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. 

The relationship between amino acid sequence, three-dimensional structure and

biological function of proteins is one of the most intensely pursued areas of

molecular biology and biochemistry. In this context, the three-dimensional

structure has a pivotal role, its knowledge being essential to understand the

physical, chemical and biological properties of a protein (Branden & Tooze,  ;

Creighton, ). Until  structural information at atomic resolution could

only be determined by X-ray diffraction techniques with protein single crystals

(Drenth, ). The introduction of nuclear magnetic resonance (NMR)

spectroscopy (Abragam, ) as a technique for protein structure determination

(Wu$ thrich, ) has made it possible to obtain structures with comparable

accuracy also in a solution environment that is much closer to the natural situation

in a living being than the single crystals required for protein crystallography.

The NMR method for the study of molecular structures depends on the

sensitive variation of the resonance frequency of a nuclear spin in an external

magnetic field with the chemical structure, the conformation of the molecule, and

the solvent environment (Ernst et al. ). The dispersion of these chemical
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shifts ensures the necessary spectral resolution, although it usually does not

provide direct structural information. Different chemical shifts arise because

nuclei are shielded from the externally applied magnetic field to differing extent

depending on their local environment. Three of the four most abundant elements

in biological materials, hydrogen, carbon and nitrogen, have naturally occurring

isotopes with nuclear spin "

#
, and are therefore suitable for high-resolution NMR

experiments in solution. The proton ("H) has the highest natural abundance

(±%) and the highest sensitivity (due to its large gyromagnetic ratio) among

these isotopes, and hence plays a central role in NMR experiments with

biopolymers. Because of the low natural abundance and low relative sensitivity of

"$C and "&N (±% and ±%, respectively) NMR spectroscopy with these

nuclei normally requires isotope enrichment. This is routinely achieved by

overexpression of proteins in isotope-labelled media. Structures of small proteins

with molecular weight up to  kDa can be determined by homonuclear "H NMR.

Heteronuclear NMR experiments with "H, "$C and "&N (Cavanagh et al. ) are

indispensable for the structure determination of larger systems (e.g. Clore &

Gronenborn,  ; Edison et al. ).

Today many, if not most, NMR measurements with proteins are performed

with the ultimate aim of determining their three-dimensional structure. However,

NMR is not a ‘microscope with atomic resolution’ that would directly produce an

image of a protein. Rather, it is able to yield a wealth of indirect structural

information from which the three-dimensional structure can only be uncovered by

extensive calculations. The pioneering first structure determinations of peptides

and proteins in solution (e.g. Arseniev et al.  ; Braun et al.  ; Clore et al.

b ; Williamson et al.  ; Zuiderweg et al. ) were year-long struggles,

both fascinating and tedious because of the lack of established NMR techniques

and numerical methods for structure calculation, and hampered by limitations of

the spectrometers and computers of the time. Recent experimental, theoretical

and technological advances – and the dissemination of the methodological

knowledge – have changed this situation decisively: Given a sufficient amount of

a purified, water-soluble, monomeric protein with less than about  amino acid

residues, its three-dimensional structure in solution can be determined routinely

by the NMR method, following the procedure described in the classical textbook

of Wu$ thrich () and outlined in Fig. .

There is a close mutual interdependence, indicated by circular arrows in Fig. ,

between the collection of conformational restraints and the structure calculation,

which forms the subject of this work. In its framework, structure calculation is the

de novo computation of three-dimensional molecular structures on the basis of

conformational restraints derived from NMR. Structure calculation is

distinguished from structure refinement by the fact that no well-defined start

conformation is used, whereas structure refinement aims at improving a given,

well-defined structure with respect to certain features, for example its

conformational energy.

After a historical outline of the development of NMR structure calculation

methods in Section , and an overview of NMR structures deposited in the Protein
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Structure analysis

Fig. . Outline of the procedure for protein structure determination by NMR.

Data Bank in Section , the core part of the presentation starts in Section  with

a discussion of various types of structurally relevant NMR data and their

conversion into conformational restraints. Section  explains preliminary steps

that precede a structure calculation. The central Section  is devoted to algorithms

used for structure calculation. Special emphasis is given to molecular dynamics in

torsion angle space, the currently most efficient method for biomolecular structure

calculation. Measures to analyse the outcome of a structure calculation are

introduced in Section . The relation between the conformational restraints in the

input of a structure calculation and the quality of the resulting structure is

discussed in Section . The combination of NOE assignment and structure

calculation in automated procedures is introduced in Section . The text concludes

with a glance at various structure refinement methods in Section .

