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Time-optimized protein NMR assignment with an
integrative deep learning approach using AlphaFold
and chemical shift prediction
Piotr Klukowski1*, Roland Riek1*, Peter Güntert1,2,3*

Chemical shift assignment is vital for nuclear magnetic resonance (NMR)–based studies of protein structures,
dynamics, and interactions, providing crucial atomic-level insight. However, obtaining chemical shift assign-
ments is labor intensive and requires extensive measurement time. To address this limitation, we previously
proposed ARTINA, a deep learning method for automatic assignment of two-dimensional (2D)–4D NMR
spectra. Here, we present an integrative approach that combines ARTINA with AlphaFold and UCBShift, enabling
chemical shift assignment with reduced experimental data, increased accuracy, and enhanced robustness for
larger systems, as presented in a comprehensive study with more than 5000 automated assignment calculations
on 89 proteins. We demonstrate that five 3D spectra yield more accurate assignments (92.59%) than pure
ARTINA runs using all experimentally available NMR data (on average 10 3D spectra per protein, 91.37%), con-
siderably reducing the required measurement time. We also showcase automated assignments of only 15N-
labeled samples, and report improved assignment accuracy in larger synthetic systems of up to 500 residues.
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INTRODUCTION
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical
technique that provides detailed information on the structure, dy-
namics, and interactions of proteins. These data can be obtained si-
multaneously for a large number of individual atom positions using
the intrinsically present probes of nuclear spins. To achieve this
atomic resolution, it is necessary to attribute resonance frequencies
of nuclear spins, expressed as chemical shifts, to individual atoms in
the protein (1). This chemical shift assignment is a key task in most
NMR studies of proteins. It is generally achieved by recording and
analyzing a set of multidimensional NMR spectra. Each cross peak
in an n-dimensional spectrum correlates n atoms with each other,
and alignments among the cross peaks make it possible to uniquely
link chemical shift values to individual atoms in the chemical struc-
ture of the protein. This process is generally demanding in terms of
NMRmeasurements and spectra analysis. Most of the spectrometer
measurement time in a biomolecular NMR project is frequently
spent on measuring spectra for the chemical shift assignment,
which are not of direct use to the biological question at stake,
such as, for instance, elucidating dynamics or interactions of the
protein. The same holds for the time spent by the spectroscopist:
Finding chemical shift assignments is time consuming and requires
expertise.

To change this situation by accelerating NMR chemical shift as-
signment, one should reduce the number of spectra required and
automate their analysis without compromising the reliability of
the results. Here, we present a method that achieves this by exploit-
ing recent advances in machine learning and by efficiently incorpo-
rating the information contained in three-dimensional (3D) protein

structures into the assignment process. The latter serve to replace
information that would otherwise have to be gathered from addi-
tional NMR spectra.

Given the central importance of chemical shift assignments,
many approaches have been proposed to automate their determina-
tion (2, 3). They differ regarding input data (e.g., spectra, peak lists,
spin systems, and additional data), algorithms, and output [e.g.,
backbone (4), side chain (5–7), or methyl group assignments (8)].
A general automated assignment method that can be applied in all
these cases is FLYA (7), implemented in the Combined assignment
and dYnamics Algorithm for NMR Applications software package
(CYANA) (9, 10). It uses an evolutionary algorithm to find an
optimal mapping between the cross peaks that are expected for a
given protein and set of spectra and the cross peaks identified in
the corresponding experimentally measured spectra. FLYA has re-
cently been embedded in the ARTificial Intelligence for NMR Ap-
plications method (ARTINA) (11) and the NMRtist webserver (12)
that use machine learning for visual spectrum analysis and other
tasks to automate the entire process of protein NMR data analysis
from raw spectra to assignments and the 3D structure. Using a large
dataset of 1329 experimental solution NMR spectra for 100 mono-
meric globular proteins, it was shown that ARTINA is able to assign
correctly 91.4% of all backbone and side-chain chemical shifts for
which reference assignments are known (11). ARTINA thus reduces
the effort for the chemical shift assignment of a protein assignment
essentially to the preparation of the sample and the spectra
measurements.

However, on average, more than 13 multidimensional NMR
spectra were used to obtain these results, which amounts to more
than 2 weeks of NMR measurement time per protein using tradi-
tional acquisition schemes. Considering that the computation
time of the ARTINA algorithm is typically less than 2 hours and
that the operation of an NMR spectrometer is much more costly
and demanding than that of a computer, reducing the number of
spectra used for the assignment is an obvious strategy to progress
in the efficiency of biomolecular NMR projects.
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Knowledge of the 3D structure of a protein can support the
chemical shift assignment in mainly two ways (13–15): by more re-
alistic prediction of the expected cross peaks in nuclear Overhauser
effect spectroscopy (NOESY) spectra and through structure-based
predictions of chemical shift values. This has become particularly
relevant because AlphaFold (16) can now accurately predict the
3D structure of most structured proteins. We have therefore built
an integrative machine learning–based method for structure-
based NMR chemical shift assignment. Here, we evaluate its perfor-
mance and identify optimal sets of spectra for the assignment of
backbone amide groups or of all chemical shifts.

The structure of this paper is as follows. Starting from the 1170
experimental spectra for 89 proteins of the original publication on
ARTINA (11), we define 25 different sets of input spectra for auto-
mated assignment calculations with ARTINA. In the first part of the
paper, the accuracy of chemical shift assignments is evaluated in
three different scenarios: assignment of backbone amide groups
by “classical” triple-resonance assignment spectra, assignment of
backbone amide groups by 3D NOESY and triple-resonance
spectra, and complete assignment of backbone and side-chain
chemical shifts, comparing in each case the assignment results ob-
tained by ARTINA either without structural input, or using the
structure only for the generation of expected NOESY cross peaks,
or using the structure in addition for the prediction of chemical
shifts with the UCBShift method (17). In addition, we tested the fea-
sibility of backbone amide assignment using NMR spectra recorded
with only 15N-labeled samples, which could constitute an alterna-
tive to costly double labeling with 13C/15N. In the second part of the
paper, we evaluate the impact of the accuracy of the input structures
on the assignments using a large number of well-folded and well-
packed decoys generated by 3DRobot (18) that deviate by 0- to 5-Å
root mean square deviation (RMSD) from the experimental struc-
ture. In the third part of the paper, we assess how the integrative
approach performs for the assignment of large synthetically gener-
ated protein systems (up to 500 residues), which are currently rarely
deposited in the Biological Magnetic Resonance Data Bank (BMRB)
database. In conclusion, together with our integrative approach and
its evaluation, we propose a set of data-driven practical recommen-
dations for performing chemical shift assignments of proteins.

