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Abstract
The steps of an NMR protein structure determination that follow data acquisition
can now be performed by automated computational methods. This overview of
the computational methods for NMR protein structure analysis highlights recent
automated methods for signal identification in multidimensional NMR spectra,
sequence-specific resonance assignment, collection of conformational restraints,
and structure calculation, as implemented in the CYANA software package.
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Introduction

A few years ago, NMR protein structure determination was a laborious undertaking
that occupied a trained spectroscopist over several months for each new protein
structure. It was then recognized that many of the time-consuming manual steps
carried out by an expert during the process of spectral analysis could be accom-
plished by automated, computational approaches [1]. Today automated methods for
NMR structure determination are playing an ever more prominent role and are
superseding the conventional manual approaches for solving three-dimensional
protein structures in solution.

The standard procedure for protein structure determination by NMR [1–4] is
shown in Fig. 1. Following sample preparation, usually involving uniform or
specific stable isotope labeling [5], NMR data acquisition and data processing,
which yields a set of multidimensional NMR spectra, the crucial steps of a NMR
structure determination are signal identification, chemical shift assignment, nuclear
Overhauser effect (NOE) assignment, and structure calculation.

Identifying signals in an NMR spectrum yields peak lists, and it is in this form
that the information from the experimentally measured spectra enters the remaining
steps of the procedure. In the next step, chemical shift assignment, the chemical shift
values that are observed in the spectra are assigned to the corresponding protein
atoms. This is followed by NOE assignment, where the cross peaks in NOESY
spectra, which hold information about atom-atom distances in the 3D structure are
assigned to the respective atoms based on the chemical shift assignment. Distance
restraints are deduced from the volumes of these peaks. Finally, the 3D structure is
calculated based on NOE distance restraints and possibly other conformational
restraints, e.g., torsion angle restraints from chemical shifts or J-couplings, orienta-
tional restraints from residual dipolar couplings (RDCs), or hydrogen bond
restraints. Once a preliminary 3D structure has been obtained, the structural infor-
mation is used to improve the NOE assignment. This is done in several cycles. It is
possible to refine the 3D structure using physical force fields, e.g., by molecular
dynamics simulation in explicit solvent.
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Automated Signal Identification

The identification of signals in an NMR spectrum, also known as peak picking, plays
a central role in biomolecular NMR studies and is a prerequisite for sequence-
specific resonance assignment and structure determination. Peak lists provide an
abstraction of the multidimensional spectra that contains the most essential spectral
information – the position and intensity of the signals – in a form that is readily
accessible by interactive or automated spectra analysis programs. The ease and
reliability of spectrum analysis relies on the quality of the peak lists, which in turn
depends mainly on three factors: how many of the true signals the peak lists contain,
how few additional “artifact” peaks that do not correspond to true signals they
contain, and how accurate they record the positions and intensities of the signals.

Peak lists do not have to be flawless to serve as a basis for chemical shift
assignment and NOE assignment, followed by structure calculation. For instance,
it has been shown that the automated resonance assignment algorithm FLYA can
yield more than 90% correct resonance assignments even if either 60% of the true

Fig. 1 Flowchart of the individual steps in NMR protein structure determination. Steps shown in
dark gray are described in the following in more detail. Additionally, these steps can be performed
iteratively, indicated by back-cycling arrows
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peaks are missing or five times more artifacts than real peaks are present in the input
peak lists [6]. Automated NOE assignment and structure calculation with CYANA
[7, 8] can in many cases also tolerate 30–40% missing NOESY peaks without
dramatic deterioration of the resulting structures [9, 10].

Peak picking can be achieved by visual inspection of the spectra or automated
methods. Along with algorithms for resonance assignment and structure calculation,
the demand for automated peak picking is increasing, and various algorithms for the
purpose have been proposed. Nevertheless, the task remains challenging. Reasons
for this include low signal-to-noise, overlap, and artifacts such as baseline distor-
tions, intense solvent lines, ridges, or sinc wiggles.