.  

The aim of this section is to give a brief overview of the history of NMR structure

calculation in the period from its beginning in the early s until now. No

attempt is made to cover the history of NMR spectroscopy in general, or of other

aspects of the NMR method for biomolecular structure determination besides

structure calculation, since a lavish account of this exciting story has been

published recently in the opening volume of the Encyclopedia of NMR (Grant &

Harris, ), together with an entertaining collection of personal reminiscences

from the pioneers in the field. The new method was confronted initially with much

scepticism and also utter disbelief, partly because the early solution structure

determinations were done for systems for which the three-dimensional structure

had already been known, or could be inferred from that of a homologous protein.
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Suspicions could be allayed only when simultaneous but completely independent

determinations of the three-dimensional structure of the protein tendamistat, for

which no structural information was available before the project was started, by

X-ray crystallography (Pflugrath et al. ) and by NMR (Kline et al. ,

) yielded virtually identical results (Billeter et al. ).

In the early development of the NMR method for protein structure

determination it became clear that computer algorithms for structure calculation

would be an indispensable prerequisite for solving the three-dimensional

structures of objects as complex as a protein. It emerged that the key data

measured by NMR would consist of a network of distance restraints between

spatially proximate hydrogen atoms (Dubs et al.  ; Kumar et al. ), for

which existing techniques for structure determination from X-ray diffraction data

would be inappropriate. Manual model building or interactive computer graphics

could not provide solutions either because the intricacies of the distance restraint

network precluded a manual analysis at atomic level, virtually restricting manual

approaches to strongly simplified, cartoon-like representations of a protein

(Zuiderweg et al. ). Hence new ways had to be developed.

The mathematical theory of distance geometry (Blumenthal, ) was the first

method to be used for protein structure calculation. (Since distance geometry was

first, NMR structure calculations were and are often termed ‘distance geometry

calculations’, regardless of the principles underlying the algorithm used. Here,

this practice is not followed, and the term is used only for algorithms based on

distance space and the metric matrix.) The basic idea of distance geometry is to

formulate the problem not in the Cartesian space of the atom positions but in the

much higher dimensional space of all interatomic distances where it is

straightforward to find configurations that satisfy a network of distance

measurements. The crucial step is then the embedding of a solution found in

distance space into Cartesian space. Algorithms for this purpose had been devised

(Crippen,  ; Crippen & Havel,  ; Havel et al.  ; Kuntz et al. )

already before their use in NMR protein structure determination could be

envisioned, but the advent of NMR as a – however imprecise – microscopic ruler

with which a large number of interatomic distances could be measured in a

biological macromolecule spurred vigorous research in the field of distance

geometry. For the first time a computer program was used to calculate the solution

structure of a biological macromolecule on the basis of NOE measurements

(Braun et al. ). The program, based on metric matrix distance geometry, was

applied to a nonapeptide of  atoms.  distance restraints had been determined

by NMR. Later, the same program was used for the first calculation of the NMR

solution structure of a globular protein, a scorpion insectotoxin of  amino acid

residues comprising both α-helical and β-sheet secondary structure (Arseniev et

al. ). Presumably because of memory limitations, not all atoms of the protein

could be treated explicitly. Instead, a simplified representation with two

pseudoatoms per residue was used. Havel, Kuntz & Crippen () provided an

improved version of the original embedding algorithm, which was implemented

in  (Havel & Wu$ thrich, ), the first complete program package for NMR
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protein structure calculation. Calculations with simulated NMR data sets (Havel

& Wu$ thrich, ), and a structure calculation of a protein on the basis of

experimental NMR data (Williamson et al. ), both performed with ,

made it clear that even very imprecise measurements of distances that are short

compared with the size of a protein were sufficient to define the three-dimensional

structure of a protein, provided that a sufficient number of such distance restraints

was available. At the time this finding convincingly refuted a widespread

argument against NMR protein structure determination, namely that short

distance restraints could never consistently determine the relative orientation of

parts of a molecule that are much further apart than the longest upper distance

bound.

For a molecular system with N atoms, metric matrix distance geometry calls for

storage of a matrix with N# elements, and the computation time is proportional to

N$. Both requirements posed formidable challenges to the computer hardware in

these early years of protein structure calculation. Even for a small protein like the

basic pancreatic trypsin inhibitor (BPTI), with  amino acid residues and about

 atoms, special devices had to be introduced to cut down the number of atoms

in the embedding step such as performing the embedding on only a substructure.