RESULTS
Experimental and derived data
To evaluate the effectiveness of various automated assignment strat-
egies incorporating ARTINA, AlphaFold, and UCBShift, we used
1170 2D, 3D, and 4D NMR spectra that allow to reproduce the as-
signments of 89 proteins directly out of the original measurements.
This dataset has previously been used for both the manual (BMRB
depositions) and automated (11) assignments of these proteins. We
used these spectra to form 25 benchmark datasets (Table 1), which
vary in the number of spectra used as input for the assignment. In
addition to the complete set of spectra (dataset 1), 24 other datasets
comprising one to eight specific 3D spectra per protein were
formed. Datasets 1 to 17 are suitable for complete (backbone and
side-chain) assignment, whereas datasets 18 to 25 are designed
for backbone amide assignment. The last dataset (25), comprising
only [1H,15N]-HSQC and 15N-edited [1H,1H]-NOESY, has been de-
signed to evaluate the performance of the method with 15N-labeled
samples. In addition to 3D spectra, all sets include one or two 2D

spectra, [1H,15N]-HSQC and [1H,13C]-HSQC. NOESY spectra were
included in most of the sets because they have a high information
content, work well also for larger proteins, and provide distance in-
formation, which is useful beyond chemical shift assignment, e.g.,
for structure determination or multistate structure determination
with eNOEs (19).

In addition to NMR spectra, we collected several other types of
data for each protein under study: (i) a manually solved protein
structure [the Protein Data Bank (PDB) deposition, if available],
(ii) a manually assigned list of chemical shifts (BMRB deposition),
(iii) an AlphaFold structure prediction (five models), (iv) 100 decoy
structures, and (v) a UCBShift chemical shift list prediction.

We generated AlphaFold structure predictions using only PDB
templates that were deposited in the data bank before the publica-
tion of the query protein, using as input the sequence of the protein
construct for which the NMR spectra had been recorded. To
prepare the input for the assignment calculations presented here,
we combined the five structure candidates that are predicted by Al-
phaFold using default parameters into a structure bundle that re-
sembles NMR models. This approach was overall more
advantageous for automated chemical shift assignment than using
a single, “best” AlphaFold prediction because it leads to a more re-
alistic generation of expected NOESY peaks in particular for not
well-defined parts of the structure (e.g., surface side chains, flexible
chain ends, and loops). These are not straightforward to detect from
the coordinates of a single structure but often lead to diverging con-
formers in a structure bundle, from which fewer spurious expected
NOESY cross peaks are generated by requiring the corresponding
distance to be short in all conformers simultaneously. When a
single AlphaFold structure is used, the number of back-calculated
through-space contacts is substantially (by 32 and 23% for the
13C- and 15N-edited NOESY, respectively) higher than the
number of contacts extracted from the AlphaFold structure
bundle. These surplus contacts do not contribute positively to the
combinatorial optimization used in chemical shift assignment (7).
Throughout experiments with our method, we observed that adopt-
ing a conservative strategy—taking only the set of contacts observed
in all AlphaFold predicted model proposals—yields higher accura-
cy. This observation aligns with the design of the FLYA algorithm
(7), which strives to assign all expected NOESY contacts. If some of
them are present in only one AlphaFold structure (and absent in
others), the probability that the corresponding signal is visible in
the experimental spectra is low.

In addition, we used 3DRobot (18) to create well-structured
decoys for each benchmark protein used in this study. The decoy
structures, refined at the atomic level through energy optimization,
bear similarities with the true folds deposited in the PDB, such as
the number and placement of secondary structure elements (figs. S1
and S2). Each AlphaFold (or decoy) structure served also as input
for chemical shift prediction using UCBShift (17), yielding Cα Cβ,
C0, HN, Hα, and N shift predictions.

To ensure integrity of our benchmark data, we implemented rig-
orous cross-verification across all prepared data modalities. Manu-
ally determined chemical shift lists (from BMRB) and protein
structures (from PDB, if available) were used to back-calculate ex-
pected cross peak positions. These positions were subsequently
overlaid onto contour plots of the spectra (1170 2D, 3D, and 4D
experiments), ensuring no systematic shifts or referencing inconsis-
tencies existed between depositions in public repositories and
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recorded experiments. Following this, we compared AlphaFold-
generated protein structure bundles with manually derived struc-
tures, as indicated in table S1. The results revealed good agreement,
with an average backbone RMSD of 1.03 Å. There are only four pro-
teins in the benchmark dataset for which the AlphaFold structure
prediction error exceeded 2 Å: 2LX7, 6FIP, 2LVN, and 2LND. Fur-
thermore, we compared UCBShift predictions (using AlphaFold
structures as input) against BMRB depositions, finding that the
errors are comparable to those reported in the literature (17): C0
(RMSD of 0.85 ppm versus 0.81 ppm reported), Cα (0.77 ppm/
0.81 ppm), Cβ (0.86 ppm/1.00 ppm), HN (0.39 ppm/0.31 ppm),
Hα (0.20 ppm/0.19 ppm), and N (1.98 ppm/1.81 ppm). Last, we
manually inspected the decoy structures and compared them with
their corresponding true folds, as illustrated in figs. S1 and S2. This
multilayered validation process was instrumental in reinforcing the
robustness of our data preparation methods.

Impact of experimental data quantity on assignment
accuracy
Automated chemical shift assignment calculations were performed
with the datasets specified in Table 1 and either no additional input
(ARTINA), using AlphaFold structures as input for expected
NOESY cross peak generation (ARTINA with AlphaFold), or
using AlphaFold structures as input for expected NOESY cross
peak generation as well as for chemical shift prediction with UCB-
Shift (ARTINA with AlphaFold and UCBShift). To conveniently
present the impact of different spectrum types on the assignment,
we arranged the datasets in the graphs shown in Figs. 1 and 2. Each
path in the graphs proceeds from an initial minimal spectrum set by
gradually increasing the number of spectra toward the common end
point, i.e., the full dataset. The most important findings are summa-
rized in Table 2. Distributions of the chemical shift assignment ac-
curacy are shown for selected spectra sets in fig. S4. The relation
between chemical shift assignment accuracy and protein size is vi-
sualized in fig. S5.

Complete backbone and side-chain chemical shift
assignment
We selected dataset 17 as the minimal spectra set for the complete
(backbone and side-chain) assignment of a protein. It comprises the
3D 15N- and 13C-edited [1H,1H]-NOESY experiments and the 2D
[1H,15N]-HSQC spectrum (Fig. 1 and Table 1). Assignment
results for this dataset are depicted in Fig. 1 and fig. S4. Above
the encircled dataset ID (17), the number of proteins in the set is
given (84), while the three numbers below report the median per-
centages of correct assignments obtained if ARTINA is used either
without 3D structure input (87.40%, black), with 3D structure input
solely for the generation of expected NOESY cross peaks (90.24%,
magenta), or when the 3D structure is used also to predict chemical
shift distributions for FLYA with UCBShift (90.95%, green). These
percentages refer to the strong FLYA assignments. In the second
row of the text below each node in the graph, the corresponding
numbers are also given for all (strong and weak) FLYA assignments
(76.88, 84.77, and 85.86%). This shows that, on average over 84 pro-
teins, most of the chemical shifts can already be assigned using only
NOESY as the sole 3D spectra, confirming, on a much larger basis,
earlier findings (20, 21). Using the predicted 3D structure, the ac-
curacy of all assignments from the minimal dataset 17 is 5.51 per-
centage points (pp) lower than for the full set of spectra, dataset 1,

used without structure (bottom of Fig. 1 and fig. S4). As expected,
use of the 3D structure has greater impact on the assignment accu-
racy for the NOESY-only minimal dataset 17 (8.98 pp for all assign-
ments) than for the full dataset 1 (1.82 pp).

