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SUMMARY

The protocols currently used for protein structure
determination by nuclear magnetic resonance
(NMR) depend on the determination of a large
number of upper distance limits for proton-proton
pairs. Typically, this task is performed manually by
an experienced researcher rather than automatically
by using a specific computer program. To assess
whether it is indeed possible to generate in a fully
automated manner NMR structures adequate for
deposition in the Protein Data Bank, we gathered
10 experimental data sets with unassigned nuclear
Overhauser effect spectroscopy (NOESY) peak lists
for various proteins of unknown structure, computed
structures for each of them using different, fully auto-
matic programs, and compared the results to each
other and to the manually solved reference struc-
tures that were not available at the time the data
were provided. This constitutes a stringent ‘‘blind’’
assessment similar to the CASP and CAPRI initia-
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tives. This study demonstrates the feasibility of
routine, fully automated protein structure determina-
tion by NMR.

INTRODUCTION

The typical protocol for protein structure determination by

nuclear magnetic resonance (NMR) spectroscopy involves a

number of sequential steps (Wüthrich, 1986). First, the chemical

shifts (CS) observed in multidimensional NMR spectra are

assigned sequence specifically to their corresponding protein

atoms (the resonance assignment step). Second, thousands of

through-space dipolar coupling effects, known as nuclear Over-

hauser effects (NOEs), are identified in multidimensional NOE

spectroscopy (NOESY) spectra (peak picking), and assigned

and converted into interatomic distance restraints (the NOESY

assignment step). Additional conformational restraints can

result from, for example, measurements of residual dipolar

couplings (RDCs), scalar couplings, andCS data. Third, software

programs are used to generate a set of protein conformations

(called a bundle of conformers) that should satisfy these experi-

mental restraints (the structure generation step). The bundle of
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Table 1. Features of the Programs Used in CASD-NMR2010

Software NOEs Chemical Shiftsa Comments

CYANA Y s Includes torsion angle restraints generated on the basis of the chemical shift values

UNIO Y s Includes torsion angle restraints generated on the basis of the chemical shift values

ARIA Y s Includes torsion angle restraints generated on the basis of the chemical shift values

ASDP Y s Includes torsion angle restraints generated on the basis of the chemical shift values;

uses the DP score measure (Huang et al., 2005) to re-rank the structural models

Cheshire-Yapp s Y Uses structural models initially generated using only CS data to assign NOEs,

derive distance restraints and refine the best scoring initial 100 models

CS-DP-Rosetta s Y Uses the unassigned NOESY peak lists and the DP score measure (Huang et al., 2005)

to re-rank the structural models

Cheshire Y

CS-Rosetta Y

The letter Y indicates that this type of information is directly used in structure calculations, and the letter s indicates that it is used as a support to derive

additional restraints for refinement and/or to improve scoring. Details are given in the Experimental Procedures.
a Used as direct structural restraints rather than to derive secondary structure information or torsion angle restraints.
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conformers is often energetically refined through restrained

molecular dynamics simulations (the structure refinement

step). Alternative protocols have been proposed that do not

involve the use of distance restraints, thus skipping the NOESY

assignment step and exploiting instead RDCs (Hus et al., 2001;

Zweckstetter and Bax, 2001) and/or CS data (Cavalli et al.,

2007; Shen et al., 2008; Wishart et al., 2008; Raman et al.,

2010b).

The NOESY assignment and structure generation steps are

performed in an integrated manner over several iterations to

maximize the number of conformational restraints obtainedwhile

guaranteeing the self-consistency of all distance restraints

(measured a posteriori from the absence of significant distance

restraint violations). Many of the tasks in the NOESY assignment

step are repetitive, although nontrivial, yet typically they must be

performed by a skilled researcher. A considerable bookkeeping

effort is also needed to converge to a self-consistent set of

conformational restraints from which the final bundle of low

pseudoenergy conformers is calculated. For these reasons,

and to enhance reproducibility, automation of the aforemen-

tioned steps has been actively pursued (Markwick et al., 2008;

Güntert, 2009; Guerry and Herrmann, 2011). Protocols aimed

at the integration of all steps of the protocol for protein structure

determination by NMR have also appeared (López-Méndez and

Güntert, 2006).

In 2009, we launched the communitywide initiative called

‘‘Critical Assessment of Automated Structure Determination of

Proteins by NMR (CASD-NMR),’’ (Rosato et al., 2009; http://

www.wenmr.eu/wenmr/casd-nmr), with the aim of assessing

whether automated methods that address the NOESY assign-

ment (if needed), structure generation, and structure refinement

steps can—in a fully automatedmanner—produce protein struc-

tures that closely match the structures manually determined by

experts using the same experimental data (reference structures).

To this end, we have released regularly over 1 year NMR data

sets consisting of assigned chemical shift lists and unassigned

NOESY peak lists, while the reference structures determined

from the same data were kept ‘‘on hold’’ by the Protein Data

Bank (PDB) (Berman et al., 2000) and were thus unavailable to
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the participants. Each of these data sets is referred to as a

masked (or blind) data set. The protocols used to determine

the reference structures are summarized in the Supplemental

Information (available online) and typically involved manual

refinement (e.g., fixing assignments or removing artifacts) of

initial, partly automated, NOESY assignments performed with

various tools. The final, iteratively obtained lists of resonance

assignments and NOESY peak positions were subsequently

provided to the CASD initiative.