Nevertheless, the computation time for a single BPTI conformer was of the order

of  hours on a DEC , then a state-of-the-art computer (Havel & Wu$ thrich,

). The  program was in use for several years, and it could have been

expected that such practical problems would be alleviated by the steady

advancement of computer technology. However, other, more fundamental

problems were looming.

In the meantime algorithms based on very different ideas came into being. The

problem of finding molecular conformations that are in agreement with certain

geometrical restraints can always be formulated as one of minimization of a

suitable objective or target function. The global minimum of the target function,

or a close enough approximation of it, is sought, whereas local minima are to be

avoided. The target function can be defined on different spaces. Metric matrix

distance geometry took refuge from the local minimum problem in a very high-

dimensional space, from which it could be difficult at times to come back to our

three-dimensional world, not least because the notions of chirality or mirror

images are unknown in distance space. Another approach went the opposite way

by reducing the dimensionality of conformation space as far as possible.

Recognizing that fluctuations of the covalent bond lengths and bond angles

around their equilibrium values are small and fast, and cannot be measured by

NMR, Braun & Go () retained only the essential degrees of freedom of a

macromolecule, namely the torsion angles. In this way, the number of degrees of

freedom was reduced by about an order of magnitude compared with Cartesian

coordinate space. Their variable target function method in torsion angle space

(Braun & Go, ) used the method of conjugate gradients (Powell, ), a

standard algorithm for the minimization of a multidimensional function. In the

times of severely limited computer memories this algorithm had the advantage

that no large matrices had to be stored. However, two problems had to be
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overcome to enable its use in protein structure calculation. For efficient

minimization it is essential to know not only the value of the target function but

also its gradient, that is the partial derivatives with respect to the coordinates, the

torsion angles in this case. At first the calculation of the gradient appeared to be

very computation intensive. However, Abe et al. () had removed this obstacle

with their discovery of a fast recursive method to accomplish this task. The other,

more daunting difficulty was the local minimum problem. Being a minimizer that

takes exclusively downhill steps, the conjugate gradient algorithm is effective in

locating a local minimum in the vicinity of the current conformation, but not as

a method to search conformation space for the global minimum of the target

function. Therefore, straightforward conjugate gradient minimization of a target

function representing the complete network of NMR-derived restraints and the

steric repulsion among all pairs of atoms in a protein was found to get stuck

virtually always in local minima very far from the correct solution. The variable

target function method, devised by Braun & Go (), and implemented in their

program , offered a partial answer to this question by going through a

series of minimizations of different target functions that gradually included

restraints between atoms further and further separated along the polypeptide

chain, thereby increasing step-by-step the complexity of the target function. This

was a natural idea for helical proteins, where first, under the influence of short-

and medium-range distance restraints, the helical segments are formed and

subsequently, when the long-range restraints gradually come into play, positioned

relative to each other. Not surprisingly, the variable target function method

performed well for helical peptides but much less so for β-sheet proteins like

tendamistat, where the fraction of acceptable conformers dropped to % (Kline

et al. ) ; a situation that was calling for enhancements of the original variable

target function idea. Reassuring, on the other hand, was the result obtained in the

course of the solution structure determination of BPTI, where both algorithms,

 and , yielded essentially equivalent structure bundles, both in close

agreement with the X-ray structures (Wagner et al. ).

In parallel with these developments, another powerful computing technique

was recruited for protein structure calculation: molecular dynamics simulation.

The method is based on classical mechanics and proceeds by numerically solving

Newton’s equation of motion in order to obtain a trajectory for the molecular

system. The Cartesian coordinates of the atoms are the degrees of freedom. In the

context of protein structure calculation the basic advantage of molecular dynamics

simulation over minimization techniques is the presence of kinetic energy. It

allows the system to escape from local minima that would be traps for minimizers

bound to take exclusively downhill steps. By , molecular dynamics simulation

had existed already for more than two decades. Initially it had been used to

simulate simple gases (Alder & Wainwright,  ; Rahman,  ; Verlet, ),

but calculations with proteins had become feasible as well, starting with the first

simulation of BPTI by McCammon et al. (). The first calculation of protein

tertiary structure on the basis of NMR distance measurements by molecular

dynamics simulation was performed by Kaptein et al. () for the lac repressor



 Peter GuX ntert

headpiece, using the program that was to become  (van Gunsteren &

Berendsen, ). This was, however, not really a de novo structure calculation by

molecular dynamics simulation because first ‘a molecular model was built using

the three helices as building blocks […] which, after measurement of the atomic

co-ordinates, was subjected to refinement’ (Kaptein et al. ). Clore et al.