Starting from the minimal dataset 17, additional spectra can be
added in different order. Four sensible ways to expand the number
of spectra are shown along the four vertical paths in Fig. 1. In all
cases, we first added the 2D [1H,13C]-HSQC (dataset 16), which re-
quires minimal measurement time and improves the assignment ac-
curacy by 0.46 to 0.82 pp. It is important to note that the number of
proteins that are available in each dataset varies, which can influ-
ence the assignment accuracy values reported in Fig. 1 and
Table 2. To quantify the impact of adding a spectrum for the
same set of proteins, Fig. 1 reports, next to the arrows (graph
edges), the changes in assignment accuracy between two adjacent
datasets computed for the same proteins, i.e., all those for which
the spectra of both datasets are available. These changes can (slight-
ly) deviate from the difference between the assignment accuracies
for the datasets reported below the colored circles (graph nodes),
which have always been calculated for all proteins that match the
given spectra set.

From this point on, four strategies can be envisaged (parallel ver-
tical paths from left to right in Fig. 1): (i) classical backbone assign-
ment with HNCA and CBCAcoNH spectra, (ii) simplified
backbone assignment with only CBCAcoNH, (iii) backbone assign-
ment only through Cα using HNCA and HNcoCA, and (iv) back-
bone assignment using HNCO and CBCANH instead of
CBCAcoNH. In all cases, HCCH-TOCSY and additionally CCH-
TOCSY spectra are used as specific side-chain assignment spectra.
Last, all paths converge at the full dataset 1, which yields the highest
percentage of correct assignments for a given type of usage of the 3D
structure.

The results in Fig. 1 indicate that the CBCAcoNH spectrum pro-
vides a good balance between information content and measure-
ment time. Expanding dataset 16 with CBCAcoNH [dataset 14 on
path (ii)] yields more accurate assignments than expansion with
HNCA [dataset 13 on path (i)] or HNCA and HncoCA [dataset
15 on paths (iii) and (iv)]. The CBCAcoNH spectrum alone plus
HCCH-TOCSY and CCH-TOCSY for side-chain assignments
(dataset 3 with five 3D spectra) delivers better assignment accuracy
in structure-based assignment (95.48% correctness for the strong
assignments) than the full dataset 1 (9.8 3D spectra on average) in
the absence of a structure (94.26%). Using AlphaFold structures is
thus equivalent to measuring about five additional 3D spectra. For
comparison, using dataset 3 without AlphaFold structures yields
92.77% assignment correctness (Fig. 1). This shows that structures
predicted by AlphaFold can reduce the number of NMR spectra re-
quired without compromising assignment accuracy. We therefore
recommend the experiment types included in dataset 3, comprising
two 2D spectra—[1H,15N]-HSQC and [1H,13C]-HSQC—as well as
five 3D spectra—15N-edited [1H,1H]-NOESY, 13C-edited [1H,1H]-
NOESY, CBCAcoNH, HCCH-TOCSY, and CCH-TOCSY—as the
optimal spectra set for structure-based chemical shift assignment
with ARTINA. While spectrum types included in datasets 2, 4,
and 5 on the other paths can be used in principle, they yield slightly
lower assignment accuracies and require, in the case of datasets 2
and 5, more spectra than the recommended dataset 3.

Enlarging dataset 3 with further spectra yields, despite substan-
tially longer NMR measurement times, only a marginal
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Fig. 1. Impact of experimental data quantity on the accuracy of complete protein chemical shift assignment. Each node in the graph represents a single dataset
specified in Table 1, with edges connecting datasets with similar spectrum types and highlighting the differences between them (e.g., the arrow from dataset 16 to 13
corresponds to the addition of the HNCA spectrum). Beneath each node, the chemical shift assignment accuracy (defined in Table 2) is reported for three independent
runs: ARTINA only (black), ARTINAwith AlphaFold structure (magenta), and ARTINAwith AlphaFold and UCBShift predictions (green). As subsets contain variable numbers
of proteins (as indicated in Table 1), we report the relative change in chemical shift assignment accuracy next to each edge in the graph, calculated using the proteins
available in both datasets connected by the edge. Nodes are sorted from top to the bottom, beginning with datasets containing the least number of spectra. As the graph
is traversed from top to bottom, the performance of the method with complementary inputs (green) begins to surpass the performance of the ARTINA-only approach
with the full input dataset (dataset 1, black), such as in the recommended dataset 3 (highlighted in red).
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Fig. 2. Impact of experimental data quantity on the accuracy of backbone amide chemical shift assignment. (A) Assignment using through-bond triple-resonance
backbone assignment spectra. (B) NOESY-based assignment, optionally including triple-resonance experiments. The graphs are structured as in Fig. 1. Each node in the
graphs represents a single dataset specified in Table 1, with edges connecting datasets with similar spectrum types and highlighting the differences between them [e.g.,
the arrow from dataset 23 to 22 in (A) corresponds to adding the CBCANH spectrum]. Beneath each node, the chemical shift assignment accuracy is reported for three
independent runs: ARTINA only (black), ARTINA with AlphaFold structure (magenta, only for NOESY-based assignment), and ARTINA with AlphaFold and UCBShift pre-
dictions (green). As subsets contain variable numbers of proteins (as indicated in Table 1), we report the relative change in chemical shift assignment accuracy next to
each edge in the graph, calculated using proteins available in both datasets connected by the edge. Nodes are sorted from top to the bottom, beginning with datasets
containing the least input data. As the graph is traversed from top to bottom, the performance of the method with complementary inputs (green) begins to surpass the
performance of ARTINA-only approach with full input dataset (dataset 1, black).
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improvement of the accuracy of structure-based assignments, i.e.,
from 95.48% for the recommended dataset 3 to 95.87% for all pro-
teins in the all-spectra dataset 1, or by 0.82 pp for the 41 proteins
that are available in datasets 3 and 1. The different spectra in dataset
3 contribute to the structure-based assignment accuracy as follows
(if added in this order; see edges in Fig. 1): [1H,13C]-HSQC, 0.46 pp;
CBCAcoNH, 1.48 pp; HCCH-TOCSY, 1.46 pp; CCH-TOCSY, 0.70
pp. This indicates that the next best smaller spectra set is dataset 7,
which does not require the CCH-TOCSY spectrum.

The structure, and how it is used, has considerable impact on the
assignment. For the recommended dataset 3, the accuracy without
structure is 92.77%, which rises to 94.94% if the structure is used
only to generate expected NOESY cross peaks, and 95.48% if the
structure is also used for shift prediction with UCBShift. Similar ob-
servations can be made for other datasets. Since both the use of Al-
phaFold and UCBShift are “for free,” i.e., do not require additional
experimental input data, it is recommended to use predicted struc-
tures and shifts for automated chemical shift assignment with
ARTINA. Obviously, the help given by the structure depends on

its accuracy, i.e., how close it is to the actual structure of the
protein in solution. We will address this question below. Using
the AlphaFold structure yields equally correct assignments as if
the deposited PDB structure is used as input (fig. S6).