Most of the existing peak picking algorithms can be classified as either threshold-
based methods, methods that depend on symmetry criteria, peak-shape-based
methods, methods that incorporate peak picking into NMR data processing, or a
combination thereof. Threshold-based methods are the most straightforward and
most commonly used automated peak picking approaches. Interactive spectrum
analysis programs like XEASY [11], Sparky [12], NMRViewJ [13, 14], or CcpNmr
AnalysisAssign [15, 16] (in the following abbreviated as CCPN) give the user the
possibility to adjust a threshold manually and perform peak picking by finding local
extrema above the threshold. These methods are particularly useful as a starting
point for semi-automated peak identification, which is refined manually. WavPeak
[17] employs wavelet-based smoothing of the spectrum prior to identifying peaks as
local maxima. PICKY [18], is a singular value decomposition (SVD)-based auto-
mated peak picking method. Machine learning and computer vision methods have
also been employed for peak picking, e.g., in the CV-Peak Picker program
[19]. AUTOPSY [20] is a sophisticated automated peak picker that includes func-
tions to determine a local noise level and to deconvolute clusters of overlapping
peaks with the help of line shapes derived from nonoverlapping peaks. ATNOS [21]
is an automated peak picker specifically for NOESY spectra that is integrated into
automated NOESY assignment and structure calculation and makes use of prelim-
inary structural information to guide the peak picking. Peak picking can be part of
NMR data processing, e.g., in the program MUNIN [22] that uses three-way
decomposition to decompose a three-dimensional (3D) NMR spectrum into a sum
of components defined as the direct product of three 1D shapes. The GAPRO peak
identification algorithm [23] establishes peak lists for high-dimensional (e.g., 4D,
5D, 6D) APSY-type spectra by picking peaks in the experimentally recorded tilted
2D projections.

The human approach to peak picking can be seen as the analysis of the shape and
regularity of 2D contour lines. Real signals are manifested by concentric ellipses and
have common properties which artifacts do not share, e.g., regarding peak width,
convexity, or similarity. However, real signals can deviate from the proposed ideal
shape for a number of reasons, such as noise, spectral overlap, limited digital
resolution, baseline instabilities, or phase distortions. An automated peak-picking
procedure should be able to handle these imperfections and shortcomings. A prom-
ising approach to automated peak picking is to mimic the human way of analyzing
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similarity and symmetry criteria of contour lines in 2D spectral planes. This
approach has first been used in the CAPP algorithm [24].

A recent example of an automated peak picking method that is based on analyzing
geometric properties of contour lines is the CYPICK algorithm [25], which is
implemented in the CYANA software package [26] and can be linked directly to
automated chemical shift assignment and/or NOE assignment, followed by structure
calculation, which are also available in CYANA. CYPICK follows, as far as possible,
the manual approach taken by a spectroscopist who analyzes peak patterns in contour
plots of the spectrum but is fully automated. Human visual inspection is replaced by
the evaluation of geometric criteria applied to contour lines, such as local extremality,
approximate circularity (after appropriate scaling of the spectrum axes), and convexity.

Figure 2 shows a simplified flowchart of the CYPICK algorithm. The first step is
to read the processed NMR spectrum. Either the global noise level of the spectrum or
the local noise level at each data point is determined and used to set the intensity of
the lowest (base) contour level. The next step is to find local extrema above the base
level and to compute exponentially spaced contour lines in their vicinity. This can
either be done over the entire spectrum or restricted by a frequency filter, defined by
a 2D peak list, e.g., to pick peaks in a 3D spectrum, for instance, a 15N–resolved
[1H,1H]-NOESY, based on a previously picked 2D spectrum, for instance, a
[1H,15N]-HSQC. The vertices of all contour lines that enclose the local extremum
are stored. In order to achieve approximately circular contour lines for real peaks, the
chemical shift coordinates of the points defining the contour lines are scaled
according to the approximate line widths.

Fig. 2 Flowchart of the CYPICK peak picking algorithm implemented in CYANA. Reprinted with
permission from [25]
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The contour lines belonging to local extrema are subsequently filtered and
analyzed. A preliminary filtering process evaluates the following conditions:
(i) The local extremum of interest has to be inside the contour line. (ii) No other
local extremum except the local extremum of interest may be enclosed by the
contour line. (iii) The contour line must have at least five vertices because shape
criteria (see below) cannot be evaluated meaningfully for contour lines with fewer
points. (iv) At least two contour lines that fulfill all preceding conditions must
enclose the local maximum.

