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A new approach for automated peak picking of multidimen-
sional protein NMR spectra with strong overlap is introduced,
which makes use of the program AUTOPSY (automated peak
picking for NMR spectroscopy). The main elements of this pro-
gram are a novel function for local noise level calculation, the use
of symmetry considerations, and the use of lineshapes extracted
from well-separated peaks for resolving groups of strongly over-
lapping peaks. The algorithm generates peak lists with precise
chemical shift and integral intensities, and a reliability measure for
the recognition of each peak. The results of automated peak
picking of NOESY spectra with AUTOPSY were tested in com-
bination with the combined automated NOESY cross peak assign-
ment and structure calculation routine NOAH implemented in the
program DYANA. The quality of the resulting structures was
found to be comparable with those from corresponding data ob-
tained with manual peak picking. © 1998 Academic Press

Key Words: peak picking; peak integration; noise level calcula-
tion; lineshapes; AUTOPSY.

1. INTRODUCTION

distortions due to artifacts. The main weakness of mos
automated approaches is the fact that they analyze only tf
data points around a local maximum that is part of a poten
tial peak. When interpreting spectra manually, an experi
enced spectroscopist will make use also of informatior
outside of the data points near the local maximum. In this
context it is important that multidimensional spectra typi-
cally contain multiple peaks that have the same lineshap
and the same chemical shift in one frequency domain. Thi
property has so far mainly been used for signal integratior
(e.g., 01-13). The AUTOPSY method presented in this
paper makes use of this observation for resolving strongh
overlapping signals in a fully automated way.

Some methods for peak integration assume that the line
shapes can be expressed by an analytical function, typically
mixed Gauss/Lorentz functiorl4, 15. Peaks in real spectra
often have lineshapes that are significantly different from
Gauss/Lorentz functions, for example, when there is peal
splitting due to scalar couplings. Assumptions that lineshape
follow analytical functions are therefore avoided for the most

Nuclear magnetic resonance (NMR) spectroscopy is Bt of the method presented here. Instead, we use more ge

now a We”_estab“shed method for biomacromo'ecu'&ra”y Valid Criteria f0r eVaIUating pOtentia| peakS, in particular
structure determinatiori( 2). Further development of NMR their symmetry and their regular shape. Symmetry considet
structure determination is in part focused on increased efffions have previously been used for analyzing anti-phase pe:
ciency of labor-intensive steps by computer-supported aRgtterns, e.g., in COSY spect®6(-19, but only rarely for the

tomation. One of these steps is the identification of the NM@&alysis of spectra with in-phase peaks, such as NOESY.

signals in two- and higher-dimensional spectra, often re-
ferred to as “peak picking.” In present practice this step in
the evaluation of complex NMR spectra is usually done
manually, with the aid of interactive computer programs
(e.q., B, 4). The reason is that even advanced recognition

methohds, S%Ch as neu_ral | netV\I/orI_<5, ?' S'Fatlsucal aaf ing of complex multidimensional NMR spectra consists of the
pfrotart]c ZS;(’ ), _ortnumlerlca}t ane; Yls';s 0 varlolus propetr Iesf’ollowing steps, which are in the following sections described
ort F ba a poin ng(' tO) orten ?' orf comE ex sgec ra’tin more detall for the treatment of 2D data sets. The actus
mainly because of strong overlap of peaks and spec fﬁ"plementation of the algorithm in the program AUTOPSY is
1 Present address: Tripos, Inc., 1699 S. Hanley Rd., St. Louis, MO 63143€Signed for spectra with an arbitrary number of dimensions
2913,
2 present address: Biochemistry and Biophysics, Box 462el@ang Uni-

versity, SE 40530 Geborg, Sweden.
3To whom correspondence should be addressed.

