplicate. The error bars

represent standard deviations.

(A) Wild-type DH300 cells.

(B) Treatment with the antibiotic mecillinam.

(C) DH300 cells transformed with a plasmid containing RcsD-ABL induced

with IPTG in the presence of mecillinam.

(D) DH300 cells transformed with a plasmid containing RcsD-ABL but without

induction.

(E) and (F) are the same as (C) and (D) but without treatment with the antibiotic.
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titration calorimetry (ITC) showed amore than 10-fold increase of

the dissociation constant compared with the wild-type protein

(Figure S4). Detailed analysis revealed that the signs of both

the binding enthalpy and entropy changed relative to wild-type

RcsD-ABL. Thus, binding of the mutant is entropy driven, char-

acteristic for the replacement of polar interactions with hydro-

phobic ones.

We further wanted to analyze the interaction interface of RcsB

with RcsD-ABL and used for this investigation the homology

model mentioned above. Extensive optimization of buffer condi-

tions allowed us to increase the number of peaks detectable in

[15N, 1H]-TROSY-HSQC spectra to 80%; however, in triple reso-

nance experiments the number of peaks observed was still

quite low. Therefore, we used a fast mapping protocol in combi-

nation with the homology model to examine the interface

without knowing the full backbone assignment of the protein

(Reese and Dotsch, 2003). Briefly, RcsB was selectively 15N

labeled with the hydrophobic amino acids valine, leucine,

isoleucine, phenylalanine, or tyrosine. The labeling was

achieved with the strain DL39, which is auxotrophic for the

aforementioned amino acids. To map the interface on RcsB,

we recorded [15N, 1H]-TROSY-HSQC spectra with increasing

concentrations of RcsD-ABL (from a molar ratio of 1:0.1 to 1:1

in five steps). The spectra were recorded under the same condi-

tions as for the 15N-RcsD-ABL/RcsB titration experiments

(0.2 mM RcsB sample in 50 mM Na2HPO4, 100 mM NaCl [pH

6.7]). In this way we could visualize 30% of the protein without

overlap problems. We were able to observe signals for all 14

valine residues, for 24 of 29 leucines, for 18 out of 20 isoleu-

cines, for five out of six phenylalanines, and for all four tyrosines.

Differences in the chemical shifts between free RcsB and its

complex with RcsD-ABL were observed for all five selected

amino acid types. To unambiguously identify some of those

signals that show chemical shift changes, we recorded several

2D [15N, 1H]-TROSY-HNCO spectra with samples selectively

1-13C- and 15N-labeled amino acids, which allowed one to

assign pairs of a 13C-labeled amino acid directly followed by

a 15N-labeled one. Figure 4D shows a representative [15N,
1H]-TROSY-HSQC spectrum of RcsB labeled with 15N-leucine,

where nearly all leucine residues with differences in chemical

shift could be identified by recording HNCO spectra of RcsB

with selectively 13C and 15N-labeled amino acid combinations.

The results are summarized in Figure S5. In this way we could

identify the interaction interface of RcsB with RcsD-ABL in its

effector domain, the DNA-binding domain. We could confirm

this assignment by comparison with the [15N, 1H]-TROSY-

HSQC spectrum of the highly homologous DNA-binding domain

of E. amylovora, for which a complete backbone assignment is

available. These results indicate that the interaction with the

ABL domain is centered on helix a10 of the DNA-binding

domain and additionally involves helix a7 and small parts of

helix a8 (Figure 4B).

In Vivo Interaction of RcsD-ABL with RcsB Determined
by b-Galactosidase Activity
The interaction of RcsD-ABL with RcsB suggested that RcsD-