After filtering, the remaining contour lines are further analyzed starting from the
contour line with the highest absolute intensity. If the highest contour line does not
fulfill the requirements, the next lower contour line is analyzed. At least two contour
lines have to fulfill the two following conditions. The first condition is that its shape
must be approximately circular. This is checked by computing the area-to-circum-
ference-squared ratio, which equals 1/4π in case of a perfect circle. As a second
condition, a contour line around an extremum is required to form an approximately
convex polygon with all interior angles smaller than 180�. Nevertheless, for some of
the real signals a slight deviation from perfect convexity should be tolerated.

The local extrema that fulfill these conditions correspond to the picked peaks.
Their precise positions and intensities are determined by spline interpolation, and
they are stored in a peak list.

The performance of CYPICK was evaluated for a variety of spectra from different
proteins by systematic comparison with peak lists obtained by other, manual or
automated, peak picking methods, as well as by analyzing the results of automated
chemical shift assignment and structure calculation based on input peak lists from
CYPICK [25]. The results show that CYPICK yielded peak lists that compare in
most cases favorably to those obtained by other automated peak pickers with respect
to the criteria of finding a maximal number of real signals, a minimal number of
artifact peaks, and maximal correctness of the chemical shift assignments and the
three-dimensional structure obtained by fully automated resonance assignment [6]
and structure calculation [7, 8] from the CYPICK peak lists.

Automated Chemical Shift Assignment

Every NMR-detected nucleus in a macromolecule has a specific chemical shift
value, which depends on its chemical environment. Revealing the relationship
between atoms and chemical shifts is denoted as chemical shift or resonance
assignment. Chemical shift assignment is not only necessary to exploit the distance
information in NOESY spectra for structure determination, but in all cases in which
atom-specific information has to be obtained from an NMR experiment. Examples
include molecular interaction studies, alternative approaches for protein structure
determination that are based on chemical shifts or RDCs, or investigations of protein
dynamics.

To enable chemical shift assignment, several NMR experiments are performed
that complement each other such that the connectivity of the atoms in a protein is
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represented. Based on the covalent structure that results from the protein sequence,
it is possible to establish the relationship between chemical shifts and atoms.
Usually, a set of standard experiments [27] is used to reveal the covalent atom
connectivities. The different spectra should be aligned as closely as possible;
referencing offsets can be corrected automatically [28].

Since the general strategy for chemical shift assignment has been described in the
1980s [29], there have been many attempts to establish an automated procedure for
this process, and reviews of these endeavors are available [2, 30, 31]. Some pro-
grams [6, 32–35] perform the entire chemical shift assignment process starting from
peak lists or NMR spectra as input data and ending with an (almost) complete
assignment of backbone and side chain atoms, others are specialized in certain
aspects of the assignment process, for instance, sequence-specific backbone assign-
ment [36–39].

NMR resonance assignment is based on several experiments that couple atom
signals such that they can be measured as multidimensional peaks in the
corresponding spectra. Assignment experiments are chosen to complement each
other in such a way that the connectivity of the atoms in a protein can be represented
by a network of peaks that are expected to be observed. Mapping this network of
expected peaks with unknown positions to the unassigned measured peaks with
known positions provides an assignment of the frequencies to the atoms (Fig. 3) [32,
33]. The FLYA resonance assignment algorithm [6] that has been implemented in the
CYANA software package [26, 40] uses this general approach to assign all types of
NMR spectra, those which are based on scalar couplings as well as experiments that
take advantage of the nuclear Overhauser effect [41] or corresponding solid state
NMR experiments [42].

The FLYA algorithm starts by deducing the expected peak network from the
protein sequence and the experiment specifications. For NOE-based experiments,
expected peaks can in general only be predicted for pairs of atoms that are close in
sequence. Expected peaks resulting from long-range contacts can only be obtained if
the 3D structure of the protein is available. To determine sequence-based contacts,
20 random structures with the sequence of the respective protein are calculated
without using experimental restraints and expected NOESY peaks are generated
for 1H-1H contacts with a user defined maximal distance in all 20 structures.

