
Computer Physics Communications 124 (2000) 139–147
www.elsevier.nl/locate/cpc

Point-centered domain decomposition for
parallel molecular dynamics simulation

R. Koradia, M. Billeterb, P. Güntertc,1
a Tripos, Inc., 1699 S. Hanley Road, St. Louis, MO 63144, USA

b Göteborg University, Biochemistry and Biophysics, Lundberg Laboratory, Box 462, S-40530 Göteborg, Sweden
c Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland

Received 15 April 1999; accepted 9 June 1999

Abstract

A new algorithm for molecular dynamics simulations of biological macromolecules on parallel computers, point-centered
domain decomposition, is introduced. The molecular system is divided into clusters that are assigned to individual processors.
Each cluster is characterized by a center point and comprises all atoms that are closer to its center point than to the center point
of any other cluster. The point-centered domain decomposition algorithm is implemented in the new program OPALp using a
standard message passing library, so that it runs on both shared memory and massively parallel distributed memory computers.
Benchmarks show that the program makes efficient use of up to 100 and more processors for realistic systems of a protein in
water comprising 10000 to 20000 atoms. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Molecular dynamics; Parallel computing; Message passing; Domain decomposition; MPI; OPALp

1. Introduction

Molecular dynamics (MD) simulations [1] have be-
come a powerful tool for the investigation of macro-
molecular biological systems. They require large
amounts of computation. Typical systems of a pro-
tein in water often consist of more than 10 000 atoms,
and even if a cutoff for non-bonding interactions is
used, several million interactions have to be calcu-
lated in each time step. Integration time steps cannot
be made longer than about 2 fs to correctly sample
high-frequency motions. Interesting simulations cur-
rently cover time ranges of 0.5–5 ns, and require on
the order of 106 time steps. Longer simulations would
be highly desirable, for instance to enable the simu-

1 E-mail: guentert@mol.biol.ethz.ch.

lation of protein folding processes. The new insight
gained into the initial phase of protein folding from a
recent, exceptionally long MD simulation of a protein
with explicit representation of water for 1µs [2] un-
derlines the importance of efficient parallel algorithms
for MD simulations.

Given these demands, it is clear that the most power-
ful computers are employed for performing the calcu-
lations. Traditionally these have been vector comput-
ers, which are very well suited for this problem. Re-
cent tendencies in high performance computing show
a trend away from specialized vector processors to par-
allel computers with many standard CPUs. Because
the nature of the problem dictates that time steps can
only be executed sequentially, the calculations for each
time step need to be distributed, leading to fine-grained
parallelism. Handling this distribution efficiently is

0010-4655/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(99)00436-1

140 R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147

difficult, especially when trying to achieve high per-
formance with large numbers of processors [3].

Two major strategies are commonly used for MD
on parallel machines, e.g., [4,5]: The replicated data
approach and the domain decomposition (or space
decomposition) approach. In the replicated data ap-
proach, e.g., [6–8], all processing nodes hold the cur-
rent values of all atom coordinates. The main advan-
tage of this method is that implementation is rela-
tively simple, it can often be done by local modifica-
tions to MD code that was originally written for se-
rial execution. Also, because calculations can be as-
signed arbitrarily to any node, good load balancing
is easy to achieve. However, because all coordinates
need to be communicated to all nodes after each time
step, the method becomes inefficient for large num-
bers of processors. In the domain decomposition ap-
proach, e.g., [2,4,9–12], the system is divided into re-
gions in space. Each node is responsible for the cal-
culations related to atoms in one of these regions.
Since a cutoff is typically used for force calculations
in large systems, each node only needs the coordi-
nates of atoms from regions within the cutoff radius.
This significantly reduces the communication require-
ments and enables much better scaling to large num-
bers of processors. Each node can also do additional
calculations for atoms within its region, e.g., evaluat-
ing bonding potentials and performing the integration
time step, such that also these calculations are distrib-
uted among the processors. Implementation is more
complicated than in the replicated data approach, and
good load balancing requires special attention.