Here we report the results obtained in the first round of

CASD-NMR (CASD-NMR2010) for a total of 10 masked data

sets, provided by the National Institutes of Health Protein

Structure Initiative, for monomeric proteins of 60 to 150 amino

acids. All the input data as well as the structures generated in

this study can be freely downloaded from http://www.wenmr.

eu/wenmr/casd-nmr. CASD-NMR2010 did not address automa-

tion methods for determining resonance assignments and for

NOESY peak picking. We chose to postpone the assessment

of these parts of the process until the NOE assignment and

structure calculation steps will have been demonstrated to be

truly robust.

The present results demonstrate that routine application of

NMR structure calculation methods integrating NOE cross-

peak assignment and structure generation is both feasible and

reliable. Furthermore, the recently developed approaches based

on the use of NMR chemical shift data to generate structural

models were found to benefit significantly when supplemented

with information from unassigned NOESY peak lists.

RESULTS

Accuracy and Convergence of Structure Calculations
CASD-NMR2010 involved three groups of automated methods

(Table 1): those using NOESY data to obtain distance restraints

for structure calculations (CYANA [Herrmann et al., 2002a],

UNIO [Herrmann et al., 2002b], ASDP [Huang et al., 2006], and

ARIA [Rieping et al., 2007]), those using chemical shift data

augmented by NOESY data (CS-DP-Rosetta [Raman et al.,

2010a], which uses NOESY information to re-rank its CS-based
ights reserved
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Table 2. Targets for CASD-NMR and Overview of the Accuracy of the Various Approaches

Target

Name

PDB

Code

Sequence

Length

Average

Pair-Wise

RMSDwithin the

Reference (Å)a

Backbone RMSD (Å)a,b/GDT_TSa Score (%) to the Reference Structure

CYANA UNIO ARIA ASDP

Cheshire-

Yapp

CS-DP-

Rosetta Cheshire

CS-

Rosetta

VpR247 2KIF 106 0.7 0.8/91 0.9/92 2.7/71c 1.8/81 na 1.4/78 1.7/78 14.6/43

AR3436A 2KJ6 97 1.4 2.0/65 2.2/61 na 1.4/66 na 3.3/55 4.5/56 3.3/47

HR5537A 2KK1 135 1.0 1.3/89 1.6/83 2.4/76c 1.7/84 na 1.6/86 2.1/77 2.2/76

ET109A

(reduced)

2KKX 102 0.6 1.2/90 1.7/85 1.5/87c 1.4/90 1.5/86 2.0/82 na 4.2/58

ET109A

(oxidized)

2KKY 102 0.6 0.9/92 1.1/90 1.2/89c 1.0/91 na 1.6/84 na 14.3/30

AtT13 2KNR 121 0.6 1.9/85 1.7/91 2.5/ 84c 2.1/84 na 6.8/65 na 11.2/32

PgR122A 2KMM 73 0.7 1.1/85 1.0/87 1.6/74c 1.0/86 na 0.9/88 1.1/87 1.3/83

NeR103A 2KPM 105 1.7 1.0/86 0.9/89 1.0/86d 1.6/80 1.5/78 1.4/81 na 2.8/62

CgR26A 2KPT 148 1.6 0.8/94 0.8/94 0.5/87d 1.0/93 0.8/97 2.6/78 na 4.0/62

CtR69A 2KRU 63 0.4 0.6/92 0.9/86 0.6/90d 0.7/89 na 0.6/90 1.2/79 1.0/83

No. of submitted targets 10 10 9 10 3 10 5 10

No. of successful targets (RMSD %2.0 Å or

GDT_TS R80%)

10 9 7 10 3 7 3 2

na, not available.
a For the backbone atoms of ordered residues, as defined by PSVS using dihedral angle order parameters (Bhattacharya et al., 2007) (Table S1).
b Backbone RMSD between the average conformer of each structure and the average conformer of the reference structure.
cDetermined with the ARIA-Soft protocol.
dDetermined with the ARIA-BayW protocol.
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results, and Cheshire-YAPP, which uses CS-generated struc-

tures to perform NOESY assignments and extract distance

restraints), and those relying exclusively on CS data as experi-

mental information (Cheshire [Cavalli et al., 2007] and CS-Ro-

setta [Shen et al., 2008]). The NOESY-based methods include

a structure refinement step after structure generation with the

aforementioned programs. Both steps exploit all automatically

assigned restraints. A variety of programs has been used for

the refinement (also in the case of the reference structures).

For each data set, we used the deviation of the backbone

coordinates (root-mean-square deviation; RMSD) to quantify

the degree of convergence (i.e., the similarity) among the auto-

matically generated structures as well as their closeness to the

reference structure determined under manual supervision.

Assuming that the reference structure is correct, the RMSD to

it becomes a measure of accuracy. We computed the RMSD

to the reference for the structures generated by all the methods

(Tables 1 and 2; Figure 1A). As the RMSD calculations require

the a priori definition of residue ranges to be superimposed,

a consensus RMSD range comprising the well-ordered residues

in the reference structure was chosen for each data set (Table

S1). To avoid a possible bias from this selection when evaluating

the similarity to the reference structure, we also computed the

Global Distance Test total score (GDT_TS; Figure 1B), which

does not require residue ranges to be predefined and is indepen-

dent of protein size. The GDT_TS score has been developed in

the frame of the Local-Global Alignment method (Zemla, 2003)

for structure comparison and has been extensively used in

CASP assessments (Clarke et al., 2007). It is defined as

GDT_TS = (P1 + P2 + P4 + P8)/4, where Pd is the percentage of

residues that can be superimposed under a distance cutoff
Structure 20, 22
of d Å. This definition reduces the dependence on the choice

of the distance cutoff by averaging over four different distance

cutoff values. GDT_TS and backbone RMSD to the reference

are anticorrelated (i.e., high structural similarity corresponds to

low RMSD and high GDT_TS values). Another structure similarity

score that equally does not require the definition of residue

ranges, the TM-Score (Zhang and Skolnick, 2004), was found

to be strongly linearly correlated with GDT_TS for our data sets

(data not shown).