The mapping of expected peaks to measured peaks is done using an evolutionary
optimization algorithm that works with a population of individuals, each
representing an assignment solution [6]. The evolutionary optimization is
complemented by local optimization. Solutions that are produced during the opti-
mization are created such that the search space of an expected peak for a mapping
is consistent with general chemical shift statistics (by default from the BMRB data
bank [43], or user defined [44]), the deviation of the measured frequencies of
different measured peaks that are assigned to the same atom remain within a given
tolerance, and an expected peak can be mapped to only one measured peak. The first
generation of solutions is generated randomly, but fulfilling these criteria. In each
generation, a local optimization algorithm takes small parts of a mapping
back and reassigns the expected peaks for a predefined number of iterations
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(by default 15,000). The different solutions of one generation are then recombined
into a new generation. The individuals and the specific parts of an individual that
contribute to a new individual are selected via a scoring function that takes into
account the distribution of chemical shift values with respect to the given shift
statistics, the alignment of peaks assigned to the same atom, the completeness of
the assignment, and a penalty for chemical shift degeneracy (Fig. 4). The solution
that maximizes this function is given as the final assignment at the end of the
calculation.

To increase the accuracy of the assignment, and to obtain a reliability measure for
each assigned atom, several (typically 20) independent runs of the algorithm are
performed with different random seeds. From the resulting 20 chemical shift values
for each atom, a consensus chemical shift value and a measure of the self-
consistency of the assignment are computed. The self-consistency measure equals
the fraction of runs yielding a chemical shift value that is, within user-defined
tolerances, in agreement with the consensus chemical shift value of the atom.
Experience has shown [6, 45, 46] that assignments with high self-consistency
(“strong” assignments) are more reliable than others (“weak” assignments) (Fig. 5).

Automated NOESY Assignment and Structure Calculation

The structure determination of biological macromolecules by NMR in solution relies
primarily on distance restraints derived from cross peaks in NOESY spectra. A large
number of assigned NOESY cross peaks are necessary to compute an accurate 3D
structure because many of the NOEs are short-range with respect to the sequence,
and thus carry little information about the tertiary structure and because NOEs are

Fig. 3 Scheme of automated chemical shift assignment with the FLYA algorithm. The experimen-
tal data is represented by a list of observed peaks for each spectrum. Corresponding lists of – by
definition assigned – expected peaks are generated from the protein sequence and magnetization
transfer paths for each NMR experiment. Finding the resonance assignment of the protein is
equivalent to establishing an optimal, error-tolerant mapping of expected peaks to observed
peaks. Reprinted with permission from [40]
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generally interpreted as loose upper bounds in order to implicitly account for internal
motions and spin diffusion. Alternatively, accurate distance measurements have
become available with eNOEs [47]. Obtaining a comprehensive set of distance
restraints from NOESY spectra is in practice not straightforward. The large amount
of data, as well as resonance and peak overlap, spectral artifacts and noise, and the
absence of expected signals because of fast relaxation turn interactive NOESY cross
peak assignment into a laborious and error-prone task, even if it is supported by
semiautomated tools that propose and check assignment possibilities [48–50]. There-
fore, the development of computer algorithms for automating this often most time-
consuming step of a protein structure determination by NMR has been pursued
intensely [30]. Several algorithms have been developed for the automated analysis of
NOESY spectra given the chemical shift assignments, e.g., NOAH [51, 52], ARIA

Fig. 4 Schematic representation of the four contributions to the assignment score that is maximized
by FLYA in order to find the optimal resonance assignment of a protein. Expected and observed peaks
are represented by black and gray circles, respectively. (a) Chemical shift normality. Chemical shifts
should be consistent with general chemical shift statistics. The gray area indicates the region in which
the peak is expected to appear according to the chemical shift mean values ω1/ω2 and standard
deviations σ1/σ2 of the assigned atoms obtained from a chemical shift statistics database. (b) Peak
alignment. Peaks assigned to the same atom should be aligned in the corresponding spectral
dimensions. (c) Completeness. As many peaks as possible should be assigned. (d) Low degeneracy.
The number of degenerate peaks should be small. Reprinted with permission from [35]
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[53, 54], ASDP [55], CANDID [8], and AutoNOE-Rosetta [56]. Automated NOESY
peak picking guided by intermediate structures has also been integrated into the
method [21].