() used the molecular dynamics program  (Brooks et al. ) to

compute the solution structure of a single helix of  amino acid residues, starting

from three different initial conformations, an α-helix, a β-strand, and a 
"!

-helix.

The viability of restrained molecular dynamics simulation as a method for de novo

structure calculation of complete globular proteins was demonstrated by Bru$ nger

et al. (), using simulated data for crambin, a small protein of  amino acid

residues. Shortly thereafter, a method that has been in use for NMR structure

calculation ever since was introduced and employed to calculate the globular

structure of a protein with  amino acids (Clore et al. b) : the combination

of metric matrix distance geometry to obtain a rough but correctly folded

structure followed by restrained energy minimization and molecular dynamics

refinement.

So far, these molecular dynamics approaches had relied on a full empirical force

field (Brooks et al. ) to ensure proper stereochemistry, and were generally

run at a constant temperature, close to room temperature. Substantial amounts of

computation time were required because the empirical energy function included

long-range pair interactions that were time-consuming to evaluate, and because

conformation space was explored slowly at room temperature. Both features had

been inherited from molecular dynamics programs created with the aim of

simulating the time evolution of a molecular system as realistically as possible in

order to extract from the complete trajectories molecular quantities of interest.

When these algorithms are used for structure calculations, however, the objective

is quite different. Here, they simply provide a means to efficiently optimize a

target function that takes the role of the potential energy. The course of the

trajectory is unimportant, as long as its end point comes close to the global

minimum of the target function. Therefore, the efficiency of a structure calculation

by molecular dynamics can be enhanced by modifications of the force field or the

algorithm that do not significantly alter the location of the global minimum (the

correctly folded structure) but shorten (in terms of the number of integration steps

needed) the trajectory by which it can be reached from the start conformation.

Based on this observation new ingredients to the method made the folding process

much more efficient (Nilges et al. a, ) : a simplified ‘geometric ’ energy

function, a modified potential for NOE restraints with asymptotically linear slope

for large violations, and simulated annealing. The geometric force field retained

only the most important part of the non-bonded interaction by a simple repulsive

potential that replaced the Lennard-Jones and electrostatic interactions in the full

empirical energy function. This short-range repulsive function could be calculated

much faster, and it significantly facilitated the large-scale conformational changes

required during the folding process by lowering energy barriers induced by the

overlap of atoms. A similar effect could be expected from replacing the originally
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quadratic distance restraining potential by a function that was dominated less by

the most strongly violated restraints. The most decisive new concept was,

however, the amalgamation of molecular dynamics with simulated annealing, an

optimization method derived from concepts in statistical mechanics (Kirkpatrick

et al. ). Simulated annealing mimics on the computer the annealing process

by which a solid attains its minimum energy configuration through slow cooling

after having been heated up to high temperature at the outset. Simulated

annealing uses a target function, the ‘energy’, and requires a mechanism to

generate Boltzmann ensembles at each temperature T
"
"T

#
"I"T

n
of the

annealing schedule. In the case of protein structure calculation, molecular

dynamics is the method of choice to generate the Boltzmann ensemble because it

restricts conformational changes to physically reasonable pathways, while the

inertia of the system enables transitions over barriers up to a height that is

controlled by the temperature. Monte Carlo (Metropolis et al. ), the other

familiar technique to create a Boltzmann distribution, relies on random

conformational changes that are accepted or rejected randomly with a probability

that depends on the energy change incurred by the move. Monte Carlo has never

become popular in the field of protein structure calculation because it is extremely

difficult to devise schemes for choosing ‘random’ moves that are not either

physically unreasonable (i.e. leading to a large increase of the energy and, hence,

almost certain rejection) or too small for efficient exploration of conformation

space. Three different protocols for simulated annealing by molecular dynamics,

each using a different way to produce the start structure for the molecular

dynamics run, were established: ‘Hybrid distance geometry-dynamical simulated

annealing’ (Nilges et al. a) used a start conformation obtained from metric

matrix distance geometry, the second method started from an extended

polypeptide chain (Nilges et al. c), and the third from a random array of

atoms (Nilges et al. b). Obviously, from the first to the third method the

simulated annealing protocols had to cope with progressively less realistic start