The backbone RMSD values to the reference for the structures

generated by NOESY restraint-based methods ranged from

0.6 to 2.7 Å, whereas the range for GDT_TS scores was 61%–

94% (Table 2; Table S2). Setting thresholds for an acceptable

structural accuracy (here assumed to be quantified by similarity

to the reference structure) at an RMSD from the reference struc-

ture %2 Å (Nederveen et al., 2005; Andrec et al., 2007) and

GDT_TS R 80% (Clarke et al., 2007), three of the four NOESY-

based programs (CYANA, UNIO, and ASDP) automatically and

consistently generated acceptable structures, based on one

(90%–100% of the instances) or simultaneously both (80%–

90% of the instances) parameters (Table 2). The RMSD was

always %2.2 Å, whereas the lowest GDT_TS was 61% (78%

on exclusion of target AR3436). The fourth program, ARIA, per-

formed acceptably for nearly 80% of the targets, with the best

results obtainedwith a recently developed logharmonic potential

combined with a Bayesian determination of restraint weights

(protocol ARIA-BayW) (Bernard et al., 2011), which produced

structures with excellent GDT_TS and RMSD values for the three

most recent targets.

Regarding CS-based methods augmented with NOESY data,

Cheshire-YAPP, which was developed during CASD-NMR2010
7–236, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 229



Figure 1. Structural Similarity between Reference and CASD-

NMR2010 Structures

RMSD (A) and GDT_TS score (B) deviation of the backbone coordinates (for

ordered residues only; see Table S1) with respect to the reference structure for

the various algorithms. GDT_TS is the average fraction of residues that can be

superimposed to within four different distance cutoffs (1, 2, 4, and 8 Å) and

ranges between 0% and 100%. For each structure, the automatically gener-

ated average conformer has been used for calculations. The dashed lines are

at 2 Å for RMSD and at 80% of superimposable residues for GDT_TS, corre-

sponding to our thresholds for acceptable performance. See also Table S2.

The box parameters are as follows: The box range goes from the first to the

third quartile; box whiskers identify the minimum and maximum values; the

square within the box identifies the mean; the thick line in the box identifies

the median. The starred boxes correspond to algorithms for which less than

60% of the targets were submitted.

Structure
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and run on three randomly selected targets, featured a similarity

to the corresponding reference structures in line with NOESY

restraint-driven methods. Cheshire-YAPP uses initial (pure CS)

Cheshire models to assign NOESY distance restraints used to

refine themodels. For CS-DP-Rosetta, which uses NOESY infor-

mation only to re-rank the CS-based models, the deviation from

the manual reference structures was close to that of the NOESY

restraint methods, with a range of RMSD and GDT_TS values of

0.3–3.3 Å and 55%–90%, respectively, and 70%of targets falling

within the thresholds described earlier. Finally, pure CS-based

methods had the poorest performance in terms of closeness to

the reference structures, as it is apparent from Table 2 and Fig-
230 Structure 20, 227–236, February 8, 2012 ª2012 Elsevier Ltd All r
ure 1. Note that the poorer appearance of the CS-Rosetta server,

which was run via the web server developed in the e-NMR

project (Bonvin et al., 2010), is partly due to inclusion of noncon-

verged solutions in the comparison. It can be concluded that

NOESY-based methods delivered more consistent and robust

performances than CS-based methods (resulting in smaller

boxes in Figures 1A and 1B), yielding structures on average

closer to the reference. NOESY-filtering as in CS-DP-Rosetta

could recover some but not all of the consistency and reliability

of the restraint-driven methods (discussed later). Notably, the

CS-methods (regardless of whether augmented with NOESY

information) are computationally much more demanding than

NOESY-based methods.

Regarding individual targets, the one with the lowest perfor-

mance across all methods was AR3436A (Table 2), a 97-

amino-acid protein. Our target selection included three proteins

with more than 100 residues (HR5536A, AtT13, and CgR26A), for

all of which NOESY-based methods were able to automatically

generate accurate structures. Instead, purely CS-based

methods failed for all of them, whereas CS-based methods

augmentedwith NOESY data were successful in nearly all cases.

All the results examined in the preceding paragraphs address

the degree of similarity to the manually solved reference struc-

ture. Additional insight can be obtained by the evaluation of

the degree of convergence among the different programs. This

has been measured as the mean RMSD among the average

conformers obtained with the automatically generated methods

(Table S3). For the NOESY-based algorithms, the mean RMSD

for each target was in the range of 0.9 to 3.0 Å, with four targets

featuring a mean RMSD lower than 1.0 Å and eight targets being

within 2.0 Å. If CS-based methods augmented with NOE cross-

peak information are also included, the mean RMSD range

widens slightly up to 3.3 Å, still with eight targets having a

mean RMSD lower than the 2.0 Å threshold. Instead, inclusion

of all methods yielded values as large as 6.2 Å (Table S3). The

present evaluation of convergence is much more stringent than

the standard recalculation with different random number seeds,

because in each calculation the NOE assignments have been

determined independently and with different methods.