ABL might be an interaction domain that is important for binding

of RcsB to RcsD. Therefore, overproduction of RcsD-ABL in

E. coli should disrupt the phosphorelay pathway. Based on this
Structure 19,
assumption, we analyzed the influence of RcsD-ABL expression

on the transcriptional activity of RcsB by performing a b-galacto-

sidase assay (Miller, 1972). We used the strain DH300, which

contains the rprA-lacZ insert. Because the binding of RcsB to

the rprA promoter is independent of RcsA, wewere able to inves-

tigate the RcsB/ RcsD-ABL interaction without interference from

RcsA. To activate the RcsB pathway that should lead to a higher

transcriptional activity of RcsB and a concomitant increase in the

b-galactosidase activity, we used the antibiotic mecillinam

(Laubacher and Ades, 2008). First, E. coli DH300 cells were

incubated with or without overexpression of RcsD-ABL with

0.3 mg/ml antibiotic for 1 hr at 37�C, after which the b-galactosi-

dase test was performed with ONPG as a substrate. Wild-type

E. coli DH300 showed a 9-fold increase in the b-galactosidase

signal when activated with mecillinam. Induction of the RcsD-

ABL plasmid with IPTG (1 mM) in the presence of mecillinam

decreased the activity by 70% compared with the wild-type

(Figure 5). These results complement and support the proposed

interaction of RcsB with RcsD-ABL in vivo.
Binding of RcsB to RcsD-ABL Enhances the Interaction
between the RcsD-HPt and the RcsB-PR Domains
The experiments described above show that the RcsD-ABL

domain interacts with the DNA-binding domain of RcsB.

However, both domains are only indirectly involved in the phos-

phoryl transfer, probably by helping to form a complex between

the RcsD-HPt domain and the RcsB-PR domain. Therefore, the

phosphoryl-transfer complex most likely consists of the ABL and

the HPt domain of RcsD and the PR and DNA-binding domain of

RcsB. To investigate these additional interactions, we performed

NMR titration experiments and ITC measurements with unla-

belled RcsB and the three 15N-labeled constructs RcsD-ABL,

RcsD-HPt, and the bidomain RcsD-ABL-HPt. The backbone

amide resonances of the bidomain RcsD-ABL-HPt were

assigned with the program AutoAssign (Moseley et al., 2001)
577–587, April 13, 2011 ª2011 Elsevier Ltd All rights reserved 581
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based on the data of the individual domains, whereas the linker

was assigned manually. In contrast to the titration experiments

with the single protein constructs RcsD-ABL (reported above)

and RcsD-HPt (reported previously [Rogov et al., 2004]) that

showed fast exchange behavior, interaction of RcsB with the

RcsD-ABL-HPt bidomain construct was in intermediate

exchange, as suggested by significantly broadened resonances

(Figure 6B). Furthermore, the binding interface on the bidomain

differed slightly from the sum of the interfaces on the two indi-

vidual domains. In the bidomain this interface included the linker

region (residues Q789–D800).

The titration experiments reported above suggested that both

the ABL and the HPt domains interact with RcsB and specifically

that the ABL domain binds to the DNA-binding domain, and the

HPt domain interacts with the PR domain of RcsB, which is

further supported by the fact that the HPt and the PR domains

are involved in the phosphoryl transfer. To further investigate

this interaction, we performed again a fast mapping experiment

with amino acid type selectively labeled RcsB and the RcsD-HPt

domain. Although in the titration experiments with the RcsD-ABL

domain we detected large chemical shift differences, we could

detect only small differences in the titration experiments with

the isolated RcsD-HPt domain, mainly located in the RcsB-PR

domain. This result confirms the suggested model that the

DNA-binding domain of RcsB interacts with the RcsD-ABL

domain, whereas the HPt domain binds to the PR domain.