The assignment accuracy for all atom types in the 20 standard
amino acids is reported in tables S2 and S3 and visualized in fig.
S7. The accuracy is highest for the backbone, Cβ/Hβ, and the side
chains of the methyl-containing residues Ala, Ile, Val, the Pro
ring (except Hγ), and the side-chain NH2 group of Asn. It is
lowest for aromatic resonances of His and Phe (Cε/Hε and Cζ/Hζ),
the methyl group of Met, and Nε/Hε of Arg.

The results reported in Fig. 1 and Table 2 also allow the re-eval-
uation of the quality of the assignment classification as strong or
weak by the FLYA algorithm used in ARTINA (7). Taking the rec-
ommended dataset 3 as an example in Table 2, typically less than 1
in 20 of the strong assignments are erroneous, whereas only up to
half of the weak assignments are correct. The strong/weak classifi-
cation therefore achieves its aim of labeling (almost) as many as pos-
sible of the correct assignments as strong. As both classes of

Table 2. Summaryof key assignment results. The table consolidates key outcomes from Figs. 1 and 2, evaluating the integrative approach across two tasks—full
and backbone amide group assignments—using varying quantities of input data. Rows in bold correspond to the recommended assignment strategies, as
presented in Figs. 1 and 2.

Spectra set (dataset ID)* Number of
3D spectra

Assignments (%)†

Correct
(strong)

Completeness
(strong)

Strong Correct
(weak)

Correct
(all)

Full backbone and side-chain assignment:

All (dataset 1), without structure 9.8 94.26 88.67 94.40 44.44 91.37

All (dataset 1) 9.8 95.87 89.69 94.08 52.87 93.19

Optimal (dataset 3) 5 95.48 89.79 93.73 52.00 92.59

Optimal, without CCHTOCSY (dataset 7) 4 94.75 86.66 92.23 46.72 90.84

NOESY-only (dataset 16) 2 90.95 78.99 87.75 46.15 85.86

Backbone amide group assignment:‡
All (dataset 1), without structure 13 98.77 97.78 99.24 22.22 98.04

All (dataset 1) 13 98.98 97.83 98.77 25.00 98.55

Optimal (dataset 3) 5 98.85 95.71 97.55 33.33 96.36

HNCA, CBCAcoNH, CBCANH
(dataset 19)

3 96.39 94.12 98.89 0.00 95.10

NOESY-only (dataset 17) 2 98.00 92.31 93.97 33.33 94.40
15N-NOESY-only (dataset 25) 1 93.67 78.06 82.88 31.37 83.59

*Datasets are defined in Table 1. Their IDs are given in parenthesis. Dataset “all” includes all experimental spectra available for a given protein. The “optimal” set
comprises 13C- and 15N-edited [1H-1H]-NOESY, CBCAcoNH, HCCHTOCSY, and CCHTOCSY spectra. In addition, 2D [1H,15N]-HSQC and [1H,13C]-HSQCwere used in all
cases. Unless noted otherwise, 3D structures predicted by AlphaFold were used for the generation of expected NOESY peaks and chemical shift
prediction. †Percentages of assignments are defined as follows. Let N and N be the number of atoms for which the assignment by ARTINA and the reference
assignment from the BMRB deposition agree/disagree within a tolerance of 0.03 ppm for 1H and 0.4 ppm for 13C and 15N. Only atoms assigned by both methods
can contribute to N or N. These quantities are calculated for the assignments that are classified by FLYA as strong (Nstrong and Nstrong), weak (Nweak and Nweak), or in
either of the two classes (Nall = Nstrong + Nweak and Nall = Nstrong + Nweak). The percentage “correct (strong)” corresponds to Nstrong / (Nstrong + Nstrong), the fraction of
all strong FLYA assignments that have a reference assignment and are correct. The percentage “completeness (strong)” corresponds to Nstrong / (Nall + Nall), the
fraction of all FLYA assignments that have a reference assignment and are both strong and correct. The percentage “strong” corresponds to the fraction of all FLYA
assignments that are classified as strong. Note that this quantity can be calculated without knowledge of the manual reference assignment. The percentage
“correct (weak)” corresponds to Nweak / (Nweak + Nweak), the fraction of all weak FLYA assignments that have a reference assignment and are correct. The
percentage “correct (all)” corresponds to Nall / (Nall + Nall), the fraction of all FLYA assignments that have a reference assignment and are correct. The values in the
table are the median over all proteins for which the given set of spectra is available. ‡Backbone amide groups are considered correctly assigned only if both
constituting atoms (H and N) are assigned correctly.
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assignments are returned by ARTINA, the usermay either choose to
use only the strong assignments, which we recommend when the
accuracy of individual assignments is important (e.g., for deposition
in the BMRB, or atom-specific studies of dynamics or interactions),
or all (strong and weak) assignments, if it is important to use as
many assignments as possible. The latter is most relevant for
NMR structure calculations, where it has been shown that for the
automated assignment of NOE-based distance restraints with
CYANA (22, 23), a missing assignment is almost as bad as an erro-
neous one (24, 25), and it is therefore better to use a tentative assign-
ment than no assignment at all.

Assignment of backbone amide groups
Many NMR studies do not require the complete assignment of a
protein. Instead, it often suffices to assign the backbone amide
groups (HN assignment). We have investigated two approaches to
this scenario: HN assignment based on (i) standard triple-reso-
nance backbone assignment spectra (Fig. 2A) and (ii) NOESY-
based HN assignment, optionally complemented with backbone as-
signment spectra (Fig. 2B). Here, we re-evaluate the ARTINA as-
signment calculations that were performed with the spectra
datasets of Table 1 with respect to the accuracy of the backbone
amide group assignments. The assignment of an HN group is con-
sidered correct only if both 1H and 15N chemical shifts are assigned
correctly within their tolerance of 0.03 and 0.4 ppm, respectively.

If exclusively through-bond backbone assignment spectra are
used (Fig. 2A), then the AlphaFold structure can only be exploited
to predict chemical shifts with UCBShift. Nevertheless, use of the
structure has a strong positive effect on the HN assignment accura-
cy, improving it by more than 30 pp for some spectra sets. We chose
dataset 23 as the minimal spectra set for HN assignment. Dataset 23
comprises the HNCA and [1H,15N]-HSQC spectra. It is, however,
not sufficient to reliably assign the HN groups, as shown by low-
average assignment accuracies of 39.13 and 75.00% when used
without and with structure input. To achieve high assignment accu-
racy, it is necessary to expand the set of spectra by CBCAcoNH and
CBCANH (dataset 19), which yields 96.39% correct HN assign-
ments if the structure is used. This value is still more than 2 pp
lower than the corresponding accuracies obtained with the full
dataset 1 without (98.77%) or with (98.98%) structure.