The basic problem of NOESY assignment is the ambiguity of cross peak assign-
ments if only the match between cross peak positions and the chemical shift values
of candidate resonances is considered. It has been shown that the number of
assignment possibilities based on chemical shift matching increases exponentially
with the uncertainty in the peak and resonance positions. As a consequence, there are
in general not a sufficient number of unambiguously assigned distance restraints to
obtain a structure [52]. Ambiguous distance restraints make it possible to use also
NOEs with multiple assignment possibilities in a structure calculation [57]. Never-
theless, to minimize the information loss, additional criteria have to be applied to
resolve these ambiguities as far as possible, such as using secondary structure
information [55] or a preliminary structure that is refined iteratively in cycles of
NOE assignment and structure calculation [51]. The CANDID automated NOESY
assignment method [8] introduced the concepts of network anchoring to reduce the
initial ambiguity of NOE assignments and constraint combination to reduce the
impact of erroneous restraints.

The algorithm for automated NOE assignment in CYANA [7] is a
reimplementation of principles of the former CANDID procedure [8] on the basis
of a probabilistic treatment of the NOE assignment process that is conceptually more
consistent and better capable to handle situations of high chemical shift-based

Fig. 5 Extent, correctness, and reliability of individual assignments obtained with the FLYA
automated resonance assignment algorithm [6] using automatically prepared peak lists for the
ENTH-VHS domain At3g16270 from Arabidopsis thaliana [46, 63]. Each assignment for an
atom is represented by a rectangle; colored green, if the assignment by FLYA agrees with the
manually determined reference chemical shifts within a tolerance of 0.03 ppm; red, if the assign-
ment differs from reference; blue, if assigned by FLYA but no reference available; black, if with
reference assignment but not assigned by FLYA. Strong and weak colors represent “strong” (self-
consistent) and “weak” (tentative) assignments as classified by chemical shift consolidation from
multiple runs of the assignment algorithm. The row labeled HN/Hα shows for each residue HN on the
left and Hα in the center. The N/Cα/C0 row shows for each residue the N, Cα, and C0 assignments from
left to right. The rows β-η show the side chain assignments for the heavy atoms in the center and
hydrogen atoms to the left and right. For branched side chains, the corresponding row is split into an
upper part for one branch and a lower part for the other branch. Reprinted with permission from [6]

10 S. Kazemi et al.



ambiguity of the NOE assignments. The key features of the algorithm are network
anchoring to reduce the initial ambiguity of NOESY peak assignments, ambiguous
distance restraints to generate conformational restraints from NOESY cross peaks
with multiple possible assignments, and constraint combination to minimize the
impact of erroneous distance restraints on the structure. Automated NOE assignment
and the structure calculation are combined in an iterative process that comprises,
typically, seven cycles of automated NOE assignment and structure calculation,
followed by a final structure calculation using only unambiguously assigned distance
restraints. Between subsequent cycles, information is transferred exclusively
through the intermediary 3D structures. The molecular structure obtained in a
given cycle is used to guide the NOE assignments in the following cycle. Otherwise,
the same input data are used for all cycles, that is the amino acid sequence of the
protein, one or several chemical shift lists from the sequence-specific resonance
assignment, and one or several lists containing the positions and volumes of cross
peaks in 2D, 3D, or 4D NOESY spectra. The input may further include previously
assigned NOE upper distance bounds or other previously assigned conformational
restraints for the structure calculation.