To obtain quantitative binding data, we performed ITC

measurements at two different temperatures. The results are

summarized in Figure 6A and Table 2. RcsD-ABL bound to

RcsBwith a dissociation constant of�2 mM,whereas the binding

constant for the HPt domain was �40 mM. Repeating the exper-

iment with the bidomain RcsD-ABL-HPt resulted in a value of

�10 mM using a one-site binding model for data analysis. This

surprisingly weaker binding of the bidomain and the observation

that the NMR experiments indicated stronger interaction promp-

ted us to analyze the ITC data with a two-binding site model. This

analysis showed that the interaction between the RcsD-ABL

domain and RcsB basically does not change, whereas the inter-

action between the RcsD-HPt domain and RcsB becomes

significantly stronger (�8 mM). In combination with the NMR titra-

tion data, these results suggest that the interaction between the

RcsD-ABL domain and the DNA-binding domain of RcsB

provides an important bridge between RcsD and RcsB that

enhances the interaction between the PR and the HPt domains

that are directly involved in the phosphoryl-transfer reaction.
DISCUSSION

In this article we report the identification of a new domain, named

RcsD-ABL, in the membrane protein RcsD. This newly charac-

terized domain is located N terminally to the HPt domain of

RcsD and interacts with the effector domain of the transcription

factor RcsB. We have analyzed the interaction interfaces of the

RcsD-HPt and RcsD-ABL domains with their downstream-inter-

action partner, RcsB, which consists of a DNA-binding and a PR

domain. To our knowledge, RcsD is only the second example of

a sensor protein providing an extra domain as a binding site for

a response regulator involved in two-component systems.
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In this study it became apparent that the HK CheA and the

hybrid HK-like protein RcsD show a similar arrangement of

domains (Figure S6). Structurally, both the RcsD-HPt and the

CheA-P1 (HPt) domains show an up-down-up-down topology

(Bilwes et al., 1999; Mourey et al., 2001). However, CheA-P1

serves not only as a phosphotransfer domain but also initiates

via autophosphorylation the phosphotransfer cascade (Levit

et al., 1999), whereas RcsD contains an extra, but inactive, HK

domain and, therefore, receives the phosphoryl group from the

hybrid sensor HK RcsC (Majdalani and Gottesman, 2005).

Similar to RcsD, CheA provides a separate domain, the CheA-

P2 domain, as additional binding site for its response regulator,

CheY (McEvoy et al., 1996). However, structurally, the CheA-P2

and RcsD-ABL domains are different. As described in detail in

this article, the RcsD-ABL domain consists, with exception of

b strand b5, exclusively of parallel b strands and parallel

a helices. In contrast the CheA-P2 domain comprises a three-

stranded antiparallel b sheet and two antiparallel a helices

(McEvoy et al., 1996). However, the most significant difference

is the formation of the entire complex. In the case of the chemo-

taxis-signaling pathway, CheY consists only of a single PR

domain, which interacts with CheA-P2 via the two a helices, a1

and a2, and brings the phosphoacceptor site of CheY in close

proximity to the phosphorylated histidine residue on CheA-P1

(Stewart, 1997; Zhou et al., 1996). However, the RcsD-ABL

domain does not directly interact with the N-terminal PR domain

of RcsB but instead interacts with the C-terminal DNA-binding

domain, which acts as a tether to enable interaction between

the RcsB-PR and RcsD-HPt domains. This arrangement is, so

far, unique among His-Asp-His-Asp signaling cascades.

Furthermore, the results indicate that in turn the RcsB DNA-

binding domain is bifunctional and provides interfaces for

specific DNA binding as well as for protein interactions.

Based on kinetic experiments, it was suggested that CheA-P2

brings CheY in close proximity to CheA-P1 to accelerate the

phosphoryl transfer. Such acceleration is crucial for the chemo-

taxis system, which reacts to external stimuli within 50–100 ms;

whereas most other two-component systems are coupled to

transcription factors that mediate changes in protein expression

levels over the course of minutes to hours (Stewart and Van

Bruggen, 2004). Based on our ITC and NMR titration experi-

ments, we could show that the affinity of the RcsD-HPt domain

to its response regulator RcsB is enhanced by the RcsD-ABL

domain. These experiments have further revealed that the inter-

action affinity of RcsB to the RcsD-ABL domain is significantly

stronger than to the RcsD-HPt domain (KD �2 versus �40 mM),

suggesting that the RcsD-ABL domain plays a crucial role in

the assembly of the active phosphoryl-transfer complex.

To obtain further insight into the interaction between RcsB and

RcsD, we created a model of the RcsB effector domain docked

onto the RcsD-ABL domain based on the observed chemical

shift changes (Figure 7). Unfortunately, lack of structural know-

ledge did not allow modeling of the entire four-domain complex

(Figure S6). One particular problem of trying to understand

the interaction of all four domains on the structural level was

the inability to obtain a structure of the PR domain of RcsB.