2. THE COMPUTATIONAL TOOLS OF AUTOPSY

2.1. General Strategy

The presently introduced approach for automated peak pick

e Determination of noise level. Exact determination of the
noise level is important, so that weak peaks can also b
recognized. The noise level is determined locally, so that th
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algorithm can deal with noise bands, water lines, and similaase noise level present in the whole spectrum plus addition:
artifacts. noise that can be present in each individual slice. Véith

e Segmentation. The spectrum is decomposed into cdreing the noise level of slicé in dimensiond of an n-
nected regions made up of data points with signal intensitidenensional spectrum, the base levg| is obtained as the
above the noise level. Data points outside of these regions ammimum of all these values,
not considered for further analysis.

o |dentification of separated peaks. Peaks that are well sep- 8, = min(8y;). [1]
arated from others are identified first, using criteria such as di
symmetry and regular shape. Their lineshapes and chemical
shift positions are extracted and used for the further steps. The additional noise levels for individual rows and colunins,

e Comparison and grouping of lineshapes from all regiontglative to the base level of the noise are calculated as
If a combination of a given shift and lineshape was found in
_several p_eaks_ during t_he previous step, each occurrence will be 8l = V/ng d=1,...,n. 2]
included in a list of all lineshapes. In this way all lineshapes are
compared for each frequency dimension and combined inffe nojse level at a given positiéhwith coordinatesi, . . . ,
groups of (approximately) equal lineshapes, which results in § s then calculated from the base value and the additionz

reduced list of lineshapes that are characterized with highg{j,es for the slices that pass through the data point
precision.

e Resolving regions with strong overlap. Parts of regions
with strong peak overlap were not treated in the previous steps. . i 2 ) " ) )
These are now resolved using the lineshapes collected fronf'®iS&P) = 2 Bajs T 8 = 2 8o — (N = 1)~ &. [3]
separated peaks. Shapes of potential peaks are constructed -t -t
from different combinations of lineshapes in each dimension.

These peak shapes are then used for explaining residual interf/oT® complex statistical methods have been proposed fc

sity that cannot be accounted for by the previously identifidt'S® Ie\f/el (;]alcuflatmn (6-9H19))- However, these cannot
peaks, and for calculating the amplitudes. account for the often very characteristic, uneven noise distri

« Integration. Calculating peak integrals is based on tfgtion (bands) in NMR spectra and only calculate one globa

lineshapes and amplitudes that were previously evaluated RS€ Ievel value for the whole spectrum. They therefore do nc
all peaks. seem suitable as robust methods for noise analysis of comple

e Symmetrization and filtering. For spectra that are expect8AECtra-
to be symmetric with regard to their diagonal, an optional
symmetrization step can be performed on the peak list. Before
output, the peak list can also be filtered based on various otheBegmentation of spectra into connected regions of dat
criteria, such as a peak quality factor or the linewidths. points above the noise level is done with a “flood fill” algo-

rithm (20), that was generalized to an arbitrary number of
22 Noise Level Calculation dimensions. Local maxima are used as seeds, where the fillir
algorithm is only started for maxima that are not within an

A useful peak picking algorithm must be able to find pealkaready determined region. To make this test efficient even fo
with intensities that are only slightly over the noise levdarge numbers of regions, all local maxima of previously
without erroneously detecting a sizeable number of noisketermined regions are stored in a hash table. The impleme
peaks. Noise in a NMR spectrum is generally not uniform, ardtion of the algorithm is such that it is never necessary to holt
may be larger close to the edges than in the central regiotiee whole spectrum in memory, only the currently processe
Many spectra also have characteristic noise bangadise, parts of the rows are loaded. The data points within the bounc
water line, diagonal). The following strategy for local noiséng box of the region are kept in memory, in conjunction with
level calculation was developed. an equally sized table of boolean values that indicate whethe

A noise level value is calculated for each 1D slice (rows arttle corresponding data point lies within the region.
columns in 2D spectra) through the spectrum. For this purposeMany important spectra (e.g., TOCSY and NOESY) have &
a section of given length (typically 5% of the total length) isliagonal where the signals overlap so strongly that they cannt
determined so that the standard deviation within this windowliee evaluated. These diagonal signals can be excluded from tl
minimal. The noise level amplitude is then obtained by musegmentation. For this the extent of the diagonal is determine
tiplying this standard deviation by an empirical factor, typiby first using the aforementioned flood fill algorithm with
cally between 2 and 3, to make sure that only values signifieints on the diagonal as seeds. If the noise level is used as tl
cantly above the noise level are larger than this referentereshold for this filling step, strong cross peaks close to the
Noise level values within the spectrum are then modeled asliagonal are also excluded, even though they could subs

2.3. Segmentation
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quently be handled by the algorithm used. To avoid such loss (a)
of informative peaks, the threshold value for determining the T
diagonal can be gradually increased, and additional segmenta-

tion steps can be made. I

Rows and columns close to the outer confines of a spectrum
may suffer from poor processing (base line distortions). They
can be excluded in the same way as described above for the
diagonal, except that points on the outer boundaries of the
spectrum are then used as seeds for the fill algorithm.