Alternatively, NOESY spectra can be used for structure-based
HN assignment (Fig. 2B). In this case, the minimal dataset 25 con-
sists of the 3D 15N-edited NOESY and [1H,15N]-HSQC spectra,
which can be measured without 13C-labeling of the protein.
Dataset 25 yields already 93.67% correct HN assignments if the Al-
phaFold structure is used. Complementing by CBCAcoNH rises the
accuracy to 97.22%. Alternatively, adding 3D 13C-edited [1H,1H]-
NOESY (dataset 17) shows that 98.00% accuracy can be achieved
purely with 3D NOESY spectra, which is within 1 pp of the
highest accuracy obtained by using the full dataset 1 of all available
spectra. Using NOESY spectra is thus a viable alternative to dedicat-
ed backbone assignment spectra for structure-based HN assign-
ment. Using a 3D structure from AlphaFold increases the HN
assignment accuracy by 3.1 pp from 94.89 to 98.00% for the
NOESY-only dataset 17.We note that even in the absence of a struc-
ture, the NOESY-only approach of dataset 17 yields a slightly higher
HN assignment accuracy (94.89%) than the classical triple-reso-
nance approach of dataset 19 (94.57%).

On the basis of the results in Fig. 2 (A and B) and Table 2, we
thus recommend the NOESY-only dataset 17 for backbone amide
group assignment with ARTINA. Using exclusively through-bond
spectra, the recommended (but slightly less accurate) alternative is
dataset 19 comprising the three triple-resonance spectra HNCA,
CBCAcoNH, and CBCANH.

Assignment accuracy estimate
The evaluation of assignment results in the two preceding sections
relied on comparison with the previously and independently deter-
mined reference assignments that are available from the BMRB. In a
typical application of ARTINA for the chemical shift assignment of
a protein that has not been assigned previously, this would obvious-
ly not be possible. Instead, a useful estimate of the assignment ac-
curacy obtained from the experimental data without recourse to a
reference assignment can be derived from the percentage of strong
assignments reported by FLYA. Figure 3A shows a clear and univer-
sal correlation between the percentage of strong assignments and
the assignment accuracy that holds over more than 5000 assignment
calculations with 25 datasets for 89 proteins, with and without using
a structure. On the basis of this correlation, an estimate A of the
accuracy of the assignments can be obtained from the percentage
S of strong assignments according to the linear relationship A =
0.89 S + 7.88%. A similar estimate, Astrong = 0.45 S + 51.49%,
applies for the accuracy of the strong assignments.

Impact of structure accuracy on the assignment accuracy
Ordinarily, the precision of AlphaFold allows for protein structure
predictions that rival those derived experimentally (16), as is the
case for all proteins in our test dataset (table S1). Nevertheless, in
principle, serious deviations can occur. We therefore investigated
how the accuracy of input structures influences structure-based
chemical shift assignment with ARTINA. For this purpose, we ar-
tificially generated many decoy structures with backbone RMSD in
the range of 0 to 5 Å by applying 3DRobot (18) to the PDB reference
structures. Comparably to AlphaFold structures, these decoys
remain generally well packed, contain parts or all of the native sec-
ondary structure elements, and are devoid of obvious errors such as
severe steric clashes.

We used decoys to predict chemical shifts with UCBShift. Sub-
sequently, ARTINA assignment calculations were conducted with
these decoy structures and, optionally, additional UCBShift predic-
tions (Fig. 3B). For comparability, relative assignment error rates,
normalized by the error rate of the corresponding assignment ob-
tained by ARTINA without input structure, are shown in Fig. 3B.
For instance, if, for a given set of spectra and protein, the assignment
accuracy is 90% using the given input structure and 75% without
input structure, the relative error rate is (100 − 90)/(100 − 75) =
40%. Relative error rates below 100% indicate that the use of the
structure improves the assignment.

The use of the AlphaFold structure substantially improves the
assignment accuracy, with median relative error rates of 76.02%.
This improvement is also observed with decoy structures that
have backbone RMSD under 3 Å to the reference PDB structure
(median relative error rates of 88.99 to 96.88%), although the advan-
tage decreases with decreasing accuracy of the input structures.
Decoy structures with an RMSD between 0 and 2 Å exhibit the
best performance, having median relative error rates of 88.99 to
91.43%. In contrast, structures with an RMSD within the 2- to 3-
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Å range provide minimal help (96.88%), and those with larger de-
viations tend to detrimentally affect the assignment process.

Figure 3B further illustrates that incorporating chemical shift
prediction with UCBShift as an additional step makes the workflow
more susceptible to the accuracy of the input structure, which is the
consequence of error accumulation. Compared to ARTINA runs
without any additional input, the integration of shift predictions

proves advantageous for AlphaFold structures and the decoys
with backbone RMSD under 2 Å. However, a close examination
of the plots in Fig. 3B reveals that even though decoys with
RMSD 1 to 2 Å yield a higher-average assignment accuracy than
ARTINAwithout a structure, it is more effective to use the structure
model only for expected NOESY peak generation, skipping the

Fig. 3. Factors affecting chemical shift as-
signment accuracy in the proposed integra-
tive approach. (A) Correlation between the
percentage of strong assignments and chemical
shift assignment accuracy, comparing ARTINA-
only calculations (left) to those incorporating
complementary inputs (right). The strong as-
signment fraction serves as a reliable indicator of
overall assignment accuracy across various ex-
perimental settings. The Pearson correlation
coefficient [calculated jointly for all input types in
(A)] is 0.9046, with a regression model formula of
0.89x + 7.88. (B) Analysis of the impact of struc-
ture quality on chemical shift assignment errors,
represented by box plots of normalized assign-
ment errors. These errors are calculated as the
ratio between the assignment error in a given
experimental configuration and the ARTINA as-
signment error without any complementary
input. For instance, using an AlphaFold structure
along with UCBShift predictions as additional
input results in a 27.23% reduction in error
compared to using ARTINA with spectra and se-
quence data alone. The orange line at 100%
denotes the performance of ARTINAwithout any
complementary input. (C) Improvement in
chemical shift accuracy due to the inclusion of
complementary inputs, such as AlphaFold and
UCBShift predictions. Blue dots are for the five
proteins with least accurate AlphaFold structure
predictions.
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UCBShift prediction step (normalized error 91.43%, compared
to 93.67%).

An additional finding is that AlphaFold structures offer better
support for ARTINA assignments than decoys. AlphaFold struc-
tures outperform the finest decoys (Fig. 3B). This may be due to
better side-chain packing in the AlphaFold structures, which is ben-
eficial for the full protein assignment but does not improve the
backbone RMSD presented on the plot’s horizontal axis. To
further understand the assignment performance with AlphaFold
structures, we examined the chemical shift accuracy of all proteins,
both with and without complementary inputs, as presented in
Fig. 3C. They clearly demonstrate a robust positive impact when Al-
phaFold or AlphaFold combined with corresponding UCBShift
predictions are used, as reflected by data points above the diagonal.
This improvement in assignment quality is observed even when
considering only the bottom 5% of the AlphaFold predictions that
deviate most from the corresponding reference structure.