A further measure of accuracy would be the comparison with

a completely independent structure determination. This is, at

present, possible for only two targets (VpR247 and PgR122A),

for which the PDB contains X-ray structures of relatively close

homologs (40%–50% sequence identity). These allowed us to

build reliable structural models that can be used as the structural

reference for comparisons (Table S4). For PgR122A, the relevant

structure is 3HVZ (Forouhar et al., 2009). The homology model of

PgR122A built on this structure shows a backbone RMSD of

0.77 Å to the average coordinates of the reference structure.

All methods yielded structures within 1.5 Å from the homology

model, with the majority being actually within 1 Å. For VpR247,

there are several related crystal structures of the S. pombe

homolog, in the free or ligand-bound form. The model built on

the DNA-complexed protein (3GX4; Tubbs et al., 2009) is closer

to the reference VpR247 structure than the model built on the

free protein (3GVA), with backbone RMSD values of 1.4 Å and

2.1 Å, respectively. Similarly, nearly all the automatically gener-

ated structures are more similar to the former than the latter

model. With the exception of the ARIA and CS-Rosetta server
ights reserved



Figure 2. Quality of CASD-NMR2010 Structures

(A and B) Molprobity (A) and Procheck-all (B) Z-score values describe the distribution of, respectively, high energy interatomic contacts and all protein dihedral

angles for the automatically generated and the reference structures. The Z score is the deviation of the value calculated for a given structure from the average

calculated for a set of 150 high-resolution X-ray structures (Bhattacharya et al., 2007), expressed in units of the standard deviation. A positive Z score indicates

that the corresponding structure quality score is better than the average, whereas a negative value indicates that the structure analyzed is worse than the average.

(C) DP scores describe the agreement between the structures and the unassigned NOESY peak lists and range from 0 (worst) to 1 (best) (Huang et al., 2005). The

line corresponds to the 0.7 threshold described in the main text. The box parameters are as in Figure 1.

(D) DP scores are reported as a function of the backbone RMSD to the reference structure for CASD-NMR2010 structures. See also Figure S1 and Tables S5

and S6.
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structures (Table S4), all structures are within 2.0 Å of the 3GX4-

based model, whereas they are in the range of 1.7 to 2.2 Å of the

3GVA model. These results may suggest that the free VpR247

protein in solution populates a different conformational state

than its S. pombe homolog in the crystal structure. This state

would be relatively similar to the DNA-bound conformation.

Geometric and Stereochemical Quality
The geometric and stereochemical quality is another important

property of a structure that must be checked prior to deposition

in the PDB. We evaluated this aspect using the PSVS (Bhatta-

charya et al., 2007) (http://psvs-1_4-dev.nesg.org/) and CING

(http://nmr.cmbi.ru.nl/cing/) validation suites (Table S2), which

assess several quality measures. The Verify3D (Eisenberg

et al., 1997) and ProsaII (Sippl, 1993) scores, which evaluate

the global fold likelihood, were not significantly different for the

CASD-NMR or the reference structures and featured relatively

wide ranges for all the algorithms. Instead, the Procheck-all (Las-

kowski et al., 1996) score, which assesses the distribution of all

the protein dihedral angles, and the MolProbity clash score
Structure 20, 22
(Davis et al., 2007),whichassesses theoccurrenceof high-energy

interatomic contacts, differed among the CASD-NMR struc-

tures, even though their ranges over all targets overlapped with

the reference structures (Figure 2). The ranges of Procheck-all

values for the structures generated by the Rosetta-based algo-

rithms are narrow and, on average, significantly better than for

the other structures (Figure 2B). Also the MolProbity clash score

tends to be better for the Rosetta-based structures (Figure 2A).

Given the fact that the latter structures tend to be the most

dissimilar from the reference, it appears that the geometric and

stereochemical quality of the structures is not a good indicator

of their accuracy, as defined earlier (Figure 2; Table 2). The

geometric and stereochemical quality of the structures is largely

determined by the algorithm and the force field used in the struc-

ture refinement step. This can be appreciated also by comparing

the scores of the various NOESY-based results, which can vary

appreciably even for structures closely similar to the reference.

The importance of force fields is due partly to the fact that NMR

data cannot define parameters such as bond lengths or bond

angles, which, however, are often restrained also during X-ray
7–236, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 231
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structure determinations. Studies affording a deeper under-

standing of the effects of structure refinement as a function of

the quantity and quality of the NMR data available would be quite

useful. Nonetheless, it can be stated that accurate structures

should satisfy both stereochemical requirements and the avail-

able experimental information.

Quality Measured by Agreement with the Data
A different kind of structure validation assesses the complete-

ness of experimental data and its agreement with the structure.

Because it is difficult to compare structures directly to the raw

experimental NMR data, these analyses were performed with

respect to partially interpreted experimental data (e.g., after

peak-picking and CS assignment). The discriminating power

(DP) score (Figure 2C) is a measure of the goodness-of-fit of

the unassigned NOESY peak lists to a structure, ranging from

0 to 1 (Huang et al., 2005). This data-based quality measure

featured a significant correlation to structure accuracy (Fig-

ure 2D; Table S5). A DP score cutoff of R0.7 allowed the identi-

fication of acceptable CASD-NMR structures with a reliability of

94% (Table S6), based on the available refined peak lists. On the

other hand, all structures with an RMSD to the reference larger

than 3.0 Å or a GDT_TS score lower than 60% had DP scores

lower than 0.6, except for a single CS-DP-Rosetta structure.