conformations. From a theoretical point of view it was an impressive

demonstration of the power of simulated annealing by molecular dynamics that a

correctly folded protein could result starting from a cloud of randomly placed

atoms. In practice, however, the combination of substructure embedding by

distance geometry and simulated annealing by molecular dynamics became most

popular because its – still considerable – demand on computation time was much

lower than for the other protocols. Together with these protocols, a new molecular

dynamics program entered the stage.  (Bru$ nger, ) drew on the

molecular dynamics simulation package  (Brooks et al. ), but was

written especially with the aim of structure calculation and refinement in mind.

Being a versatile tool for biomolecular structure determination by NMR and X-

ray diffraction, it soon gained, and maintained ever since, high popularity. The

original protocols by Nilges et al. (a–c) were improved (Bru$ nger, ), and

a metric matrix distance geometry module was incorporated into 

(Kuszewski et al. ).

The success of the hybrid distance geometry-simulated annealing technique



 Peter GuX ntert

brought about a gradual change in the way metric matrix distance geometry was

used. Rather than being employed as a self-contained method for complete

structure calculation, it became more and more a device to efficiently build a

crude, but globally correctly folded start conformation for subsequent simulated

annealing. Times were troubled for metric matrix distance geometry temporarily

by a problem that had been noticed already in the first comparison with another

structure calculation method (Wagner et al. ) : the possibility of insufficient

sampling of conformation space. Since the beginning of the NMR method for

biomolecular structure determination, the precision with which the experimental

data defined the structure had been estimated by the spread among a group of

conformers calculated from the same input data by the same computational

protocol but starting from different, randomly chosen initial conditions. The

NMR solution structure of a protein was hence represented by a bundle of

equivalent conformers, each of which proffering an equally good fit to the data,

rather than by a single set of coordinates. This approach was in line with the fact

that the experimental measurements were not interpreted as yielding a single best

value for, say, an interatomic distance but an allowed range within that no

particular value should be favoured a priori over another. Obviously, this method

would picture faithfully the real situation only if the algorithm used performed a

uniform sampling of the conformation space that is accessible to the molecule

subjected to a set of experimental restraints, yielding at least a coarse

approximation to a Boltzmann ensemble. There had been early indications that

this was not the case for certain implementations of metric matrix distance

geometry (Wagner et al. ), especially in regions not or hardly restrained by

experimental data, where structures tended to be clustered and artificially

expanded as if a mysterious force was to drive them away from the centre of the

molecule. This problem was most clearly exposed by calculations made without

any experimental distance restraints (Metzler et al.  ; Havel, ), and

vigorous and ultimately successful research set in to discover the cause of the

problem and to offer possible solutions to it. Distance geometry algorithms

compute the metric matrix, with elements G
ij
¯ r

i
[r

j
, from the complete distance

matrix, with elements D
ij
¯ r r

i
®r

j
r. But only a tiny fraction of these distances are

given by the covalent structure or restrained by experimental data. Distances for

which the exact value is not known, have to be selected ‘randomly’ between their

lower and upper bound. It was discovered soon (Havel, ) that details of how

the missing distances were chosen had paramount influence on the sampling

properties, and that the commonly used, straightforward strategy for selecting

distances (Havel & Wu$ thrich, ) was responsible for the artificial expansion

and spurious clustering of structures because it tended to produce distance values

that were too long. A ‘metrization’ procedure had been proposed (Havel &

Wu$ thrich, ) to cull them in accord, such that the triangle inequality D
ik

%
D

ij
­D

jk
was fulfilled for all triples (i, j, k) of atoms, albeit at the cost of

considerably increased computation time. However, the implementation in the

 program still induced a bias, and a solution to the sampling problem came

with improved ‘random metrization’ procedures (Havel, ) that were
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implemented in a new program package, - (Havel, ). The inconvenience

of long computation times could be alleviated by the partial metrization algorithm

of Kuszewski et al. () without deteriorating the sampling properties.