Assignment of large proteins
Assigning NMR spectra of large proteins with more than 200 resi-
dues presents a fundamental challenge in the field of NMR spectro-
scopy, due to several factors affecting both measurement process
(line broadening, lower sensitivity, and larger conformational het-
erogeneity) and data interpretation (signal overlap and shift assign-
ment ambiguity). The cumulative effect of these factors is illustrated
in Fig. 4A, which shows an exponential decay in the number of as-
signed proteins deposited in BMRB, beginning from 150 residues,
despite their biological significance and substantial interest in NMR
studies (26, 27), and corroborating earlier observations (28). The in-
troduction of 1.2-GHz NMR spectrometers has expanded the limits
of NMR spectroscopy in terms of resolution (29), paving theway for
the further development of computational methods. This progress
serves as the underlying motivation for evaluating the performance
of our previous method, ARTINA, and our integrative approach in
context of potential large-protein assignments.

For this study, we prepared data as follows. First, we selected 41
proteins from the ARTINA benchmark, for which 13C/15N-edited
[1H,1H]-NOESY, CBCAcoNH, HCCH-TOCSY, and CCH-TOCSY
experiments are available (the recommended spectra subset).
Second, we randomly selected 155 protein subsets (typically one
to four proteins in each subset), ensuring that each subset contains
up to 500 residues in total. For each protein subset, we concatenated
corresponding AlphaFold predictions using 10 glycine linkers (fig.
S3). This step necessitated structure regularization with CYANA
(30), during which protein individual structures were kept fixed
and only linker coordinates were refined to avoid structural
clashes in the concatenated model. Furthermore, we aligned and
combined chemical shift lists (BMRB depositions and UCBShift
predictions) and experimental peak lists accordingly to the concat-
enated AlphaFold structures. It is important to note that in this in
silico experiment, we used experimental cross peak coordinates ex-
tracted automatically from NMR spectra (each spectrum represent-
ing a separate domain in the concatenated model), but the
automated chemical shift assignment was performed on the concat-
enated peak lists. Although this constitutes a further simplification
compared to the experimental setting, where all domains are re-
corded simultaneously in a single spectrum, the experiment
allows to assess the impact of the system size on the accuracy of
the chemical shift assignment.

With such multidomain protein datasets, we carried out full
chemical shift assignment (backbone and side-chain) using
ARTINA either without any complementary inputs (Fig. 4, B to
D, blue) or with both AlphaFold and UCBShift predictions
(Fig. 4, B to D, orange). As illustrated in Fig. 4B, when the
ARTINA workflow is executed using only spectra and sequence,
its performance begins to decline rapidly once the system size
exceeds approximately 200 residues. This decline can be attributed
to the combinatorial complexity of the optimization problem being
solved and the ambiguity of the cross peak assignments. The overall
accuracy of the chemical shift assignment decreases from 89.76 to
36.27% as the system size expands from 100 to 500 residues. In con-
trast, the integrative approach alleviates this issue, achieving assign-
ment accuracies 93.06 and 77.09% for 100 and 500 residue proteins,
respectively, and maintaining an assignment accuracy above 80%
for systems up to 432 residues.

Our previous experiments have confirmed that strong assign-
ments can be considered reliable (Table 2). This statement was sup-
ported by large-scale experiment with more than 5000 assignment
calculations and 89 proteins of size up to 175 residues. Upon exam-
ining the characteristics of ARTINA and FLYAwith larger systems,
it becomes evident that the quality of strong assignments declines
less with increasing protein size than the overall assignment accu-
racy (Fig. 4C), reaching 74.58% for assignments where ARTINAwas
used without any complementary inputs (compared to 36.27% for
all shifts) and 91.55% for ARTINA with AlphaFold and UCBShift
predictions (77.09%). This observation leads to the conclusion that
when ARTINA is used with complementary inputs, its strong as-
signments remain reliable, even for large systems. Nevertheless,
the fraction of observed strong assignments varies depending on
the used experimental setting (Fig. 4D).

DISCUSSION
In this work, we propose an integrative approach to deep learning–
based automated chemical shift assignment of proteins, which com-
bines our previous methodARTINAwith AlphaFold andUCBShift,
outperforming previously reported results in terms of accuracy, ef-
ficiency, and robustness of the automated chemical shift assign-
ment. In comprehensive studies with more than 5000 automated
assignment calculations on 89 proteins, the impact of quantity
and quality of the input data for assignment has been investigated,
yielding practical recommendations for rapid automated analysis of
NMR spectra. In addition, we pointed out the fundamental advan-
tage of the integrative approach for studies of large proteins by
NMR. Last, the proposed integrative approach paves the way to
backbone group assignment using only 15N-labeled samples,
which provides an alternative to costly research with 13C labeling.
A quantitative summary of the above statements is presented
in Table 3.

The proposed integrative approach is more efficient than
ARTINA without structure input in extracting information from
NMR spectra due to reduced ambiguity of the chemical shift assign-
ment. On average, five 3D spectra (15N-edited [1H,1H]-NOESY,
13C-edited [1H,1H]-NOESY, CBCAcoNH, HCCH-TOCSY, and
CCH-TOCSY) are sufficient to assign correctly 95.45% of the chem-
ical shifts, which outperforms previously reported results for
ARTINA using all available spectra but no AlphaFold and UCBShift
predictions (91.37%). An even higher median accuracy of 94.40%
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can be achieved for the backbone amide groups using just two 3D
spectra, 15N-edited [1H,1H]-NOESY and 13C-edited [1H,1H]-
NOESY. Backbone amide group assignment works slightly better
with the NOESY spectra than with dedicated triple-resonance back-
bone assignment spectra. Considering that the NOESY spectra
provide a wealth of other relevant information, e.g., about the con-
formation or multiple states of a protein (19), whereas the triple-

resonance through-bond spectra have little use beyond establishing
the assignment, this renders NMR studies more efficient since the
spectra can be used simultaneously for assignment and other
purposes.

Regarding the studies with only 15N-labeled samples, the origi-
nal ARTINA approach could not assign backbone amine chemical
shifts to a practically relevant extent (26.96% correct among all

Fig. 4. Impact of protein size on the accuracy of automated chemical shift assign-
ment. (A) Completeness of protein backbone amide 1H and aliphatic 1H chemical shift
assignments as a function of protein size in all BMRB depositions available on 10May 2023.
(B) Accuracy of full (backbone and side-chain) chemical shift assignment. (C) Accuracy of
strong backbone and side-chain shift assignment. (D) Fraction of chemical shifts assign-
ments classified as strong by FLYA. Each data point in (B) to (D) represents the result of an
automated chemical shift assignment of a protein with the recommended dataset (dataset
3), both with (orange) or without (blue) complementary AlphaFold and UCBShift predic-
tions. Regression lines and ± σ and ± 2σ confidence intervals (semitransparent shaded
areas) were obtained by Gaussian process regression with a Matérn kernel.
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assignments). In contrast, the integrative approach yielded substan-
tially more correct assignments (83.59% of all assignments). Being
able to assign backbone amide groups with a minimal number of
spectra and without 13C-labeling facilitates efficient studies of
protein interactions and dynamics.