OPALp uses a domain decomposition approach.
Most published parallel MD simulation algorithms
decompose the problem domain into equally sized
rectangular boxes [10]. Srinivasan et al. [9] vary the
sizes of the boxes to achieve better load balancing.
We chose a different kind of space decomposition in
which each region, in the following called “cluster”, is
defined by one point in space, called its “center”. Each
atom belongs to the region with the closest center.
From a geometrical point of view, this decomposition
resembles a three-dimensional Voronoi diagram [13].
This point-centered domain decomposition approach
has a number of advantages over a decomposition into
boxes:
(1) Different shapes of the problem domain cause

no difficulties. A decomposition into boxes is

natural if the problem domain is a box (or a
trivial mapping of a box, like a rhomboid), but not
favorable when, e.g., a truncated octahedron or an
ellipsoid are used.

(2) Dynamic load balancing can be achieved through
a straightforward modification of the definition of
a cluster.

(3) Any number of clusters (processors) can be used
easily. With boxes, the number of clusters is
always the product of three integral numbers.
Because it is normally beneficial for the boxes to
have approximately equal sizes in all dimensions,
this poses certain restrictions.

(4) The more “spherical” nature of the clusters may
lead to a smaller number of “neighbors” (clusters
within the cutoff radius). Whereas in a periodic
system boxes always have at least 26 (3× 3 ×
3− 1) neighbors, this number can be significantly
lower with the present approach.

The point-centered domain decomposition method
has been implemented in the new program OPALp
which incorporates most of the functionality of its
predecessor OPAL [14], with the additional option of
applying a cutoff for non-bonding interactions and the
possibility to use periodic boundary conditions. As in
OPAL, the standard AMBER force field [15] is used
without modification. The goal was to write a program
that is highly efficient, considering both parallelization
and vectorization, and easy to use. The well-structured
and modular implementation makes OPALp a suitable
platform for future development.

2. Parallelization strategy

2.1. Goals

The overwhelming part of all computation time in
an MD simulation is spent for evaluating the potential
of non-bonding interactions of atom pairs. A simple
approach that is sometimes employed is to distribute
only these calculations to multiple processors, collect-
ing the resulting forces, and doing the rest of the cal-
culation (bonding potentials, integration, etc.) on only
one processor [7]. This works well with a small num-
ber of processors, but concentrating even a small part
of the whole computation on only one processor will
unavoidably create a bottleneck when going to many

R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147 141

Fig. 1. Two-dimensional, schematic representation of the
point-centered domain decomposition technique. Atoms are shown
as black dots, the bounding spheres of clusters as circles, and the
actual boundaries of clusters as lines. Clusteri, with centerci and
bounding sphere radiusri (see text), is highlighted by shading.

processors [16]. Our approach distributes all parts of
an MD simulation. Other points that have to be taken
care of to enable efficient parallel execution are:
(1) Minimize the total amount of communication,

where the number of communication messages
turns out to be more critical than the communi-
cation volume.

(2) Wherever possible, overlap computation and com-
munication, so that the time a processor waits
for completion of communication requests is not
wasted.

(3) Achieve good load balancing, so that each proces-
sor has approximately the same amount of com-
putation to do.

(4) Maintain vectorization, because the single proces-
sors of many parallel machines are still vector
processors.

2.2. Atom distribution

To make it possible that all parts of an MD sim-
ulation can be distributed to multiple processors, we
chose a domain decomposition approach in which
each atom is assigned to a processor, and this proces-
sor does all computations related to this atom, e.g., cal-
culating the forces on the atom, integrating the equa-
tions of motion, doing velocity and coordinate scal-
ing for temperature and pressure equilibration, etc.
While it would be possible to randomly assign atoms

to processors, it is possible to reduce the amount of
communication by assigning groups of atoms that are
close together in space to each processor. In the fol-
lowing, such a group of atoms is referred to as a “clus-
ter”. Each cluster is described by a point in space,
called its “center”. Atoms belong to the cluster whose
center is closest to the atom (Fig. 1). The radius of a
bounding sphere is calculated for each cluster by tak-
ing the maximum distance of its atoms from the center.

The initial distribution of atoms into clusters is
obtained with an iterative algorithm. At first, the
position of a randomly selected atom is taken as
center for each cluster. All atoms are then assigned
to the cluster with the closest center, and a new
center for each cluster is calculated as center of
gravity of the atoms assigned to it. This step is
repeated 30 times, which consistently leads to a good
start distribution. This algorithm would assign atoms
to clusters based purely on their position in space,
without taking chemical information into account.
As will be explained later, it is beneficial to assign
entire amino acid residues or solvent molecules to
one cluster. To achieve this, the algorithm is slightly
modified to assign all atoms of such a group to one
cluster based on the closest distance of one of its atoms
to a cluster center.