1
i

2.4. ldentification of Separated Peaks )
Peak Symmetry T

Even though the lineshapes of the NMR signals are often 1
close to Gauss or Lorentz functions, the error with which
potential peaks can be fitted with such functions turned out to
be an insensitive criterion for discriminating well-separated
peaks from peaks that strongly overlap with other peaks. In-
stead, a more generally valid criterion of symmetry is used
here. Assuming proper processing (phase correction) of the
spectrum, the errors in symmetry in each frequency domain
should be smaller than the noise level for peaks without over- frequency (data points) —
lap. To make use of this fact a measure for symmetry Vi0|ati0nFlG. 1. Decomposition of a synthetic 1D data set with 100 data points.
with regard to a given symmetry center is defined. We minihe data set consists of two peaks of amplitude 1.0 and 0.4, with a distance
mize this function with the position of the symmetry center &9 data points between the peak centers and linewidths of 20 data points ea
a parameter, and use the symmetry center as the position ofNgenally distributed random noise with a standard deviation of 0.02 was

. . ..:added. (a) Decomposition into two peaks with the use of the criterion describe
peak. The symmetry center is a QOOd estimate for the pOSItI% he text (Eq. [5]). The top curve shows the synthetic data set. The vertica

of the strongest peak even in the case of strong Overl"ﬂpe shows the center determined for the main peak, the middle curve its shay
Furthermore, any symmetry violation with regard to this centafier symmetrization, and the bottom line the difference between the top an
is a valuable criterion to decide how well the peak is separatedidle lines. (b) Decomposition using the sum of differenc24) @s the
from other peaks. criterion for evaluation of symmetry.

The symmetry violation of a set of data poirdg with
regard to a given center, as expressed by residyglsis

calculated by subtracting a symmetrized set of data paifts, lie between the real peak centers, rather than at the position:
one of the peaks. It turned out to be a much more stable an

ry = dy — di. [4] reliable approach to use a measu{€) that favors the remain-
ing intensityr;, to be as smooth as possible:

S
7

The symmetrized valued, are calculated as the minimaaf,

and the values at all symmetry-related positions relative to the o(@ =2, i = Nioad + [ric = el [5]
given centec (the idea of this symmetrization is related to the '

algorithm of Baumanret al. (21), except that the procedure is

applied to a limited number of data points around a potentidditional terms are used to avoid that the center “walks
peak, rather than to a complete spectrum). Bec&usegen- away” too far from the local maximum. These are based on thi
erally not exactly on a data point the symmetry-related posniaximal expected splitting of peaks, which has to be specifiel
tions will also be between data points, and spline interpolatitmy the user. Once the minimization @f(C) with € as a

is used for approximating the values at their positions. Thrarameter has been completéds taken as the center of the
residuals;, can be used for judging the symmetry. If the givepotential peak and-(C) is used as a criterion for how well the
point is the center of an exactly symmetric region,rallare potential peak is separated from other peaks.

zero. For the search of cent&# might appear obvious to take A comparison with the standard approach based on mini
a standard norm af;,, such as least squares, and to use thisizing the sum of squares af, (24) illustrates the high
number as a symmetry violation. This would work well as longeliability with which the position of the strongest signal in a
as the peaks are clearly separated or have very different inteluster of overlapping lines can be identified using the criterior
sities, but fails as soon as there is strong overlap of peaks wathEq. [5] (Fig. 1). In the same situation, the sum-of-square:s
similar intensity. In this case the calculated center would oft@pproach Z4) yields a shifted position and a distorted line-
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peaks are calculated. The error (difference of the combinatio
of lineshapes and the data points) expresses how uniform tt
shape of the peak is. This uniformity has proven to be a goo
criterion for discriminating between separated peaks and peal
with strong overlap. The lineshapes obtained from solving Eq
[6] will be used in the following steps. Note that no analytic
lineshape such as Gauss/Lorentz is assumed.