For comparison, the DP score values for the reference structures

were in the 0.64–0.90 range. It is important to note that the 0.7-

DP-score threshold value was determined with refined peak

lists, which might facilitate the discrimination (e.g., by reducing

the number of artifact peaks that cannot be accounted for). If

automatically peak-picked NOESY lists (which potentially con-

tain a significant amount of artifacts that, however, cannot be

excluded at the outset of a NMR structure determination) were

used, presumably the DP score threshold would be shifted

toward lower values. It is interesting to observe that, for the

AR3436A target (which was previously mentioned as the one

for which we observed the poorest overall performance), the

average DP score was as low as 0.60; for the other targets, the

range of average DP scores was 0.72–0.81.

The different approaches extracted significantly varying

numbers of NOESY-based distance restraints for a given target.

The information contained within these restraint sets, as deter-

mined by the QUEEN procedure (Nabuurs et al., 2003), is highly

variable and, after excluding outliers, did not correlate signifi-

cantly with the RMSD between automatically generated and

reference structures, nor with the DP-score (Table S2). The refer-

ence structures spanned a range of information content essen-

tially as wide as that of all the NOESY-based structures. On

average, automatically generated structures had a nonsignificant

tendency toward higher information content than the reference

structures. Nevertheless, even structures with information

content as low as about 0.1 bits/atom are found within 2.0 Å

RMSD from the reference structure; the occurrence of these

very low information content values is due to loose (5.5 Å) upper

bounds constituting > 90% of the restraints.

DISCUSSION

In summary, the CASD-NMR 2010 initiative has successfully

proven, without the possible bias inherent in test calculations
232 Structure 20, 227–236, February 8, 2012 ª2012 Elsevier Ltd All r
of targets with previously known structure, that, given almost

complete CS assignments, the automated calculation of NMR

structures of small proteins from ‘‘clean,’’ unassigned NOESY

peak lists is routinely feasible. NOESY-based methods yield

structures that are typically within 2.0 Å of the corresponding

manually solved structures and within 2.5 Å in all but one of the

49 cases reported here. This conclusion is also supported by

the good convergence of these algorithms, which is within

3.0 Å for all targets and within 2.0 Å for eight targets out of 10.

Comparison with the crystal structures of homologous proteins,

limited to the Pgr122A and VpR247 targets, provided similar

conclusions.

Another notable result of the present investigation is that,

whereas the performance of methods for NMR structure deter-

mination based only on CS data is not yet fully reliable, augment-

ing these methods with different schemes to exploit unassigned

(refined) NOESY peak lists recovers to a significant extent the

robustness of the NOESY-based methods, as judged both by

similarity to the manually solved structures and by looking at

the convergence of the various methods. For the size range

addressed by our target selection (up to 150 amino acids), the

protein size does not significantly affect the success rate of the

approaches that include NOESY data.

On average, the automatically generated and the reference

structures are of comparable geometric and stereochemical

quality. These quality measures do not correlate with the simi-

larity to the reference structure, as measured by either the back-

bone RMSD or the GDT_TS score. Indeed, even structures with

a significantly wrong fold can feature excellent geometric and

stereochemical quality measures. Our findings thus reinforce

previous indications that the structure refinement protocol is

a major determinant of these parameters (Nabuurs et al., 2006;

Saccenti and Rosato, 2008). The use of an indicator, the DP

score, quantifying the agreement between the structures and

the unassigned NOESY data was useful to discriminate good

or problematic structures. The DP score featured a good corre-

lation with both the backbone RMSD and the GDT_TS score;

with the present refined peak lists, a DP score threshold of 0.7

could be applied to identify accurate structures with a 94%

precision. Conversely, all structures further than 3.0 Å from the

reference had a DP score lower than 0.6. For the AR3436A

target, the automated methods obtained the lowest accuracy

(Table 2) and the poorest convergence (Table S3). AR3436A is

also the target with the lowest DP score for the reference struc-

ture as well as, on average, among all CASD-NMR2010 struc-

tures. It is possible that the available data did not permit

capturing some features of the protein (e.g., related to its

dynamics).

For a given target, the various automated NOESY-based

methods could yield various levels of NOESY assignments

and, consequently, quite different numbers of structural

restraints. It is interesting that this factor did not correlate appre-

ciably with the DP score (which refers to the unassigned lists) of

the calculated structure or with its geometric and stereochemical

quality, as mentioned earlier. Overall, we can thus conclude that

indicators of agreement with noninterpreted experimental data

are useful to validate NMR structures. Geometric and stereo-

chemical parameters are not sufficient to guarantee accuracy;

nevertheless, they should be taken into account as necessary
ights reserved
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features of high-quality protein structures; that is, good struc-

tures should have both good agreement with noninterpreted

experimental data (e.g., DP score) and good geometric and

stereochemical parameters.

The automated structure calculations addressed in this contri-

bution are nonsupervised, with the exclusively NOESY-based

methods being typically fast (with calculation times on a single

central processing unit [CPU] of the order of hours, including

refinement) and routine and CS-based methods being relatively

CPU intensive (with estimated calculation times on a single CPU

of the order of 103–104 hours, making it mandatory to use large

clusters or distributed computing for these calculations) and

less dependable. A fair criticism to the setup of CASD-

NMR2010 is that the NOESY peak lists provided had been

refined against initial structural models during the determination

of the reference structure and were, therefore, almost devoid of

artifacts. This simplifies the task for NOESY-based approaches

and for CS-based methods augmented by NOESY data.