When using a cutoff for non-bonding interactions,
the current coordinates of an atom are used only by
processors that hold atoms within the cutoff distance.
Because atoms are assigned to clusters based on their
position in space, updated atom coordinates need only
be communicated to a subset of all processors, as illus-
trated in Fig. 2. These clusters are called “neighbors”.
For most pairs of clusters, especially in large sys-
tems, the decision that they cannot be neighbors can be
made by a quick calculation based on their bounding
spheres. The gain of this approach becomes increas-
ingly bigger when using large numbers of processors.

2.3. Pair list construction

When using a cutoff for non-bonding forces, it is
necessary to construct a list of all pairs of atoms that
are within the cutoff distance. This “pair list” is nor-
mally updated after a fixed number of MD steps, typi-
cally 10. For saving memory space, and for increased
efficiency on vector computers, the list is not stored as

142 R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147

Fig. 2. A central cluster (shaded) and its neighboring clusters
(hatched). The inner circle represents the bounding sphere of the
central cluster. The radius of outer circle is given by the radius
of the bounding sphere plus the cutoff distance for non-bonded
interactions. The positions of atoms within the outer sphere are
required by the processor that performs calculations for the central
cluster.

a flat array of index pairs, but as a separate array of
“partners” for each atom.

Since each processor is responsible for calculating
non-bonding forces for the atoms that belong to its
cluster, it only needs the part of the pair list where one
of the atoms of the pair belongs to the cluster. Each
processor calculates its own pair list. To do this, the
first step is to get the current atom positions from all
neighbors. Each processor can then build its pair list
without further communication.

Because the force from one atom to another applies
with opposite sign to the other atom, each atom pair
must only be in the pair list of one processor, even if
the two atoms are assigned to different processors. To
minimize communication, as illustrated in more detail
in the next section, it is beneficial if all forces between
atoms from clusteri and atoms from clusterk are
calculated by the same processor. Therefore, one of
the two clusters is assigned to be the “master” of the
pair. Whether clusteri is the master with respect to
clusterk is defined by a pseudo-random rule:

i 6 k : i master ifk − i even,

i > k : i master ifi − k odd. (1)

In addition to the pair list, each processor creates, for
each of its neighbors, a list of atoms that appear in
the pair list and are assigned to this neighbor. This list
gives the atoms for which coordinates and forces need
to be communicated between MD steps. If clusteri

is the master relative to the neighbor with indexk,
this list contains the indices of atoms belonging tok
that i has interactions with. Clusterk also needs
this list to determine which coordinates and forces it
has to communicate to clusteri. To avoid duplicated
calculations, these lists are communicated from the
master to the slave of each cluster pair after the pair
list is constructed.

To reduce artifacts, the cutoff is not applied to single
atoms, but always to uncharged groups of atoms, i.e.
protein residues or complete solvent molecules.

Bonded interactions (bond length, bond angle, di-
hedral angle, and improper dihedral angle potentials)
are also assigned to processors when building the pair
list. In the case of bond lengths, a bond between atoms
that both belong to the same cluster is obviously han-
dled by the processor assigned to this cluster. Bonds
between atoms belonging to different clusters are han-
dled by the processor that would also calculate a non-
bonding interaction between the two atoms, i.e. the
master of the two clusters. Even in the case of potential
energy terms that involve more than two atoms, these
atoms are never assigned to more than two different
clusters because always entire residues are assigned to
one cluster, and it is assumed that no bond angles or
dihedrals involve atoms from more than two residues.

2.4. Molecular dynamics algorithm

As mentioned earlier, two key points of achieving
high performance for a parallel program are to min-
imize the amount of communication, and to overlap
communication and computation whenever possible.
To overlap communication and computation, asyn-
chronous communication is used, i.e. requests for ob-
taining data are issued (“posted”) as early as possible,
but are only required to have completed (“committed”)
later. The following pseudo code illustrates how this is
done for an MD step. All steps are executed by each
single processor:

R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147 143

(1) update pair list (if necessary)
(2) post receives of coordinates from slave neighbors
(3) send coordinates to master neighbors
(4) post receives of forces from master neighbors
(5) commit receives of coordinates
(6) calculate forces
(7) send forces to slave neighbors
(8) calculate kinetic energy
(9) commit receives of forces