: 4 %633 =463 =010 Identification of Signals

: Based on the criteria of symmetry and uniformity explained
l above, individually resolved signals can now be identified by
: performing calculations on the entire connected regions dete
| mined in the segmentation step. However, complex spectr
l have only few signals without overlap with other signals, anc

1
I
I
I
I
!
|
I
[
|

the individual connected regions that result from segmentatio
*1 %2 X3 5 %6 X7 18 may contain many thousand data points and several hundre

FIG. 2. lllustration of the calculation of unknown lineshapesndy, and Peaks- For this reason, symmetry and uniformity errors are é
the amplitudea from a given set of data points}, = d;, using an overde- first only calculated for subregions around each local maxi
termined system of equations. Each data point in the peak area, numberegriym that extend to all connected data points with values large
the index, leads to one equation. Data points outside the peak area are shagigdn half of the amplitude of the maximum. This is done for all

local maxima, in order of decreasing amplitude. If the subre.

. . ion around a maximum contains a previously processed (larg
shape for the strongest signal, and, consequently, fails to c%r— P yp (lare

. . . ) maximum, the maximum is labelled as “not separated,” an
rectly locate the second, weaker signal in the cluster (Fig. 10); : .
symmetry and uniformity are not calculated.

All maxima of a region that have been analyzed in this way
are sorted according to the following three criteria: (i) Sepa-
Under most circumstances, the shape of a peak can rigd maxima precede not separated maxima. (i) Of any tw
expressed as the product of a lineshape in each dimensiggparated maxima, the one with the smaller relative error i
multiplied with an amplitude. In 2D spectra, with data pointsymmetry and uniformity comes first. (iii) Of two maxima that

Uniformity of Peak Shape

di that have lineshapes (j = 1,...,n) andy, (k = are not separated, the one with the larger amplitude comes fir:
1, ...,m), and an amplitude, a peak shape can be factorizegh the resulting list, maxima corresponding to well separatec
as peaks are then at the top, and those corresponding to strong
overlapping peaks at the bottom, and they are further process

a- -y = dy =d. [6] in this order. For each maximum, symmetry and uniformity of

the surrounding sub-segment containing the data points with :
To determine lineshapes, Eq. [6] can be viewed as a systemezfst half the amplitude are again calculated, since these m:
equations for thé + m + 1 unknownsa, x;, andy,, with the have changed due to the subtraction of other signals (se
number of equations being equal to the number of data poitislow). The amplitude threshold for determining a sub-seg
in the region (Fig. 2). To simplify the further notation, thement is then decreased step by step, until either the symmet
spectral data points are treated as a one-dimensional wé&ctoor the uniformity error increases significantly (typically by a
= dy by using an index,, that numbers the data points withinfactor of 1.2), additional maxima lie within the region, or the
the two-dimensional region (Fig. 2). These definitions camoise level is reached. If the peak amplitude is large enough,
readily be extended to 3D and higher-dimensional spectra.new entry in the list of recognized peaks is generated. The fine
The system is nonlinear, but can be solved with a simpli@eshapes are calculated from the data points symmetrized
iterative method that assumes some starting values and themway described in the previous section, thereby reducing th
alternates between calculating new valuesqfawhile holding influence of overlap. If the lineshapes do not extend down tc
the valuesy, fixed, and calculating new values fgf while the noise level because a higher threshold was used for the fin
holding the values fok; fixed. Methods that either just takedetermination of the sub-segment, they are extended by a |
single slices out of the data matri¢3) or sum up data points with a mixed Gauss/Lorentz function. Using the lineshapes an
for obtaining the lineshape®?) result in lineshapes that ap-amplitudes thus obtained, the peak is then subtracted from tt
proximate the experimental data less precisely than the presgatia points and the lineshapes are entered into the list of &
algorithm. lineshapes.
With this procedure, lineshapes and amplitudes of potentialError estimates are made for all calculations and used fc
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various purposes, such as assigning a quality factor to eddte expected peak shapes are treated as one-dimensional v
recognized peak and for increasing the threshold for the miors in the same way as the spectral data points in Eq. [6].
imally tolerated amplitude. In this way it is possible to account

for the error in the data that is produced by subtracting oth8ubdivision

eaks. : : .
P Because the aforementioned regions in complex spectra ce

_ o ] be very large, large regions are first subdivided into more
2.5. Grouping of Similar Lineshapes manageable parts. The algorithm described in the next par:

Resolving overlap will require all lineshapes from the entirgr"’_lph atheves such a sub_d|V|s_|on al_ong a path through da
nts with the lowest possible intensity.

spectrum. In general, the identification of separated peakspé)i first st ted ) d h local
described in subsection 2.4 will produce each lineshape mul- > 2 IS step,tadcg)nne_c © reglo_r: arounlzé e;z;]lct hO(I:(? max
tiple times. This may cause problems for the next step of tfjeum IS constructed by using a priority que Nthat holds a

procedure, and therefore it is necessary to produce a list tﬂg{nber of data paints ordered by their intensities and an inde

contains each lineshape only once. To this end the differente’ region that they are assigned to. Initially, the queue is fillec

between two lineshapes is calculated as the root mean sqd’&' the local maxima. In addition to the queue, a list is

difference (weighted according to the estimated error) betwe%ﬁnerated_ th"?‘t stores neighborhooo! relations_ b etween .SUb'
ons, which is initially empty. The first entry in the priority

the values of the shape. An additional term for the differen& is th tedl d ked with the index of th
between the center of the shapes is added. The shapes are JH&H© 1S then repeatedly removed, marked wi €1ndexo

: : . : : region, and all its unmarked neighbors are added to the queu
grouped with a clustering algorithm, which starts with eac\glgen a neighbor is encounterec?that was previously maquedz

shape in a separate cluster. Then the two clusters with b a t " breai ‘ it the t .
smallest difference are repeatedly merged into one cluster u fionging fo another subregion, an entry with th€ two region:
& made in the neighbor list. This procedure is continued unti

either a given threshold on the difference, or the desir?}j . ;
number of clusters, which corresponds to the number of efx—e queue Is emply. . . .
In a second step, the neighbor list is sequentially processe

pected chemical shifts, is reached. Cot | tod subredi il be at the front o
Lineshapes that are attributed to the same group by t-II;Be most strongly connected subregions will be at the front o
list, because in the previous step the data points wel

clustering algorithm are combined into one lineshape, usingié

weighted average in which the shapes with smaller estima r&cessed in the order of their intensities. Neighboring region

errors obtain a higher weight. Combining several Iineshap%'ée then merged until the resulting region reaches the max

into one also increases the precision of these shapes. mally desired size.

) ) Approximation with a Selection of Peaks
2.6. Resolving Spectral Overlap and Peak Integration
The most obvious approach for resolving overlap would be

to simply assume an unknown amplitude for each potentia

The results of the previous steps are lists of identified pedRak, and solving the overdetermined linear system of equc
and lineshapes for each frequency dimension. In all regioli@ns for least squares (Fig. 2). With ideal data, one woulc

that do not consist exclusively of well-separated peaks, tRBt@in zero for the absence of peaks, and amplitudes larg

overlapping peaks must now be resolved. For this purposet,hém zero for actual peaks. In reality, one obtains many sma

list of potential signals is created from the known lineshapeePntributions instead of a few large ones, and even negativ
For each frequency dimension the lineshapes within the rarf§@Plitudes are a quite common result. Itis therefore preferabl
of the region are considered. Assuming that all lineshapes h&@dirst approximate the data with only a selection of potentia
been found, each peak must be a combination of one linesh&§&KS: and then add additional potential peaks when necessa
from each frequency dimension, and the set of all potentiaf- ONly where unexplained intensity remains. With a set o

peaks can be constructed by taking all these combinationsPgtential signalsS, the indexk going over all data points,
ahs;c being the shape of a potential signdtom S, Eq. [8]

lineshapes. This procedure creates all potential peaks in f 5 : - L
bounding box of the region. Because regions are normally rigtthe overdetermined system of equations for obtaining th

rectangular, the potential peaks with centers outside the actj@known amplitudes;, which are imposed to be positive by

region are excluded. If a combination of lineshapes corr1€ Poundary conditions [9],

sponds to a previously recognized peak, the potential peak is

Potential Peaks

marked as “already found.” > Sy = dy V k (8]
If x; andy, are two lineshapes in a 2D NMR spectrum, their ies
outer product is the expected peak shape, a =0 V(i€s) 9]