In each cycle, first all assignment possibilities of a peak are generated on the basis
of the chemical shift values that match the peak position within given tolerance
values, and the quality of the fit between the atomic chemical shifts and the peak
position is expressed by a Gaussian probability, Pshifts. Second, the probability
Pstructure for agreement with the preliminary structure from the preceding cycle
(if available) is computed. Third, each assignment possibility is evaluated for its
network anchoring, i.e., its embedding in the network formed by the assignment
possibilities of all the other peaks and the covalently restrained short-range dis-
tances. The network anchoring probability Pnetwork that the distance corresponding
to an assignment possibility is shorter than the upper distance bound plus the
acceptable violation is computed given the assignments of the other peaks but
independent from knowledge of the three-dimensional structure. Only assignment
possibilities for which the product of the three probabilities is above a threshold,
Ptot= Pshifts Pnetwork Pstructure� Pmin, are accepted (Fig. 5). Cross peaks with a single
accepted assignment yield a conventional unambiguous distance restraint. Cross
peaks with multiple accepted assignments result in an ambiguous distance restraint.

Ambiguous distance restraints [57] provide a powerful concept for handling
ambiguities in NOESY cross peak assignments. When using ambiguous distance
restraints, every NOESY cross peak is treated as the superposition of the signals
from each of its possible assignments by applying relative weights proportional to
the inverse sixth power of the corresponding interatomic distances. A NOESY cross
peak with a unique assignment possibility gives rise to an upper bound b on the
distance d(α, β) between two hydrogen atoms, α and β. A NOESY cross peak with
n> 1 assignment possibilities can be interpreted as the superposition of n degenerate
signals and interpreted as an ambiguous distance restraint, deff � b, with the
“effective” or “r�6-summed” distance
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deff ¼
Xn

k¼1

d�6
k

 !�1=6

:

Each of the distances dk = d(αk,βk) in the sum corresponds to one assignment
possibility to a pair of hydrogen atoms, αk and βk. The effective distance deff is
always shorter than any of the individual distances dk. Thus, an ambiguous distance
restraint will be fulfilled by the correct structure provided that the correct assignment
is included among its assignment possibilities, regardless of the possible presence of
other, incorrect assignment possibilities. Ambiguous distance restraints make it
possible to interpret NOESY cross peaks as correct conformational restraints also
if a unique assignment cannot be determined at the outset of a structure determina-
tion. Including multiple assignment possibilities, some but not all of which may later
turn out to be incorrect does not result in a distorted structure but only in a decrease
of the information content of the ambiguous distance restraints.

Spurious distance restraints may arise from the misinterpretation of noise and
spectral artifacts, in particular at the outset of a structure determination before 3D
structure-based filtering of the restraint assignments can be applied. CYANA uses
“constraint combination” [7, 8] to reduce structural distortions from erroneous
distance restraints. Medium-range and long-range distance restraints are incorpo-
rated into “combined distance restraints,” which are a generalization of ambiguous
distance restraints with assignments taken from different, in general unrelated, cross
peaks (Fig. 6). A basic property of ambiguous distance restraints is that the restraint
will be fulfilled by the correct structure whenever at least one of its assignments is
correct, regardless of the presence of additional, erroneous assignments. This implies
that such combined restraints have a lower probability of being erroneous than the
corresponding original restraints, provided that the fraction of erroneous original
restraints is smaller than 50%. Constraint combination aims at minimizing the
impact of erroneous NOE assignments on the resulting structure at the expense of
a temporary loss of information. It is applied to medium- and long-range distance
restraints in, by default, the first two cycles of combined automated NOE assignment
and structure calculation with CYANA.

The distance restraints are then included in the input for the structure calculation
with simulated annealing by the fast CYANA torsion angle dynamics algorithm
[26]. The structure calculations typically comprise seven cycles (Fig. 7, cyan). The
second and subsequent cycles differ from the first cycle by the use of additional
selection criteria for cross peaks and NOE assignments that are based on assessments
relative to the protein 3D structure from the preceding cycle. The precision of the
structure determination normally improves with each subsequent cycle. Accord-
ingly, the cutoff for acceptable distance restraint violations in the calculation of
Pstructure is tightened from cycle to cycle. In the final structure calculation (Fig. 7,
green), an additional filtering step ensures that all NOEs have either unique assign-
ments to a single pair of hydrogen atoms, or are eliminated from the input for the

12 S. Kazemi et al.



structure calculation. This facilitates the use of subsequent refinement and analysis
programs that cannot handle ambiguous distance restraints (Fig. 8).