However, considering their highly satisfactory performance

observed here, the peak list refinement may not be necessary

if the quality of the NOESY spectra and the completeness of

the chemical shift assignments are high. To investigate this, we

have initiated a second round of CASD-NMR using masked

NOESY data sets that have been generated using exclusively

automated peak-picking procedures. This second round will

further consolidate the methodological improvements fostered

by the 2010 round.
EXPERIMENTAL PROCEDURES

Data Distribution

Masked data sets for CASD-NMR 2010 (whose amino acidic sequences are

given in Table S1) comprised chemical shift assignments in BMRB format

and unassigned NOESY peak lists in SPARKY and/or XEASY/CARA format.

The data were made available on both the CASD-NMR website (http://www.

wenmr.eu/wenmr/casd-nmr) and a dedicated page at the Protein Structure

Initiative website (PSI Knowledge Base (http://kb.psi-structuralgenomics.

org/). For two targets, raw NOESY spectra were also made available. At the

time of release, all participants were notified of the availability of an additional

data set as well as of the date of release of the corresponding structure from

the PDB (about 8 weeks later). The automatically calculated structures and

all restraints were deposited directly by the participants into a password-

protected database again via the CASD-NMR website.

Residual dipolar coupling data and hydrogen bond restraints were not used

in the CASD-NMR 2010 project.

Calculation Protocols

Each method developer team carried out calculations with their own program,

as detailed below.

CYANA

Structure calculations with the CYANA method (Güntert, 2009) used as input

data from the blind data sets the protein sequence, the list of assigned chem-

ical shifts, and the unassigned NOESY peak lists. Torsion angle restraints were

generated on the basis of the chemical shift values with the program TALOS+

(Shen et al., 2009) for the backbone torsion angles f and c of non-proline resi-

dues, with a prediction classified as ‘‘good’’ by TALOS+. The torsion angle

restraints were centered at the predicted average value, and their full width

was set to four times the predicted standard deviation or 20�, whichever

was larger. The program CYANAwas used for seven cycles of combined auto-

mated NOE assignment(Herrmann et al., 2002a) and structure calculation by

torsion angle dynamics (TAD) (Güntert et al., 1997). The tolerance for the

matching of chemical shifts and NOESY peak positions was set to 0.03 ppm

for 1H and 0.5 ppm for 13C and 15N. Peak intensities were converted into upper
Structure 20, 22
distance bounds according to a 1/r6-relationship. The standard CYANA simu-

lated annealing schedule was applied to 100 randomly generated conformers

with 15,000 TAD steps. NOE distance restraints involving 1H atoms with

degenerate chemical shifts (e.g., methyl groups) were treated as ambiguous

distance restraints using 1/r6-summation over the distances to the individual
1H atoms. Nonstereospecifically-assigned methyls and methylene protons

were treated by automatic swapping of restraints between diastereotopic

partners (Folmer et al., 1997) during the seven cycles of automated NOE

assignment and by pseudoatom correction and symmetrization (Güntert

et al., 1991; Güntert, 1998) for the final structure calculation. The 20 con-

formers with the lowest final CYANA target function values were embedded

in an 8-Å shell of explicit water molecules and subjected to restrained energy

refinement with the program OPALp (Koradi et al., 2000; Luginbühl et al.,

1996). A maximum of 3,000 steps of restrained conjugate gradient minimiza-

tion was applied, using the standard AMBER force field (Ponder and Case,

2003) and pseudopotentials proportional to the sixth power of the NOE upper

distance bound violations and the square of the torsion angle restraint viola-

tions. The entire procedure was driven by the program CYANA, which was

also used for parallelization of all time-consuming steps on 10–100 processors

of a Linux cluster system with Intel quad-core 2.4 GHz processors.

UNIO

For all blind data sets, we performed NOE assignment using the modules

ATNOS and CANDID and/or the CANDID module alone incorporated into the

software UNIO (Herrmann et al., 2002a, 2002b), depending on whether NOE

peak lists or NOESY spectra were provided for a given CASD target. The stan-

dard UNIO protocol with seven cycles of peak picking with ATNOS, if NOESY

spectra were provided, and NOE assignment with CANDID was used. During

the first six UNIO–ATNOS/CANDID cycles, ambiguous distance restraints

were used (Nilges, 1997). At the outset of the spectral analysis, UNIO–ATNOS/

CANDID used highly permissive criteria to identify and assign a comprehensive

set of peaks in the NOESY spectra or the unassigned peak lists provided. Only

the knowledge of the covalent polypeptide structure and the chemical shifts

were exploited to guide NOE cross-peak identification and NOE assignment.

In the second and subsequent cycles, the intermediate protein three-dimen-

sional (3D) structures were used as an additional guide for the interpretation

of the NOESY spectra or unassigned peak lists. The output in each ATNOS/

CANDID cycle consisted of assigned NOE peak lists for each input spectrum

and a final set of meaningful upper limit distance restraints that constituted the

input for the TAD algorithm of CYANA for structure calculation (Güntert et al.,

1997). In addition, torsion angle restraints for the backbone dihedral angles f

and c derived from Ca chemical shifts were automatically generated in UNIO

and added to the input for each cycle of structure calculation (Spera and

Bax, 1991; Luginbühl et al., 1995). For the final structure calculation in cycle

7, only distance restraints that could be unambiguously assigned based on

the protein 3D structure from cycle 6 were retained.

The 20 conformers with the lowest residual CYANA target function values

obtained from cycle 7 were energy refined in a water shell with the program

OPALp (Koradi et al., 2000; Luginbühl et al., 1996) using the AMBER force field

(Ponder and Case, 2003).