S =Sk =X Y [7] The residuals obtained when solving this system are expecte
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to be localized where additional potential peaks must be ge-match of this remaining intensity with each potential péak
lected. Unless all necessary potential peaks were selectedtedl does not correspond to an already identified peak is the
intensity in the data cannot be explained. It is therefore ncélculated as the cosine of the scalar product of the twt
critical if the data are larger than the sum in Eq. [8], but Wectors,
should never be significantly smaller. For these reasons, using

an asymmetric norm instead of the normal least squares has

. . Ek I’k * Sik
proven to be highly valuable. The penalty of an erxois C= ———— . [15]
defined as V2K e s Z Sk
ge(x) =e—x—1. [10] As long as there is a match above a user-given threshold (fc

example, 0.5), the potential peak with the best match is chose

The error at data poirk, taking account of the errors, of the @nd added to the set of peaks. To make the procedure mo
peak shapes, and the noise leves, is defined in Eq. [11], reliable, an error estimate fay, is also calculated, and taken

into account by favoring potential peaks for which the error of

S (a-s) — d the match calculation is small. Once there are no potentie

s ko [11] peaks with an acceptably good match left, all selected peak

V82 + Zies (@ * oy)? that have a minimal amplitude (for example, 1.5 times the

noise level) are added to the list of identified peaks. The matc

With an additional, strong penalty term for negative amplitudésom Eg. [15] and the corresponding error are used for calcu

Ak:

(Eq. [12]; b is a weighting factor), lating the quality factor of the peak.
a \* _ 2.7. Symmetrization
b = 0.1-8 [12] Symmetrization of NMR spectr&{) is in current practice
' 0 otherwise little used, since even spectra that are expected to have tl

same set of signals on both sides of the diagonal are often n
fully symmetric, with significantly different intensities of
the overdetermined system of Eq. [8] can be transferred to fheaks in symmetry-related positions of the frequency plane

problem of minimizing the functiof in Eq. [13]: Nonetheless, the fact that a peak was detected on both sides
the diagonal is a strong indication that it was correctly recog

T=> e(A) + > p. [13] hized. For this reason, an optional symmetrization step on th

K ics peak list can be performed in the AUTOPSY approach tha

may modify the qualities that were calculated in the recogni:

Gradients of this function can be calculated analytically, so tHiff" Steps but does not directly remove any peaks. Since onl
the optimization can be performed with the method of conji€aks above a certain quality factor (for example, 0.5) ar
gate gradients2d). normally selected for further evaluation, such symmetrizatior
The importance of using the asymmetric error function ¢F&Y still result in the elimi.nation of many artifactual peaks.
Eq. [10] can be appreciated when comparing this approacH © €ach peak with quality factop, (in the range 0 to 1) the
with the work of Rischeét al. (22), who use a similar approachp,eak is searched that is closest _to its po_smon mlrroreq at th
for peak integration and report that it is necessary to adﬂj@gonal. The quality factor of this peak is denotedjgsits
amplitudes by visual inspection before peaks are subtractediStance from the mirrored position & If d is less than a

given maximal distancal,, ., the new quality factorg; is
Selection of Signals calculated as

The previous section explained how to calculate amplitudes
for a given set of potential peaks. The key point is then to select Q=1-(1-qy)- (1 _ (1 _ dN) . q2> _ [16]
the optimal set of peaks. A simple approach turned out to be e
most stable and reliable. For starting, one takes the set of

already identified peaks. The amplitudes are calculated for tlyis,o symmetric signal is found within the maximal distance,
set, and the distribution of residuals (remaining intensity) {fe intensity at the mirrored position is checked. It is well
analyzed, possible that no signal was found even though there is nor
vanishing signal intensity, for example, because the position i
re=dy— > a - Sy [14] question overlaps with the water line. The local noise level alsc

i needs to be considered. dfis the intensity at the symmetric
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position, 6 the corresponding noise level, aadhe amplitude Input Spectrum and Peak Picking

of the peak in question, the modified quality factor is The 2D NOESY spectrum in J© was recorded at 750 MHz,
and processed to a size of 4096 data points in the divgct