(10) add forces received to forces locally calculated
(11) sum up kinetic energies and virials of all proces-

sors
(12) calculate new velocities, using kinetic energy for

temperature control
(13) calculate new coordinates, using virial for pres-

sure control
The communication demand is two messages for
each pair of neighboring clusters in every MD step.
One global communication step cannot be avoided if
temperature and pressure control [17] are desired, e.g.,
the kinetic energy must be calculated for the complete
system in order to apply temperature control. The
communication library used (MPI) can accomplish the
calculation of several sums with one communication
primitive. In addition to the kinetic energy and virial
which are mentioned in the pseudo code above, sums
are also used for the center of mass (which is needed
to calculate the virial and to neutralize the global
motion of the system), and for a tensor that is used
to neutralize global rotational motion of the system.

2.5. Dynamic load balancing

In Section 2.2, the initial assignment of atoms to
processors was explained. For several reasons, this
distribution can be far from perfect. For instance, when
periodic boundary conditions are not used, there will
be more non-bonding interactions for atoms in the
middle of the system than for atoms near the boundary.
Also if, due to the pseudo-random decision, a cluster
happens to be master of significantly more than half of
its neighbors, it has to do more calculations than other
processors.

Even if a perfect a priori distribution could be found,
this would not solve the load balancing problem. Be-
cause atoms move around during the MD simulation,
the spatial relations change, and the distribution has to
be adapted. Our algorithm does dynamic load balanc-

ing, and at the same time reassigns atoms to different
clusters if they move away from one cluster.

A cluster i is defined by a point in space,ci , each
atom is assigned to the cluster with the closest center,
and the radiusri of the bounding sphere is calculated
as the maximum distance of an atom of the cluster to
the center (Fig. 1). This definition is now extended
to enable dynamic load balancing. We introduce a
“bias” bi , which is initially set to zero, but can later
be changed to improve the load balancing. Each atom
(with position vectorx) is then assigned to the cluster
for which

|x − ci |2− bi =minimal. (2)

When building the pair list, each processor stores
the numberni of non-bonding interactions it has to
calculate. With perfect load balancing, allni ’s would
be equal. The goal is now to approach this ideal
state by modifying thebi ’s. When bi is increased,
the cluster will grow, if it is decreased, the cluster
will shrink. To estimate the necessary modification,
the average ofnk over all neighborsk of clusteri is
calculated:

ai = avg(nk) k ∈ neighbors(i), (3)

and the updated value ofb′i is obtained by

b′i = bi + αr2
i

((
ai

ni

)2/3

− 1

)
. (4)

This causes a relative volume change of the bounding
sphere that is proportional toai/ni . α is a constant that
avoids making excessively large corrections. Empiri-
cal tests have shown that a value ofα = 0.05 leads to
good load balancing within a few steps, while avoiding
overcorrections.

Once the new bias is calculated, each processor
tests whether the atoms currently assigned to it still
belong to the same cluster, or whether they need to
be moved to another cluster. An atom being moved to
another cluster can be caused by the modified values
of b′i , by the position of the atom being changed
during the MD steps, or by a combination of both.
The lists of atoms that move from one processor to
another are communicated to all processors, and the
data structures are updated accordingly.

Once the new distribution is established, each proc-
essor calculates the new centerci of its cluster as
center of gravity of all its atoms, and the new radiusr ′i

144 R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147

as the maximum distance of one of the atoms from this
center. The modification of the radius requires another
adaption of the bias:

b′′i = b′i −
r ′i − ri

2
. (5)

This dynamic load balancing scheme can be applied
before each update of the pair list, or less frequently if
desired by the user.

As in Section 2.2, this description of the algorithm
is slightly simplified. It does not take into account
that groups of atoms (complete residues and solvent
molecules) will always be assigned to one cluster.
Again, this is achieved by a small modification that
assigns all atoms of such a group to the cluster with
the center closest to an atom in the group.