In contrast to the early implementations of metric matrix distance geometry, the

variable target function method, into which randomness entered through

completely randomized start conformations in torsion angle space, was not beset

by sampling problems but had the drawback that for all but the most simple

molecular topologies only a small percentage of the calculations converged to

solutions with small restraint violations. A new implementation of the variable

target function method in the program  (Gu$ ntert et al., a) initially

offered a symptomatic therapy to the problem by dramatically reducing the

computation time needed to carry out the variable target function minimization

for a conformer, but later also a cure of the causes of the problem by the usage of

redundant torsion angle restraints (Gu$ ntert & Wu$ thrich, ). In this iterative

procedure redundant restraints were generated on the basis of the torsion angle

values found in a previous round of structure calculations.

It had been obvious for a long time that a method working in torsion angle space

and using simulated annealing by molecular dynamics could benefit from the

advantages of both approaches but it seemed very difficult to implement an

algorithm for molecular dynamics with torsion angles as degrees of freedom.

Provided that an efficient implementation could have been found, such a ‘torsion

angle dynamics’ algorithm would have been more efficient than conventional

molecular dynamics in Cartesian coordinate space, simply because the absence of

high-frequency bond length and bond angle vibrations would have allowed for

much longer integration time steps or higher temperatures during the simulated

annealing schedule. An algorithm for Langevin-type dynamics (neglecting inertial

terms) of biopolymers in torsion angle space had been presented already by Katz

et al. (), and the authors stated laconically without further elaborating on the

point that for the full equations of motion including inertial terms ‘all constituents

[…] and its derivatives are calculated when the matrix elements of the Hessian [i.e.

the second derivatives of the potential energy with respect to torsion angles] are

evaluated. Thus it is a trivial matter to assemble these. ’ More than a decade later,

Mazur & Abagyan () derived explicit formulas for Lagrange’s equations of

motion of a polymer, using internal coordinates as degrees of freedom.

Calculations for a poly-alanine peptide of nine residues using the  force

field demonstrated that time steps of  fs – an order of magnitude longer than in

standard molecular dynamics simulation based on Newton’s equations of motion

in Cartesian space – were feasible when torsion angles were the only degrees of

freedom (Mazur et al. ). Nevertheless, in practical applications with larger

proteins the algorithm would have been much slower than a standard molecular

dynamics simulation in Cartesian space because in every integration time step a

system of linear equations had to be solved with a computational effort

proportional to the third power of the number of torsion angles. Solutions to this

problem were found in other branches of science where questions of simulating

the dynamics of complex multibody systems such as robots, spacecraft and
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vehicles were pondered. Independently, Bae & Haug () and Jain et al. ()

found torsion angle dynamics algorithms whose computational effort scaled

linearly with the system size, as in Cartesian space molecular dynamics. The

advantage of longer integration time steps in torsion angle dynamics could be

exploited for systems of any size with these algorithms. Both algorithms have been

used for protein structure calculation on the basis of NMR data, one (Bae & Haug,

) in the program  (Stein et al. ), the other (Jain et al. ) in the

program  (Gu$ ntert et al. ). Experience with both programs indeed

confirmed expectations that torsion angle dynamics constituted the most efficient

way to calculate NMR structures of biomacromolecules, but showed as well that

the computation time with  is about one order of magnitude shorter than

with  (Gu$ ntert et al. ).

With this, the history of NMR structure calculation has reached the present but

certainly not its end. Inevitably, writing a succinct account of this story solicited

many subjective decisions, to skip important contributions, and not to follow

numerous original side lines. The impulse to solve ever larger biomolecular

structures, the strive for automation of NMR structure determination, and the

advent, for the first time since the method was introduced, of a new class of

generally applicable conformational restraints (Tjandra & Bax, ), will

confront structure calculation with new challenges and offer renewed chances for

success.

.     

The increasing importance of NMR as a method for structure determination of

biological macromolecules is manifested in the steadily rising number of NMR

structures that are deposited in the Protein Data Bank (PDB; Bernstein et al.

). In December , there were a total of  (or , if duplicate entries

for the same protein are excluded) files available from the PDB with Cartesian

coordinates of proteins, nucleic acids and macromolecular complexes that have

been obtained by NMR techniques.

The development of NMR structure determination since , when the first

two NMR structures entered the PDB, is summarized in Fig. . The number of

NMR structures in the PDB has increased at a faster rate than the total number

of coordinate files in the PDB, resulting in a continuous increase of the percentage

of NMR structures among all PDB structures. In December  NMR

structures comprised % of all coordinate files in the PDB. The average size of

unique NMR structures in the PDB has also increased, albeit at a slow rate,

reaching ± kDa in December . The size distribution of unique NMR

structures in the PDB, shown in Fig. , indicates that structures of small proteins

with a molecular weight below  kDa are solved routinely, whereas structure

determinations for systems above  kDa are still rare.