STt 3 ifsts<a dimension and 2048 data points in the indiregtdimension.
q; = 93 [17] The same spectrum had been used for the manual interpretati
d: otherwise. by Antuchet al. (26).
Automated peak picking was done with the AUTOPSY
3. IMPLEMENTATION OF AUTOPSY procedure. The whole spectrum was used, i.e., no parts (such

the water line or the diagonal) were manually excluded. A

All functions needed for the AUTOPSY operations wer8linimal size of 6 data points im, and 3 data points i, was
implemented in a program-independent library. This library @ven for each peak. For the first step of identification of
structured in layers, where all functions of interest can treParated peaks a minimal amplitude of 2.0 times the loce
called up directly. It is possible to call low-level functionsNCiSe level was used. For the second step of identification ¢
such as symmetry calculation, as well as high-level functiorf§ther peaks using lineshape decomposition, the minimal ar
such as finding all separated peaks in a region. The libraf{jfude was 1.5 times the noise level. Symmetrization of the
consists of around 6000 lines of ANSI C source code. AR€ak list was done with the procedure described in subsectic

functions were implemented for spectra with an arbitrary nurg:/- The peak picking calculation took less than 2 hours on
ber of dimensions; a maximal number of dimensions is pr&ilicon Graphics Indigbwith a MIPS R10000 processor (175
vided at the compile time. MHz). The program located 7871 possible peaks, of which th
To keep the library general, input of spectra is handled ovBR€S with calculated linewidths of less than 10 Hz, ora quality
callback functions. Such functions were written for data that {&ctor of less than 0.5, were excluded. The remaining 378!
already in memory, and for files in the BRUKER (See Brukd?€aks were used for the further analysis. _
applications software) and XEASYY format. .Flgure 3 shows plots of a few representa.tlve spectral re
Using the aforementioned library of functions, a complef@Ons: It can t_)e seen that the results are reliable for_ spectr:
peak picking program can be written with a few function call$€gions with little (Fig. 3a) or moderately strong (Fig. 3b)
and the code can readily be incorporated into existing prgveriap. Where very strong overlap occurs (Fig. 3c), the spec
grams. A program with a comfortable user interface and flefum would be difficult to interpret even for an experienced
ible possibilities for various peak picking strategies was writtetPeCtroscopist, and the results of automated peak picking st
where all the steps can be executed as single commands 294 meaningful. Almost no peaks are identified on the very
therefore be combined freely. The program also has simi€ong water line (Fig. 3d), and although the diagonal was
display possibilities for spectra and peak lists. Before writingrccessfully excluded, peaks close to the diagonal were st
out a peak list the user can make selections on the peak list d (Fig. 3e).
are based on criteria, such as peak position, linewidths, ap
quality factor. Most of the source code for this interactive
program was taken from the molecular graphics programThe automatically determined peak list with 3789 entries.
MOLMOL (25). together with the chemical shift list obtained from the sequen
The program AUTOPSY is available from the authors. For detafigl assignment, was used as input for the automated assig
see http://www.mol.biol.ethz.ch/wuthrich/software/autopsy. ment program routine NOAH2(7) implemented in the program
DYANA (28). After 25 assignment cycles, unique assignment:
4. APPLICATION OF AUTOPSY were found for 2761 peaks. Using only these peaks, a fine
WITH 2D NOESY SPECTRA structure calculation resulting in a bundle of 20 conformers
was then performed with DYANA, using torsion angle dynam-
To evaluate the results that can be obtained using Al§S and the standard simulated annealing protocol. Figure
TOPSY, the program was applied to a 2D NOESY spectruﬁIi‘OVYS the resulting structure in comparison with the structur
recorded for the structure determination of the killer toxin frorPtained from manual peak picking and manual assignmen
the yeaswilliopsis mrakii(26), a protein with 88 amino acids. Where the RMSD between the well defined parts (residue
Quantitative evaluation of the results of automated peak pick=39 and 47-87) of the two mean structures is 0.92 A. Bott
ing routines is difficult to obtain. Here we chose to use tH@"get function values and RMSDs are very similar for both
calculated peak list as input for the automated NOE assignméktictures (Table 1).
procedure NOAH Z7) implemented in the program packag _ .
DYANA (28). The quality of the structure resulting from thi;?:omp""t'b'“ty with Known Structure
procedure is compared with the quality of the structure ob- As an additional measure for the quality of the automatically
tained with manual peak picking and manual NOE assignmedetermined peak list, its compatibility with the published struc-