Instead, we had to use a homology model that was based on

the crystal structure of the transcription factor NarL. However,

the structure of NarL represents a closed conformation, which
ts reserved



Figure 6. Comparison of Binding Affinities of RcsD-ABL and RcsD-HPt to RcsB Studied by NMR and ITC Measurements

(A) Eachplot represents an ITC titration experiment performedat 283K (left) or 303K (right) for RcsD-ABL (toppanels), RcsD-HPt (middlepanels), and thebidomain

RcsD-ABL-HPt (bottompanels) with RcsB. Deviations of the experimental data from the fitted curves (solid lines) are due to amonomer-dimer equilibrium ofRcsB.

(B) NMR titration experiments of RcsD-ABL with RcsB indicating fast exchange on the NMR timescale (left), and of the bidomain RcsD-ABL-HPt titrated with

RcsB indicating intermediate exchange (right).
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Table 2. Thermodynamic Analysis of ITC Experiments Obtained at 283 and 303 K for the Interaction of RcsB with the Individual

RcsD-ABL and RcsD-HPt Domains as well as with the Fused Bidomain RcsD-ABL-HPt

283 K

Individual Domains RcsD-ABL,

RcsD-HPt ‘‘One-site-model’’

Fused Domains RcsD-ABL-HPt

‘‘One-site-model’’

Fused Domains RcsD-ABL-HPt

‘‘Two-site-model’’

RcsD-ABL RcsD-HPt RcsD-ABL-HPt RcsD-ABL RcsD-HPt

KD (mM) 1.6 46 8.3 2.1 7.3

DH (kcal/mol) +5.5 ± 0.3 +3.1 ± 0.3 +6.8 ± 0.2 +8.7 ± 3 �1.6 ± 1

303 K

Individual Domains RcsD-ABL,

RcsD-HPt ‘‘One-site-model’’

Fused Domains RcsD-ABL-HPt

‘‘One-site-model’’

Fused Domains RcsD-ABL-HPt

‘‘Two-site-model’’

RcsD-ABL RcsD-HPt RcsD-ABL-HPt RcsD-ABL RcsD-HPt

KD (mM) 2.2 39 12.6 4.9 8.3

DH (kcal/mol) �15.5 ± 0.3 �1.8 ± 0.6 �6.4 ± 1 �10.6 ± 0.4 +1.6 ± 4

The fitting was performed with the one-site model for the single domains and with the two-site model for the RcsD-ABL-HPt bidomain.
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upon phosphorylation, opens and becomes DNA-binding

competent. A similar mechanism might trigger a conformational

change in RcsB as well, which would lead to differences in the

relative orientation of the RcsB-DNA binding domain and of the

PR domain. Because we do not know the structure of the active

conformation of RcsB, we have not tried to model the interaction

of the RcsD-HPt and the RcsB-PR domain in the complex. Struc-

tures of complexes of HPt domains with PR domains are known

from other phosphorelay systems, e.g., the Ypd1/Sln1-R1, the

Spo0B/Spo0F complex (Figure S6) (Xu et al., 2003; Zhao et al.,

2008), and the CheA3-P1/CheY6 from R. sphaeroides (Bell

et al., 2010). However, the arrangement of four different domains

in the active phosphoryl-transfer complex of the RcsC system is

unique among all phosphorelay systems that have been investi-

gated structurally so far.

The RcsC protein harbors with the RcsC-ABL domain, yet

another similar domain that probably serves as an adaptor

domain to enhance interaction with other, so far, unknown inter-

action partners. The function of the RcsC-ABL domain remains

to be investigated.
Figure 7. Model of the RcsB:RcsD-ABL Complex Obtained with the

Program HADDOCK

The RcsD-ABL domain, RcsB DNA-binding domain, and RcsB-PR domain are

labeled. Only the RcsD-ABL and the DNA-binding domains of RcsBwere used

in the docking calculations. The structure of RcsB is a homology model based

on the structure of the closed conformation of NarL. Additional information is

available in Figure S6.
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EXPERIMENTAL PROCEDURES

Cloning Procedures

All cloning steps were performed following standard protocols (Rogov et al.,

2004). Polymerase chain reactions were carried out using VentR DNA Poly-

merase (New England BioLabs) and Pfu DNA Polymerase (Promega) for site-

directed mutagenesis. As a template the E. coli strain XL1 was used.