ARTINA proposes an assignment for every atom that has been
used to assign at least one peak in one of the spectra. These assign-
ments are then classified as “weak” (tentative) or “strong” (reliable),
and it has been shown earlier (and is confirmed by Table 2) that
there are about 10 times fewer errors among the strong assignments
than among the weak ones. Nevertheless, the error rate in not zero
even for strong assignments (as, presumably, there may also be a
small number of errors in deposited manually determined assign-
ments). In general, these errors have little impact on a subsequent
structure calculation but may be a problem for other NMR studies
that rely on the correctness of individual assignments. In that case,
manual verification may be applied to detect and fix potentially
unsafe assignments, a task that is greatly simplified by the assigned
peak lists and chemical shift lists provided by ARTINA.

Studies of intrinsically disordered regions and proteins are an
important application domain for NMR spectroscopy that poses
challenges for both manual and automated analysis. The
ARTINA benchmark contains only folded proteins with mainly
well-defined structure. Nevertheless, also these proteins comprise
not well-structured and unstructured regions, e.g., near chain
ends or in loops. To obtain an estimate for the performance of
our method regarding intrinsically disordered regions, we calculat-
ed the chemical shift assignment accuracy for the subsets of atoms
that are either within or outside well-structured regions, as defined
by the CYRANGE algorithm (31) and reported earlier (11). Results
are given in tables S4 and S5. As expected, our method performs
better within well-structured regions (median accuracy 92.71% for
the full dataset and 92.62% for the recommended dataset) than
outside (median accuracy 86.84% for the full dataset, 84.37% for
the recommended dataset). Using AlphaFold structures and UCB-
Shift predictions as input increases the overall chemical shift

assignment accuracy in both types of regions, e.g., by 4.94 pp
within well-structured regions versus 4.38 pp outside well-struc-
tured regions for the recommended spectra dataset.

The integrative approach is expected to be particularly advanta-
geous in NMR studies of 200- to 500-residue proteins, which are of
high interest in structural biology but severely underrepresented in
the BMRB repository. Such proteins pose challenges for both NMR
(due to signal overlap, sensitivity and relaxation) and cryo–electron
microscopy (contrast issues), resulting in x-ray crystallography as
the method of choice. Although unavoidably larger protein size
has a negative effect on the integrative approach, the performance
of the integrative approach decreases much less (from 93.06%
correct assignments for proteins in the 100-residue size range to
77.09% for the simulated proteins in the 500-residue range;
Table 3) than for ARTINA without any complementary input
(from 89.76 to 36.27%). Having said this, it must be kept in mind
that the analysis presented here assesses mainly the effects of in-
creased peak overlap and the larger number of atoms to assign
but neglects the increase of relaxation with protein size, which
broadens cross peaks and leads to a concomitant further increase
of peak overlap. For instance, doubling the protein size from 200
to 400 amino acid residues approximately doubles resonance line-
widths. However, it can be expected that a combination of measure-
ments at ultrahigh field of 1.2 GHz, partial deuteration (32), as well
as further method developments such as the combined 13C,15N-
edited [1H,1H]-NOESY experiment (19) will alleviate this overlap
issue. Better resolution of the input spectra can also result from ad-
vanced experimental and data processing methods, for example, by
homonuclear Cα-Cβ decoupling using software deconvolution or a
decoupling sequence, which can markedly improve resolution in
HNCA spectra (33), or by nonuniform sampling techniques (34).

In summary, in our previous study (11) themain gain in efficien-
cy for protein chemical shift assignment was the machine learning–
based, complete automation of the entire process, starting from the
uninterpreted spectra, which leaves the NMR measurements as the
main time-limiting step. The integrative approach presented in this

Table 3. Quantitative summary of key chemical shift assignment experiments.

Assignment task
Spectra used in the experiment

Dataset
ID

Accuracy* (%)

2D 3D Standard
approach

Integrative
approach

Full (backbone and sidechains) [1H,15N]-
HSQC
[1H,13C]-
HSQC

15N-edited [1H,1H]-NOESY,
13C-edited [1H,1H]-NOESY,

CBCAcoNH,
HCCH-TOCSY, and CCH-TOCSY

3 92.77 (89.01) 95.45 (92.59)

Backbone HN groups (13C and 15N
labeling)

[1H,15N]-
HSQC

15N-edited [1H,1H]-NOESY and 13C-edited
[1H,1H]-NOESY

17 94.89 (84.13) 98.00 (94.40)

Backbone HN groups (15N
labeling only)

[1H,15N]-
HSQC

15N-edited [1H,1H]-NOESY 25 87.50 (26.96) 93.67 (83.59)

Full (backbone and sidechains)
proteins ~100 residues

[1H,15N]-
HSQC
[1H,13C]-
HSQC

15N-edited [1H,1H]-NOESY, 13C-edited [1H,1H]-NOESY,
CBCAcoNH, HCCH-TOCSY, and CCH-TOCSY

3 93.34 (89.76) 95.50 (93.06)

Full (backbone and sidechains)
proteins ~500 residues

74.58 (36.27) 91.55 (77.09)

*Accuracy refers to the median of the accuracy of the assignments obtained for the proteins in our study. The first number is for strong assignments, and the
number in parenthesis is for all assignments. See footnotes of Table 2 for details.
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work constitutes an improvement regarding NMR measurement
time, sample preparation, and protein size. Using the small sets of
spectra identified in this study, the NMR measurements, and thus
the effort and cost for the NMR assignment of a protein can be
reduced several-fold, proteins may be labeled only with 15N for
backbone HN assignment, and larger proteins can likely be as-
signed, which enlarges the protein family easily accessible by
NMR to many biologically and pharmaceutically interest-
ing systems.

The integrative approach has also potential for studies of other
types of systems, such as protein complexes, intrinsically disordered
proteins, membrane proteins, as well as in-cell and solid-state NMR,
for which machine learning methods are equally promising than for
the monomeric globular proteins in solution studied with ARTINA
so far. Such applications are currently hampered by limited avail-
ability of suitable spectra datasets, which we expect to overcome
by spectrum simulation for the generation of training data and by
facilitating NMR primary data deposition in public databases for
the accumulation of experimental test data.

MATERIALS AND METHODS
The original ARTINA algorithm (11) uses as input exclusively a set
of multidimensional NMR spectra and the amino acid sequence of
the protein. We extended this approach to handle additional types
of input data, including 3D protein structures, chemical shifts
values or distributions, and peak lists prepared by other methods
(not used in this study). The chemical shift information may com-
prise already known assignments for a subset of atoms (for instance,
from manual spectra analysis; not used in this study) and/or statis-
tical information on the distribution of chemical shifts (used here).
All sources of input data are optional, with the prerequisite that at
least one input spectrum or peak list must be available.

Integrative approach for structure-based chemical shift
assignment
The integrative approach (Fig. 5) uses three complementary sources
of information: NMR spectra, 3D structures, and chemical shift dis-
tributions. The latter two types of information are derived from pre-
dictions that require only the amino acid sequence as input and
therefore not any additional measurements. The aim of the integra-
tive approach is to derive more accurate assignments than the orig-
inal, purely spectra-based ARTINAworkflow with a lower demand
for experimental NMR data and thus to cut down the requiredNMR
measurements.