2.6. Energy minimization

Energy minimization using a local minimizer, e.g.,
the conjugate gradient method, is frequently used
to remove strongly unfavorable interactions in the
start structure of a molecular dynamics run. Most of
the parallelization strategy described for molecular
dynamics in the previous sections applies also to the
implementation of energy minimization in OPALp.
Calculation of the forces (steps 1 to 10 in Section 2.4)
is identical. Once the forces are obtained, they are
collected on a single CPU, which performs a step
of minimization using the conjugate gradient method.
The updated coordinates are then sent out to all CPUs
with a broadcast operation. Unlike the algorithm for
molecular dynamics, energy minimization performs
a small part of the calculation for each step on a
single CPU, and will therefore not scale equally well
to large numbers of CPUs. However, since energy
minimization is a quick operation that requires far
fewer steps than an interesting molecular dynamics
simulation, this is not a practical problem.

3. Implementation

The program OPALp was implemented using For-
tran 90 [18], making use of its new features compared
to Fortran 77. Functions and data are grouped into
modules. Dynamic memory allocation is used for all
data structures, there are no compile-time limits for the

number of atoms, the size of pair lists, etc. The code
was written to enable vectorization wherever possible.

MPI (Message Passing Interface) [19,20] was used
for communication between tasks of the parallel pro-
gram. The MPI standard has been widely accepted,
is available for all important parallel machines, and
makes it possible to write portable parallel programs
that run efficiently on both shared memory and dis-
tributed memory machines.

The user interface of Opalp is based on the macro
language INCLAN [21].

4. Results

4.1. Test system

The point-centered domain decomposition algo-
rithm was tested in a free MD simulation of the pro-
tein cyclophilin A, starting from the structure that has
been determined by NMR [22]. Out of the bundle of
energy-minimized NMR conformers [22] the one with
the lowest DYANA target function value [21] was im-
mersed in a pre-equilibrated periodic box of TIP3P
water [23] with a minimal distance of any protein atom
from the boundary of 7 Å. This required 4735 wa-
ter molecules. Together with the 2503 atoms of the
protein, the entire system consisted of 16 708 atoms.
300 steps of energy minimization, as described in Sec-
tion 2.6, were performed.

As described in the previous section, OPALp contin-
ually improves the load balancing, and only achieves
good load balancing after the simulation runs for some
time. This is not a problem in practical applications
where long trajectories are generated, but the bench-
mark results, which should reflect the performance
once good load balancing is achieved, should not be
falsified by this effect. For this purpose, 50 MD steps
of 1 fs were performed at the start of each calculation,
with an update of the pair list and dynamic load bal-
ancing after each step. This was then followed by the
part of the simulation that was timed for obtaining the
benchmark results. Depending on the computer speed
and number of processors, variable numbers of steps
of 2 fs were performed in order to achieve runtimes
between 10 and 30 minutes. In the following sections
always the average wall-clock time per time step is
given.

R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147 145

Table 1
Benchmark results on Cray J90

CPUs Time (s) Speedup Efficiency (%)

1 5.65 1.00 100

2 3.21 1.76 88

3 2.12 2.67 89

4 1.68 3.36 84

5 1.39 4.07 81

6 1.17 4.84 80

7 1.08 5.22 75

8 1.05 5.38 67

A cutoff of 10 Å for non-bonded interactions
was used in all benchmark calculations. Temperature
and pressure equilibration [17] was applied, as well
as periodic boundary conditions. The pressure was
calculated from the virial [1,17], and the length of
bonds involving hydrogen atoms was kept fixed using
the SHAKE algorithm [24]. Overall translational and
rotational motion of the protein was neutralized after
each step.

4.2. Cray J90

The Cray J90 is a small vector computer with a
peak performance of 200 MFLOPS per processor,
supporting up to 32 processors with shared memory.
A fully dedicated system with 8 processors was
used for the benchmark. The pair list was updated
after every 10 steps, load balancing was also done
after every 10 steps. The performance of OPALp
was 67 MFLOPS on one processor, indicating that
good vectorization has been achieved. Table 1 shows
execution times, speedups, and parallel efficiencies for
1–8 processors. Denoting withtn the execution time
with n processors, speedup is given byt1/tn, and
parallel efficiency byt1/(ntn). Using 2–6 processors,
the parallel efficiency remains nearly constant and
in the range of 80–89%. Dividing the system into
clusters creates a certain overhead that is responsible
for about 10% reduction in parallel efficiency (88%
efficiency with two processors). On 8 processors (all
processors of this machine) the parallel efficiency
drops to 67%, an effect that can probably be attributed
to the operating system performing some tasks even

on a dedicated system. The absolute wall-clock times
in the range of 1–2 s per MD step indicate that for
a system of 16,000 atoms, an MD trajectory of 1 ns
can be obtained in less than one week even on a small
vector/parallel computer like the Cray J90.