The DNA fragment encoding the RcsD-ABL domain spanning residues

688–795 of the RcsD protein was amplified by using the oligonucleotides

RcsD-ABL-up CGGCCATGGAGCGTTTACTGGATGATGTCTGCG and RcsD-

ABL-low CGGAGATCTCGATTCTGTCACCTCTTCCTGCGCC as primers.

The DNA fragment was cloned with the restriction enzymes NcoI and BglII

into the expression vector pQE60 (QIAGEN), resulting in the plasmid pQE-

RcsD-ABL, including a C-terminal His6-tag.

Accordingly, a DNA fragment encoding the residues 688–890 of the RcsD

protein and containing both the ABL and HPt domains was amplified with

the oligonucleotides RcsD-ABLH-up CGGCCATGGAGCGTTTACTGGATGA

TGTCTGCG and RcsDABH-low CCCTCGAGTCACAGCAAGCTCTT. The

DNA fragment was cloned with the restriction enzymes BamHI and XhoI into

the expression vector pET21a (Novagen), resulting in the plasmid pET-

RcsD-ABL-HPt containing an N-terminal T7 tag.
Protein Expression, Purification, and NMR Sample Preparations

For protein expression the plasmid pQE-RcsD-ABL was transformed into the

E. coliM15[pREP4] strain. Expression of 15N-labeled protein was achieved by

growing E. coli bacteria on minimal media containing 1 g/l 15NH4Cl and 2 g/l

unlabelled D-glucose. 13C/15N-doubly labeled protein was expressed on

medium containing 1 g/l 15NH4Cl, 1 g/l of [U-13C]-D-glucose, and 0.5 g/l 13C

glycerol. The cells were grown with intensive aeration slightly longer than the

mid log phase (1.3–1.6 absorbance units at 600 nm) before IPTG was added

to a final concentration of 1.0 mM. After 3 hr of induction, the cells were har-

vested, resuspended in buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM

NaCl, 5% glycerol, and lysed using a French press. The cell debris was

removed by centrifugation, and the lysate was loaded onto a Ni-affinity se-

pharose (Amersham Pharmacia Biotech) column. The column was washed

with 200 ml of the same buffer, and pure protein was eluted with a linear

gradient of imidazole (20–400 mM).

The plasmid pET-RcsD-ABL-HPt was transformed into the BL21 (DE3)

strain. Purification was carried out by anion exchange (50 mM Na2HPO4,

1 M NaCl gradient [pH 7.5]) and gelfiltration chromatography (50 mM

Na2HPO4, 100 mM NaCl [pH 6.7]). The E. coli RcsC-ABL, RcsC-PR, and

RcsD-HPt domains and the RcsB protein were overproduced and purified

as described (Kelm et al., 1997; Rogov et al., 2004, 2006).

For the study of protein-protein interactions, samples were prepared by

buffer exchange of the purified individual proteins using gel filtration with

an HR16 Superdex75 column and subsequent co-concentration of the
ts reserved
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RcsD-ABL/RcsB and RcsD-ABL-HPt/RcsB mixtures (50 mM Na2HPO4,

100 mM NaCl [pH 6.7]).

For the expression of selectively 13C and/or 15N-labeled RcsB, the auxotro-

phic strain DL39 was used, and purification followed the methods described

above.

NMR Spectroscopy

NMR experiments to obtain resonance assignment of RcsD-ABL followed

similar procedures as described (Rogov et al., 2006, 2007). Proton-proton

distances for structure calculations were derived from 3D 13C-separated

and TROSY-type 15N-separated NOESY experiments with the 13C carrier posi-

tion placed either in the aliphatic region, the methyl group region, or in the

aromatic region. Spectra were obtained at 298 K on Bruker AVANCE spec-

trometers (Rheinstetten, Germany) operating at 1H Larmor-frequencies of

600, 700, 800, and 900 MHz. Proton chemical shifts were referenced relative

to internal DSS. The 15N and 13C chemical shifts were referenced indirectly

using the consensus ratios (Wishart et al., 1995).

[15N, 1H]-TROSY-HSQC spectroscopy was used for the observation of the

RcsD-ABL and RcsB interactions on a Bruker AVANCE 900 spectrometer. A

reference [15N, 1H]-TROSY-HSQC spectrum was recorded using a freshly

prepared RcsD-ABL sample; spectra of the complexes were acquired after

dilution and co-concentration of RcsD-ABL with RcsB as described above.