ASDP
13C chemical shift was first referenced based on the linear analysis of chemical

shifts (LACS) method(Wang et al., 2005). AutoStructure’s topology-con-

strained distance network algorithm (Huang et al., 2006) was used to assign

NOE peaks, using the list of resonance assignments, and the unassigned

NOESY peak lists. The tolerance tomatch chemical shifts with NOE peak posi-

tions was set to 0.05 ppm for 1H and 0.5 ppm for 13C and 15N. Distance

constraints were generated based on these NOE assignments. Dihedral angle

constraints were generated using TALOS+ (Shen et al., 2009), using only sites

with TALOS+ scores of 10 and constraining the dihedrals to the defined

range ±20� or twice the standard deviation, whichever was larger. One

hundred structures were generated with the CYANA standard structural calcu-

lation module (Güntert et al., 1997), and DP scores (Huang et al., 2005) were

calculated for all 100 structures. We then computed a new score: (target func-

tion/100) � DP for each model; and the 20 models with highest scores were

selected for additional iterative five cycles of NOE analysis with AutoStructure

and structure generation with CYANA (Güntert et al., 1997). After six cycles of

ASDP analysis, the resulting structures were refined using the CNS (Brunger,

2007) with explicit water. If any TALOS+ dihedral angle constraints were
7–236, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 233
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observed to be violated in all 20 models, they were removed and the ASDP/

CNS refinement process was repeated.

ARIA

Two protocols were used: one (ARIA-Soft) based on the standard soft-square

distance restraint potential, and the other (ARIA-BayW) based on a log-

harmonic potential shape (Rieping et al., 2005) and iterative determination of

the optimal data weight (Habeck et al., 2006; Nilges et al., 2008). ARIA 2.2

(Rieping et al., 2007) was used with the ARIA-Soft protocol, and ARIA 2.3

was used with the more recent ARIA-BayW protocol. ARIA-Soft was applied

to targets VpR247, HR5537A, ET109A, AtT13, and PgR122A, whereas ARIA-

BayW was applied to targets NeR103A, CgR26A, and CtR69A.

Dihedral angle restraints were generated from chemical shifts with the

program TALOS+ (Shen et al., 2009) for the backbone torsion angles f and

c. The predictions classified as ‘‘good’’ by TALOS+ were converted into

restraints with the script talos2xplor.tcl. For analyzing NOESY cross-peaks,

the tolerance for matching chemical shifts and peak positions was set to

0.04 and 0.02 ppm for indirect and direct 1H dimensions, respectively, and

to 0.5 ppm for 13C and 15N.

For each calculation, we ran eight ARIA iterations in a simplified, geometric

force field and one refinement iteration in water with full electrostatics (Linge

et al., 2003). Structures were calculated with the CNS (Brunger, 2007), recom-

piled with specific ARIA subroutines. We used the standard four-phase ARIA

simulated annealing protocol, with 2,200 TAD steps at 20,000 K; 2,200 TAD

steps cooling from 20,000 K down to 0 K; 10,000 Cartesian cooling steps

from 2,000 K to 1,000 K; and 8,000 cooling steps from 1,000 K to 50 K. Molec-

ular dynamics was followed by 200 conjugate gradient minimization steps. For

the water refinement, we used heating from 100 to 500 K in steps of 100 K, with

750 steps of molecular dynamics at each temperature, during which positional

restraints on the heavy atom positions were progressively relaxed; 2,000 steps

of refinement at 500 K; cooling to 25 K in steps of 25 K, with 1,000 integration

steps at each temperature, followed by 200 conjugate gradient minimization

steps. The log-harmonic potential and the Bayesian weight determination

were only used in the final cooling phase, minimization and water refinement.

Fifty conformers were randomly generated and annealed; the 15 conformers

with lowest (extended) hybrid energy were analyzed to refine the restraint

list. After the eighth iteration, the 10 conformers with the lowest energy were

refined in water.

CHESHIRE

In the structure calculations two protocols were used, CHESHIRE and

CHESHIRE-YAPP. CHESHIRE uses only chemical shifts, whereas

CHESHIRE-YAPP uses a combination of chemical shifts and unassigned

NOESY peak lists.

CHESHIRE consists of a three-phase computational procedure (Cavalli

et al., 2007). In the first phase, the chemical shifts and the intrinsic

secondary structure propensities of amino acid triplets are used to predict

the protein secondary structure. In the second phase, the secondary structure

predictions and the chemical shifts are used to predict backbone torsion

angles. These angles are screened against a database to create a library of trial

conformations of three- and nine-residue fragments spanning the sequence

of the protein. In the third phase, a molecular fragment replacement strategy

is used to assemble low-resolution structural models. The information

provided by chemical shifts is used in this phase to guide the assembly of

the fragments. The resulting structures are refined with a hybrid molecular

dynamics and Monte Carlo conformational search using a scoring function

defined by (1) the agreement between experimental and calculated chemical

shifts and (2) the energy of a molecular mechanics force field. This scoring

function ensures that a structure is associated with a low CHESHIRE score

only if it has a low value of the molecular mechanics energy and is highly

consistent with experimental chemical shifts. Typically 50,000 structures

were generated for each target, and the best scoring one was submitted.

This protocol was used for five targets (VpR247, AR3436A, HR5537A,

PGR122A, and CtR69A).