Since , it was possible also to submit files to the PDB containing

experimental data that was used in the structure calculation. Typically, these files

include the distance and torsion angle restraints used in the final round of
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(a) NMR structures in the Protein Data Bank

(b) Percentage of structures in the PDB from NMR

(c) Average size of NMR structures

(d) NMR structures with deposition of experimental data
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Fig. . NMR structures in the Protein Data Bank (PDB; Bernstein et al. ) until

December . (a) Number of coordinate entries in the PDB that were derived from NMR

data plotted versus the accession date. White bars show all NMR structures, and shaded

bars indicate all unique NMR structures that have been deposited with the PDB until a

given date. (b) Percentage of all coordinate files in the PDB that represent NMR structures

until a given date. (c) Average molecular weight of all unique NMR structures that have

been deposited until a given date. (d ) Percentage of NMR structures for which experimental

NMR data have been submitted until a given date. Labels on the horizontal axis indicate

the beginning of a year. Definitions: NMR structure : Coordinate file with the word ‘NMR’

in the EXPDTA record. Accession date : The date given in the HEADER record. Unique

NMR structure : If there are several NMR structures with PDB codes that differ only in the

first digit, only one of them is retained. (This happens, for example, if a bundle of

conformers and a minimized mean structure were submitted for the same protein.)

Molecular weight : Sum of atomic masses of all atoms listed in ATOM records and for which

coordinates are available.

structure calculations. Although these data can be essential to judge the quality of

a structure determination by NMR, only a minority of the PDB coordinate files

derived from NMR measurements are accompanied by a file with experimental

data. There was no clear trend towards a higher percentage of NMR structures

with corresponding experimental data files during the period –. In

December  experimental data were available for only % of the NMR

structures in the PDB, a lower percentage than in .

The large majority (%) of NMR structures for which data have been
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Fig. . Size distribution of the  unique NMR structures in the Protein Data Bank in

December . The molecular weight is the sum of atomic masses of all atoms in the

protein or nucleic acid for which coordinates are available.

Table . Journals that have published NMR structures available from the Protein

Data Banka

Journal Structures

Biochemistry 
Journal of Molecular Biology 
Nature Structural Biology 
Structure 
Science 
Protein Science 
European Journal of Biochemistry 
Nature 
Other journals 

a The information was taken from the JRNL REF records of all unique coordinate

files with NMR structures that were available from the Protein Data Bank in December

. About one third of these PDB coordinate files could not be considered because no

precise reference is given (e.g. ‘ to be published’).

deposited in the PDB, and for which a precise reference is given in the PDB

coordinate file, have been published in only eight journals with  or more

structures in each of them (Table ). Biochemistry and the Journal of Molecular

Biology with  and  structures, respectively, are the most popular places for

the publication of NMR structures that are available from the PDB. This statistics

may of course also reflect different coordinate deposition policies, and the extent

to which these are enforced. Anyway, since not the text or figures of a paper but

the Cartesian coordinates of the atoms constitute the main result of a structure

determination, the value of structures that are not freely available to the scientific

community is limited.

The wide-spread dissemination of the methodology of macromolecular
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Table . Structure calculation programs

Programa Structuresb Reference

Metric matrix distance geometry

-  Havel ()

  Havel & Wu$ thrich ()

  Biosym, Inc.

  Nakai et al. ()

  Hodsdon et al. ()

Variable target function method

  Gu$ ntert et al. (a)

  Braun & Go ()

Cartesian space molecular dynamics

  Pearlman et al. ()

  Brooks et al. ()

  Molecular Simulations, Inc.

  van Gunsteren et al. ()

  Tripos, Inc.

  Bru$ nger ()

Torsion angle dynamics

  Gu$ ntert et al. ()

a Programs that are specified in the ‘PROGRAM’ entry of more than one unique

NMR structure coordinate file available from the Protein Data Bank in December ,

excluding those used exclusively for relaxation matrix refinement or energy refinement

of structures that have been calculated with another program. Also excluded are

programs that have been used only for peptides of less than  amino acids. Each

program is listed only once; if a program offers different structure calculation algorithms

(e.g.  or ), it is listed under the method for which it is most commonly used.

Some of the programs, e.g. ,  and , are virtually out of use today.
b Number of unique NMR structure coordinate files available from the Protein Data

Bank in December  that mention the name of the program anywhere in their text.