4.3. Cray T3D

The Cray T3D is a massively parallel machine with
(in our case 256) DEC Alpha CPUs and distributed
memory. Benchmark results are well reproducible
because the CPUs are fully dedicated to one task,
without being interrupted by other jobs, interactive
processes, or operating system tasks. Due to this
feature and the large number of CPUs, we chose the
T3D as the primary benchmark system, even though
the program development was originally done on a
Cray J90.

Table 2 shows the results when an update of the
pair list as well as dynamic load balancing was
performed every 10 steps. The results show that the
program is able to make efficient use of a massively
parallel system with distributed memory. With up to
64 processors, significantly more than half of the ideal
parallel performance is achieved. The effectiveness of
the dynamic load balancing algorithm is illustrated by
a comparison with results obtained with less frequent
load balancing, i.e. with an update of the pair list
after every 10 steps but load balancing only after
every 100 steps (Table 2). In general, speedup factors
are significantly higher if dynamic load balancing is
performed often (every 10 steps). Between 8 and 20%
of the total computation time on 1–128 processors
is due to updating the pair list and dynamic load
balancing. With 256 processors, which corresponds
to clusters of on the average only 65 atoms per
processors, parallel performance drops to about 25%.
This degradation is in part due to the fact that updating
the pair list and load balancing becomes a bottleneck
requiring 38% of the total execution time. In addition,
it becomes difficult to achieve perfect load balancing if
the cluster size becomes as small as 65 atoms because
the clustering algorithm always keeps entire amino
acid residues together in one cluster.

These results compare favorably with those reported
for programs using either the data replication approach
[6–8] or rectangular boxes for domain decomposition.
Using rectangular domain decomposition Jabbarzadeh

146 R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147

Table 2
Benchmark results on Cray T3D

CPUs Load balancing every 10 steps Load balancing every 100 steps

Time (s) Speedup Efficiency (%) Time (s) Speedup Efficiency (%)

1 23.9 1.00 100

2 12.4 1.92 96

4 6.42 3.73 93 6.34 3.77 95

8 3.29 7.27 91 3.40 7.04 88

16 2.10 11.4 71 2.31 10.3 65

32 1.22 19.6 61 1.79 13.4 42

64 0.663 36.1 56 0.817 29.3 46

128 0.476 50.2 39 0.517 46.3 36

256 0.411 58.3 23 0.378 63.3 25

et al. [12] obtained speedups of around 10–11 with
28 CPUs for systems of similar size, and they con-
cluded that efficiency decreases significantly because
of the increased amount of communication when us-
ing higher numbers of CPUs. Brown et al. [10] found
comparable speedups for up to eight processors in sim-
ulations of a protein–water system of 21,423 atoms
but no results were given for more than eight proces-
sors. OPALp achieves speedups of 11 already with
16 processors, and, more importantly, good efficiency
is maintained up to at least 64 processors. In ad-
dition to its good scalability, the point-centered do-
main decomposition algorithm will save significant
amounts of computation time in the simulation of sol-
vated biological macromolecules because the shape of
the simulation domain can be adapted to the shape
of the protein. In this way the ratio between sol-
vent and protein atoms is decreased by “cutting the
corners” of an otherwise rectangular system with-
out reduction of the thickness of the hydration shell
around the macromolecule. Thus, we conclude that
the point-centered domain decomposition algorithm is
particularly advantageous for the simulation of com-
plex biomolecular systems, whereas good parallel ef-
ficiency for homogeneous systems composed of iden-
tical small molecules can be achieved already by the
simpler approach of rectangular domain decomposi-
tion, e.g., [5].

5. Conclusions

Our approach for MD calculations on parallel com-
puters shows that, despite the difficulty inherent in
fine-grained parallelization, it is possible to reach good
efficiency also on massively parallel computers. The
critical quantity that limits the speedup is the num-
ber of atoms divided by the number of CPUs. Our
algorithm gives good speedups with as few as ap-
proximately 100 atoms per CPU on current architec-
tures, and therefore can make good use of up to 100
and more processors for interesting problems because
all calculation steps have been distributed to differ-
ent processors. In contrast to domain decomposition
methods based on box-shaped subdivisions of the sys-
tem, our method poses no restrictions on the number
of processors to be used. Furthermore, our parallel al-
gorithm maintains good vectorization.