The CHESHIRE-YAPP protocol uses the best scoring 500–1000 high-reso-

lution structures generated by CHESHIRE to select compatible NOEs from

the unassigned NOESY peak lists. NOEs are selected with an iterative

protocol. In the first step, atoms are assigned to each spectral dimension

with a chemical shift tolerance of 0.03 ppm for 1H and 0.3 ppm for 13C and
15N. Then, chemical shift-based assignments that are violated by more than
234 Structure 20, 227–236, February 8, 2012 ª2012 Elsevier Ltd All r
2 Å in 50 or more of the best 500 CHESHIRE structures are removed. The re-

maining restraints are used to refine the best scoring 100 CHESHIRE struc-

tures. The last two steps are repeated four times with a threshold for violations

of 1.5, 1.0, 0.5, and 0.2 Å. This protocol was used for three targets (ET109A,

NeR103A, and CGR103A).

CS-DP-ROSETTA

Fragments were picked with the original CS-Rosetta fragment picker (Shen

et al., 2008). Decoys were generated on Rosetta@home using 50,000 boinc

work units (�200,000 CPU hours). This resulted in 105–106 decoys, depending

on the target. Decoys were generated with the standard CS-Rosetta protocol

(Shen et al., 2008) and relaxed in full-atom resolution, as described elsewhere

(Raman et al., 2010b). The best 1,000 decoyswere selected by score, and their

DP score was calculated with AutoStructure (version 2.2.1) (Huang et al.,

2005). To finally rank the models, we computed the final score as S = R +

1,000(1 � DP) (Raman et al., 2010a), with R for the Rosetta full-atom score

and DP for the DP score, and we selected the 10–20 best models for submis-

sion to the CASD website.

CS-ROSETTA

The CS-Rosetta web server developed under the eNMR project (Bonvin et al.,

2010) was used. First, the supplied NMR chemical shift data were prechecked

on chemical shift referencing and possible errors with the standard precheck

option of the TALOS+ program (Shen et al., 2009). TALOS+ was then used to

identify flexible residues at the termini of the protein (those classified as either

‘‘dynamic’’ or ‘‘not classified’’ by TALOS+). These and any histidine tags were

removed. The resulting cleaned TALOS+ file was submitted to the server. For

each target, 50,000 models were generated on the grid following the standard

CS-ROSETTA protocol (Shen et al., 2008) with the original CS-Rosetta frag-

ment picker and Rosetta version 2.3.0. The 1,000 best ROSETTA score

models were rescored with chemical shift rescoring as in the CS-ROSETTA

protocol. After rescoring, if convergence was observed in the top five models

(backbone RMSD below 2Å), these were submitted as prediction for CASD-

NMR; otherwise, only the top scoring model was submitted.

For the last two targets, we implemented a smoothing procedure on the

Rosetta raw score: for each model, a smoothed score was calculated as

a Gaussian-weighted average score calculated over all structural neighbors

within a 4.5-Å Ca RMSD cutoff. The smoothing was performed on the top

5,000 models. We then rescored the top 1,000 models after smoothing, using

the regular CS scoring in CS-ROSETTA. This smoothing procedure removes

some of the noise in the raw score and strengthens any weak correlation

that might be present in the data set.
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Herrmann, T., Güntert, P., and Wüthrich, K. (2002b). Protein NMR structure

determination with automated NOE-identification in the NOESY spectra using

the new software ATNOS. J. Biomol. NMR 24, 171–189.
Structure 20, 22
Huang, Y.J., Powers, R., and Montelione, G.T. (2005). Protein NMR recall,

precision, and F-measure scores (RPF scores): structure quality assessment

measures based on information retrieval statistics. J. Am. Chem. Soc. 127,

1665–1674.

Huang, Y.J., Tejero, R., Powers, R., and Montelione, G.T. (2006). A topology-

constrained distance network algorithm for protein structure determination

from NOESY data. Proteins 62, 587–603.

Hus, J.C., Marion, D., and Blackledge, M. (2001). Determination of protein

backbone structure using only residual dipolar couplings. J. Am. Chem. Soc.

123, 1541–1542.

Koradi, R., Billeter, M., and Güntert, P. (2000). Point-centered domain decom-

position for parallel molecular dynamics simulation. Comp. Phys. Commun.

124, 139–147.

Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and

Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking

the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.

Linge, J.P., Williams, M.A., Spronk, C.A.E.M., Bonvin, A.M.J.J., and Nilges, M.

(2003). Refinement of protein structures in explicit solvent. Proteins 50,

496–506.
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Luginbühl, P., Güntert, P., Billeter, M., and Wüthrich, K. (1996). The new
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Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids (New York: Wiley).

Zemla, A. (2003). LGA: A method for finding 3D similarities in protein struc-

tures. Nucleic Acids Res. 31, 3370–3374.

Zhang, Y., and Skolnick, J. (2004). Scoring function for automated assessment

of protein structure template quality. Proteins 57, 702–710.

Zweckstetter, M., and Bax, A. (2001). Single-step determination of protein

substructures using dipolar couplings: aid to structural genomics. J. Am.

Chem. Soc. 123, 9490–9491.
ights reserved


	Blind Testing of Routine, Fully Automated Determination of Protein Structures from NMR Data
	Introduction
	Results
	Accuracy and Convergence of Structure Calculations
	Geometric and Stereochemical Quality
	Quality Measured by Agreement with the Data

	Discussion
	Experimental Procedures
	Data Distribution
	Calculation Protocols
	CYANA
	UNIO
	ASDP
	ARIA
	CHESHIRE
	CS-DP-ROSETTA
	CS-ROSETTA


	Supplemental Information
	Acknowledgments
	References