NMR spectra are analyzed with a deep residual neural network
and, if necessary, unfolded automatically yielding signal positions
(Fig. 5). Each detected cross peak has assigned a classifier response
in the range [0, 1], which indicates the probability that the signal is a
true peak rather than an artifact. Because the protein sequence is
known, one can calculate the expected number of cross peaks in
each spectrum. This number is used to select cross peaks with
highest classifier response and form an input for FLYA chemical
shift assignment. In case the number of expected peaks cannot be
assessed (i.e., in case of NOESY experiments), a fixed threshold
value of 0.1 is used to select the signals. It has been shown to be
beneficial to select cross peaks generously and filter out the artifacts
at later stages of the analysis because the FLYA automated

assignment algorithm can cope better with additional artifact
peaks than with missing true peaks (7).

For the assignment calculations in this paper, input 3D struc-
tures are obtained, unless noted otherwise, by sequence-based
structure prediction with AlphaFold using as input the sequence
of the protein construct for which the NMR spectra had been re-
corded. To avoid potential bias, only PDB templates that were de-
posited in the data bank before the publication of the query protein
are used for AlphaFold structure prediction. Five structure candi-
dates predicted by AlphaFold were combined into a structure
bundle that resembles NMR models.

To investigate the required accuracy of 3D structures for our in-
tegrative approach, we also generated artificially disturbed variants
of the PDB structures. We used 3DRobot (18) to create 100 well-
structured decoys for each benchmark protein used in this study.
These decoys cover a range of 0 to 15 Å in backbone RMSD relative
to the PDB reference, of which those with RMSD 0 to 5 Å were used
for our study. To again assemble structure bundles, we identified
triplets of decoys having pairwise backbone RMSD below 1 Å.

The 3D structures are used directly to generate expected NOESY
peaks (see below), and indirectly, as input for chemical shift predic-
tions with UCBShift (17), which are in turn used to reduce the
search range for Cα Cβ, C0, HN, Hα, and N chemical shift assign-
ments. This facilitates the assignment by decreasing the number
of assignment possibilities that have to be considered during com-
binatorial optimization. In general, the number of assignment pos-
sibilities decreases exponentially with the width of the chemical
shift distributions (35). Note that the protein structure used in the
integrative approach may also be obtained by other methods (x-ray
crystallography) or originate from a homologous protein.

Automated chemical shift assignment with FLYA
The previously described FLYA algorithm (7) for automated chem-
ical shift assignment uses a combination of evolutionary and local
optimization (6) to optimally map cross peaks expected on the basis
of sequence and structure to cross peaks observed in the experimen-
tal spectra. With this general approach, it can determine chemical
shift assignments using peak lists from any combination of multi-
dimensional NMR spectra.

3D structures can be used directly by FLYAwhen generating the
cross peaks that are expected in NOESY spectra. An expected
NOESY cross peak is generated whenever the corresponding dis-
tance is shorter than 6.0 Å in all conformers in the structure
bundle. In the absence of an input structure, FLYA applies this cri-
terion to an internally generated bundle of random structures, i.e.,
structures with correct covalent geometry but random torsion angle
values that are only minimized to avoid steric clashes. Consequent-
ly, only expected cross peaks that correspond to short-range dis-
tances (within a residue or between neighboring residues) will be
obtained because the distance between two atoms located far
apart in the protein sequence are highly unlikely to be consistently
short in all members of the random structure bundle. In contrast, if
a narrow bundle of structures is provided to FLYA, then also
medium-range and long-range expected NOESY cross peaks will
be generated, which corresponds to the situation in the experimen-
tal spectra where such peaks are observed. In FLYA, expected peaks
are further characterized by an a priori estimate of the probability to
actually observe the peak in an experimental spectrum, which is
used for selecting peak mappings and scoring assignments during
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the optimization (7). For NOESY cross peaks, this estimated prob-
ability is set to 0.9 if the maximal distance dmax in the structure
bundle is shorter than 4 Å, 0.8 if 4 ≤ dmax < 4.5 Å, 0.7 if 4.5 ≤
dmax < 5 Å, 0.6 if 5 ≤ dmax < 5.5 Å, and 0.5 if 5.5 ≤ dmax < 6 Å. In
“through-bond” spectra, the estimated probabilities are set to fixed
values, stored in the CYANA library file, for each magnetization
transfer path that can give rise to an expected peak.

Input chemical shift predictions replace, if available, the default
statistics used by FLYA as a priori information for the chemical shift
assignment, which is derived from the distribution of chemical shift
values over all known assignments for a given atom in the BMRB
data bank (36). Chemical shift distributions are modeled in FLYA
as normal distributions defined by their mean and SD. Using struc-
ture-based chemical shift prediction, one can in many cases obtain
chemical shift distributions that are more accurate (i.e., have a mean
value closer to the actual chemical shift value) andmore precise (i.e.,
have a smaller SD then the general BMRB distribution) and thus

help FLYA in determining reliable assignments. To achieve this, it
is not necessary that the chemical shift prediction algorithm pro-
vides the correct value with high accuracy.

The FLYA algorithm yields a chemical shift assignment for all
atoms involved in expected cross peaks that are mapped to an ob-
served peak. FLYA classifies these assignments as either strong (re-
liable) or weak (tentative) by running the assignment algorithm
multiple times (20 times for all calculations in this paper) with iden-
tical input data but different random numbers to initialize the op-
timization algorithm (7). The assignment of a given atom is
classified as strong if at least 80% of the chemical shift values
found for this atom in the 20 independent runs fall within a
range of ω ± Δω, where ω is the optimal consensus chemical shift
value and Δω is a tolerance of 0.03 ppm for 1H and 0.4 ppm for 13C
and 15N. Assignments of atoms that do not fulfill this criterion are
classified as weak. Weak assignments are often still correct but carry

Fig. 5. Integrative approach to automated chemical shift assignment. GNN, graph neural network; KDE, kernel density estimation; ResNet, deep residual
neural network.
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an about 10 times higher chance of being wrong than the strong
assignments (7).

Chemical shift refinement with graph neural network
and FLYA
In the subsequent step we bring to the workflow information about
thousands of structures solved in the past by NMR spectroscopy.
This is done through a graph neural network (GNN) that has
been trained on the BMRB database, as described earlier (11).
The model accepts as input molecular graph of the protein with in-
formation about chemical shifts classified as strong in each node of
the graph. By solving a node regression problem, GNN predicts ex-
pected values for all missing (i.e., weakly or not assigned in the pre-
ceding FLYA run) chemical shifts given the ones strongly assigned
by FLYA. In the proposed approach, we make only one shift predic-
tion and refinement step (Fig. 5), which yields the final output of
our procedure. When UCBShift is used, its chemical shift predic-
tions are only used in the first FLYA run, whereas GNN predictions
are always used only in the second FLYA run.

Decoy structure generation
We used 3DRobot (18) with standard parameters to create, starting
from the PDB reference structure, 100 well-structured decoys for
each benchmark protein used in this study. These decoys cover a
range of 0 to 15 Å in backbone RMSD relative to the PDB reference.
The decoy structures, refined at the atomic level through energy op-
timization, bear similarities with the true folds deposited in the
PDB, such as the quantity and placement of secondary structure el-
ements (fig. S1). To assemble protein bundles, we identified triplets
of decoys with pairwise backbone RMSD below 1 Å.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Tables S1 to S5
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