Fig. 6 Three conditions that must be fulfilled by a valid assignment of a NOESY cross peak to two
protons A and B in the CYANA-automated NOESYassignment algorithm: (a) Agreement between
the proton chemical shifts ωA and ωB and the peak position (ω1, ω2) within a tolerance of Δω.
(b) Spatial proximity in a (preliminary) structure. (c) Network-anchoring. The NOE between
protons A and B must be part of a network of other NOEs or covalently restricted distances that
connect the protons A and B indirectly through other protons. Reprinted with permission from [3]

Fig. 7 Schematic illustration of the effect of constraint combination in the case of two distance
restraints: a correct one connecting atoms A and B, and a wrong one between atoms C and D. A
structure calculation that uses these two restraints as individual restraints that have to be satisfied
simultaneously will, instead of finding the correct structure (shown, schematically, in the first
panel), result in a distorted conformation (second panel), whereas a combined restraint that will
be fulfilled already if one of the two distances is sufficiently short leads to an almost undistorted
solution (third panel). The formation of a combined restraint from the assignments of two peaks is
shown in the right panel. Reprinted with permission from [3]
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Conclusions

The abovementioned computational tools are sufficiently reliable and integrated into
one software package to enable the fully automated structure determination of
proteins starting from NMR spectra without manual interventions or corrections at
intermediate steps. It has been shown that the fully automated method can yield 3D
structures of proteins with an accuracy of 1–2 Å backbone RMSD in comparison
with manually solved reference structures of proteins [6, 46]. In favorable cases, 3D
protein structures can even be determined from NOESY spectra alone, without
measuring any “through-bond” spectra for the resonance assignment [41].

Recently, the critical assessment of structure determination by NMR (CASD-
NMR) initiative [58] has evaluated several NMR structure determination methods by
blind testing. Using high-quality data sets of small proteins from a structural
genomics project, it was found that the NOESY-based methods included in the test
yielded structures with an accuracy of 2 Å RMSD or better to the subsequently
released reference structures [59, 60].

Because experimental NMR spectra are never perfect, fully automated structure
determination must be capable to cope with incomplete and partially erroneous input
data. For instance, the algorithms should discard artifact peaks when making

Fig. 8 Structures of the ENTH-VHS domain At3g16270 from Arabidopsis thaliana [46, 63] in
seven cycles of combined automated NOE assignment and structure calculation (cyan), and in the
final structure calculation with CYANA (green)
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assignments or generating NOE distance restraints for the structure calculation.
Under such circumstances, there is a potential danger that erroneous structures are
generated. In principle, automated structure determination approaches can go wrong
in two ways, especially with low-quality input data. Either the algorithm fails to ever
assign enough NOE distance restraints to obtain a defined structure. This outcome,
manifested by a divergent structure bundle with a high RMSD, is unfortunate but
straightforward to detect. More problematic are failures of a second kind, where the
algorithm, possibly gradually over several cycles, discards part of the NOE cross
peaks and selects a self-consistent but incomplete subset of the data to compute a
well-defined but erroneous structure, i.e. a tight bundle of conformers with low
RMSD to its mean coordinates that, however, differs significantly from the
(unknown) correct structure of the protein. If this outcome goes unnoticed, it may
result in the publication or PDB deposition of erroneous structures that cannot be
detected easily by common coordinate-based validation tools [61].

To avoid such problems, the method of consensus structure bundles has been
developed [62]. For this approach, one first performs 20 independent runs of
combined automated NOESY assignment and structure calculation with CYANA
using the same input data but different random start structures. Each run yields a
structure bundle as well as the corresponding set of distance restraints. Because the
NOESYpeaks are assigned independently in each of the 20 runs, the sets of distance
restraints from each run, in general, differ from each other. One now combines the
individual sets of distance restraints in order to obtain a consensus set of distance
restraints including assignments from all individual runs, which is then used to
recalculate the final protein structure bundle, the consensus bundle. This new
protocol for NMR structure determination produces, like the traditional method,
bundles of conformers in agreement with a common set of conformational restraints,
however with a realistic precision that has been shown, throughout a variety of
proteins and NMR data sets, to be a much better estimate of structural accuracy than
the precision of conventional structure bundles [62].
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