lcjitomated Assignment and Structure Calculation
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FIG. 3. Representative regions from the 2D NOESY spectrum of the protein WmKT. Automatically identified signal positions with quality>fa@tors
and linewidths> 10 Hz are identified as dots. (a) Region with little peak overlap; (b) and (c) regions with increasing overlap; (d) region containing the \
line; (e) region containing the diagonal.
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ture 26) was calculated. Using a tolerance ©0.01 ppm for TABLE 1

the chemical shifts, there is a possible assignment to a protofomparison of the Automatically Determined Structure of the
pair with a distance of less than 6.0 A for 3299 of the 3789east Killer Toxin WmKT with the Structure Obtained from
peaks. For 188 peaks there is no possible assignment, andggual Spectrum Interpretation

remaining additional 302 peaks have no possible assignments

that would be compatible with the structure. Quantity Automatic Manua?
The 490 peaks that were thus found to be incompatible witlumber of assigned peaks 2761 1698
the structure were manually analyzed and classified. A total fmber of upper distance limits 1237 1053
218 of them were unambiguously confirmed as real peaks, 3nge of final target function valles 17-32K 19-43 K
as peaks for which the chemical shift could not be precise'F\VISD (4-39, 47-87) 0.57 A 059A

determined, 111 as questionable cases, and 117 as erroneous,e o conformers calculated with DYAN/A2®) from data obtained by
peak identifications. automatic assignment of the automatically determined peak list (see text).
Possible explanations for the fact that 218 unambiguousI)P The 20 conformers calculated with DIANA3Y) from data obtained by
identified NOE cross peaks do not have a compatible assidfjnual spectrum interpretatiodd). _
ment include that no sequential assignments were obtained fq,rgpem”m evaluated on both sides of the diagonal.
pectrum evaluated on one side of the diagonal.

10 protons in WmKT, effects of spin diffusion, and the pres- ®Range of residual violations in the last run of the individual structure

ence of impurities in the sample. calculations with DIANA or DYANA, respectively.
fRoot mean square deviation of the backbone atoms of residues 4 to 39 a
Precision of |ntegrals 47 to 87 relative to the average atom coordinates.

For all peaks that are present in both the automatically and

manually determlneq peﬁg lists, the mt_egrals were quantifge, 1 anual interpretation the intensity was distributed to sev
tively compared. Using ™ (corresponding to the distance

) : ) eral peaks, while only one peak was recognized by the autc
constraint used for the structure calculation) for an integral ateF()j procedure y P g y
sizel, 62% of all integrals differ by less than 5% from the '
corresponding integrals in the manually determined peak list,
85% coincide within _10%, and almost 99%_c0|nC|de Wlthln_ 5 DISCUSSION
25%. The few large differences occur mostly in cases where in

The results in the previous section show that the AUTOPSY
approach performs reliable automated peak picking for 2C
NOESY spectra, and other complex 2D NMR spectra can b
similarly analyzed. The outcome depends critically on the quality
of the input spectrum. It is essential that careful data processing
performed, in particular baseline and phase correction, and th
the resolution is high enough so that meaningful lineshapes can |
extracted. The much smaller digital resolution of 3D spectre
combined with reduced signal/noise ratio and increased incidenc
of artifacts, especially in**C-edited spectra, poses additional
problems for successful application of AUTOPSY. While the
results can probably be improved by processing spectra to larg
sizes than normally used for manual interpretation, a more su
cessful method for reliable automated peak picking for 3D NMR
spectra may combine the AUTOPSY approach with analysis o
additional input, such as chemical shifts taken from 2D spectre
With AUTOPSY, the NOAH routine 47, 29 implemented in
DYANA (28) for combined automated NOESY cross peak as-:
signment and three-dimensional structure calculation, and th
program GARANT for automated sequence-specific assignmen
(30), a set of automated tools for all labor-intensive steps of NMR
structure determination based on 2D spectra is now availabl

FIG. 4. Automatically determined structure of WmKT (dark) superim-ere work will concentrate on combining these individual tools
posed onto the structure obtained by manual interpretation of the spectr

iifo a functioning and ble software entity, and to impl
(bright) (26). Shown are 10 conformers of each structure, the superposition'i oa un?_lonmg an_ manageable _SO are entity, and to 'mP €
for best fit of the backbone atoms of residues 4-39 and 47-87. Imagtent additional routines for expanding the automated analysis 1

generated with MOLMOL 25). three- and possibly higher-dimensional NMR spectra.
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