While high efficiency was a prime goal, there is
still room for further possible optimizations that might
lead to even higher performance of OPALp: Improved
efficiency can be expected on particular machines by
careful profiling and tuning. The MPI features for
defining topologies could be used in order to allow
the runtime system of the computer to make an ideal
mapping of the problem to the physical layout of
the machine (e.g., the processors of a Cray T3D
are connected as a 3-dimensional torus). There are

R. Koradi et al. / Computer Physics Communications 124 (2000) 139–147 147

possibilities for more overlap between calculation and
communication if the forces within one cluster could
be calculated before the receives of coordinates from
other processors are completed. Finally, the dynamic
load balancing algorithm could probably be refined
further.

Acknowledgments

This work was supported with a grant from Cray
Research to P. Güntert and K. Wüthrich and con-
ducted as part of the ETHZ-Cray Cooperation project.
We thank Carol Beaty of Cray Research for techni-
cal support. The benchmarks were done on a Cray J90
of the Eidgenössische Technische Hochschule Zürich
(ETHZ) and on the Cray T3D of the Ecole Poly-
technique Fédérale de Lausanne (EPFL), with help
of the system administrators Bruno Loepfe (ETHZ)
and Jean-Marc Chenais (EPFL). We thank Dr. Helmut
Grubmüller for helpful discussions.

References

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, Oxford, 1987).

[2] Y. Duan, P.A. Kollman, Science 282 (1998) 740.
[3] M.F. Crowley, T.A. Darden, T.H. Cheatham III, D.W. Deer-

field II, J. Supercomputing 11 (1997) 255.
[4] S. Plimpton, B. Hendrickson, J. Comp. Chem. 17 (1996) 469.
[5] M.R. Wilson, M.P. Allen, M.A. Warren, A. Sauron, W. Smith,

J. Comp. Chem. 18 (1997) 478.
[6] S.E. Bolt, P.A. Kollman, J. Comp. Chem. 14 (1993) 312.

[7] J.J. Vincent, K.M. Merz, Jr., J. Comp. Chem. 16 (1995) 1420.
[8] F. Müller-Plathe, W. Scott, W.F. van Gunsteren, Comput. Phys.

Commun. 84 (1994) 102.
[9] S.G. Srinivasan, I. Ashok, H. Jonsson, G. Kalonji, J. Zahorjan,

Comput. Phys. Commun. 102 (1997) 44.
[10] D. Brown, H. Minoux, B. Maigret, Comput. Phys. Commun.

103 (1997) 170.
[11] K. Lim, S. Burnett, M. Iotov, R.B. McClurg, N. Vaidehi,

S. Dasgupta, S. Taylor, W.A. Goddard III, J. Comp. Chem. 18
(1997) 501.

[12] A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, Comput. Phys.
Commun. 107 (1997) 123.

[13] G. Voronoï, J. Reine Angew. Math. 134 (1908) 198.
[14] P. Luginbühl, P. Güntert, M. Billeter, K. Wüthrich, J. Biomol.

NMR 8 (1996) 136.
[15] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz

Jr., D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell,
P.A. Kollman, J. Amer. Chem. Soc. 117 (1995) 5179.

[16] G. Amdahl, Proc. Amer. Fed. Information Processing Soc. 30
(1967) 483.

[17] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Di-
Nola, J.R. Haak, J. Chem. Phys. 81 (1984) 3684.

[18] M. Metcalf, J. Reid, Fortran 90 Explained (Oxford University
Press, Oxford, 1990).

[19] Message Passing Interface Forum, Int. J. Supercomputing
Appl. 8 (1994) 1.

[20] W. Gropp, E. Lusk, A. Skjellum, Using MPI. Portable Parallel
Programming with the Message Passing Interface (MIT Press,
Cambridge, MA, 1994).

[21] P. Güntert, C. Mumenthaler, K. Wüthrich, J. Mol. Biol. 273
(1997) 283.

[22] M. Ottiger, O. Zerbe, P. Güntert, K. Wüthrich, J. Mol. Biol.
272 (1997) 64.

[23] W.J. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey,
M.L. Klein, J. Chem. Phys. 79 (1983) 926.

[24] J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys.
23 (1977) 327.