Two-dimensional [15N, 1H]-TROSY-HNCO spectra were measured with

samples selectively 1-13C and 15N labeled on certain amino acid combinations

to identify some amino acid sequences specifically.

The NMR spectra were processed and analyzed using the TopSpin 2.1

(Bruker BioSpin) and Sparky 3.114 (T. D. Goddard and D.G. Kneller, University

of California, San Francisco, San Francisco) programs.

Structure Calculation

The NOE-based distance restraints were extracted from the 3D 13C and
15N-edited NOESY spectra using the CANDID module (Herrmann et al.,

2002) of the CYANA (Guntert et al., 1997) program, version 1.0.5. The final

structure calculation was performed using a simulated annealing protocol

with torsion-angle dynamics (DYANA1.5) (Guntert et al., 1997) on the basis

of 1590 unambiguous upper-limit restraints generated by CANDID. A total of

82 hydrogen bonds deduced from proton exchange data and CSI and TALOS

programs were included as distance restraints (dHO% 2.1 Å and dNO% 3.1 Å).

In addition, 125 torsion-angle constraints were included as predicted by the

program TALOS on the basis of chemical shift values. For the calculation of

the final structure ensemble, 200 structures were calculated in 10,000 time

steps per conformer. The 50 best DYANA conformers were refined in an

explicit water shell (Linge et al., 2003) using the CNS software package

(Brünger et al., 1998), and 25 structures with the lowest energy (about

�4700 kcal/mol) were selected for validation using PROCHECK-NMR 3 (Las-

kowski et al., 1996). The figures were prepared using the program PyMOL (De-

Lano Scientific LLC).

ITC

ITC experiments were performed at 283 and 303 K in 50 mM Na2HPO4 and

100 mM NaCl (pH 6.7) on a MicroCal VP-ITC device. For RcsB the concentra-

tion in the cell was 0.05 mM; for RcsD-ABL, RcsD-HPt, and RcsD-ABL-HPt, it

was 0.6 mM (ratio 1:12). Data were analyzed with the standard program Origin

7 for ITC.

Upon titration of the RcsD-ABL domain into RcsB, we observed an addi-

tional process, which is centered at a molar ratio �0.5 and which is present

both at 10�C and 30�C. We have interpreted this process as a change in the

oligomeric state of RcsB (RcsB undergoes dimerization at concentrations

used for ITC, shown by size-exclusion chromatography). We did not include

this process into our fitting procedure; therefore, the experimental data and

fitted curves deviate at the beginning.

b-Galactosidase Activity

Cultures were grown in LB medium at 310 K overnight. The cultures were

diluted 1:100 with fresh LB medium and were grown until an OD600 of 0.2. At

that point the antibiotic mecillinam (Sigma-Aldrich) was added to a concentra-

tion of 0.3 mg/ml as described (Laubacher and Ades, 2008). After 60 min, the

cells were harvested at 5500 rpm and resuspended in Z-buffer (100 mM
Structure 19,
sodium phosphate [pH 7.0], 10 mM KCl, 1 mM MgSO4, 50 mM b-mercaptoe-

thanol). After that, the b-galactosidase assay was performed according to

standard methods (Miller, 1972).

Modeling

The homology model of RcsB was built by using the SWISS-model server in

combination with the Deep Viewer (Guex and Peitsch, 1997). First, the

program applied a homology model of RcsB to the DNA-binding domain of

E. amylovora and to the transcription factor NarL separately. Both structures

were then combined in an overlay in the program Deep View, and the

homology model was applied manually to RcsB. The correctness of the

homologymodel was checked with the Protein Structure &Model Assessment

Tools, which involves What Check. The HADDOCK model was built by using

the HADDOCK server (de Vries et al., 2010).

ACCESSION NUMBERS

The resonance assignments and the chemical shift values for the E. coli RcsD-

ABL protein have been deposited in the BioMagResBank under the accession

number 16552. The atomic coordinates of the E. coli RcsD-ABL have been

deposited in the Protein Data Bank, PDB ID code 2KX7.
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