According to this simple criterion many structures are counted for which the molecular

dynamics simulation programs , , ,  and  have been

used not for the actual structure calculation but only for refinement purposes, or that

contain merely a reference to the corresponding force field. Note also that for many

structure determinations hybrid methods employing more than one program have been

used.

structure determination by NMR within about a dozen years is probably best

illustrated by the fact that by December  a total of  different persons have

become co-authors of an NMR structure in the PDB,  of which have

contributed to ten or more unique NMR structures in the PDB. The field is thus

no longer exclusively ‘ in the hands’ of the limited number of specialists who have

developed the technique.

An attempt to classify the NMR structures in the PDB according to the

program used in the structure calculation has been made in Table , although this

statistics is beset with many uncertainties because the Protein Data Bank does not

use a consistent format for information about the structure calculation. In
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particular, it is in general not possible to determine in an automatic search whether

a program has been used for the actual structure calculation or only for a

subsequent energy refinement. With very few exceptions, structure calculation

programs can be assigned to just four different types of algorithms (some

programs offer several of these simultaneously) : metric matrix distance geometry,

variable target function method in torsion angle space, molecular dynamics

simulation in Cartesian space, and molecular dynamics simulation in torsion angle

space.

.      

For use in a structure calculation, geometric conformational restraints have to be

derived from suitable, conformation-dependent NMR parameters. These

geometric restraints should, on the one hand, convey to the structure calculation

as much as possible of the structural information inherent in the NMR data, and,

on the other hand, be simple enough to be used efficiently by the structure

calculation algorithms. NMR parameters with a clearly understood physical

relation to a corresponding geometric parameter generally yield more trustworthy

conformational restraints than NMR data for which the conformation dependence

was deduced merely from statistical analyses of known structures. Advances in the

theoretical treatment of biological systems can lead to better physical

understanding and predictability of an NMR parameter such as the chemical shift

that allows to put its structural interpretation – formerly deduced from empirical

statistics (Spera & Bax, ) – on a firmer physical basis (de Dios et al. ).

NMR data alone would not be sufficient to determine the positions of all atoms

in a biological macromolecule. It has to be supplemented by information about the

covalent structure of the protein – the amino acid sequence, bond lengths, bond

angles, chiralities, and planar groups – as well as by the steric repulsion between

non-bonded atom pairs. Depending on the degrees of freedom used in the

structure calculation, the covalent parameters are maintained by different

methods: in Cartesian space, where in principle each atom moves independently,

the covalent structure has to be enforced by potentials in the force field, whereas

in torsion angle space the covalent geometry is fixed at the ideal values because

there are no degrees of freedom that affect covalent structure parameters. Usually

a simple geometric force field is used for the structure calculation that retains only

the most dominant part of the non-bonded interaction, namely the steric repulsion

in the form of lower bounds for all interatomic distances between pairs of atoms

separated by three or more covalent bonds from each other. Steric lower bounds

are generated internally by the structure calculation programs by assigning a

repulsive core radius to each atom type and imposing lower distance bounds given

by the sum of the two corresponding repulsive core radii. For instance, the

following repulsive core radii are used in the program  (Gu$ ntert et al. ) :

± AI ( AI ¯ ± nm) for amide hydrogen, ± AI for other hydrogen, ± AI for

aromatic carbon, ± AI for other carbon, ± AI for nitrogen, ± AI for oxygen,

± AI for sulphur and phosphorus atoms (Braun & Go, ). To allow the
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formation of hydrogen bonds, potential hydrogen bond contacts are treated with

lower bounds that are smaller than the sum of the corresponding repulsive core

radii. Depending on the structure calculation program used, special covalent

bonds such as disulphide bridges or cyclic peptide bonds have to be enforced by

distance restraints. Disulphide bridges may be fixed by restraining the distance

between the two sulphur atoms to ±–± AI and the two distances between the Cβ

and the sulphur atoms of different residues to ±–± AI (Williamson et al. ).

. Nuclear Overhauser effects

The NMR method for protein structure determination relies on a dense network

of distance restraints derived from nuclear Overhauser effects (NOEs) between

nearby hydrogen atoms in the protein (Wu$ thrich, ). NOEs are the essential

NMR data to define the secondary and tertiary structure of a protein because they

connect pairs of hydrogen atoms separated by less than about  AI in amino acid

residues that may be far away along the protein sequence but close together in

space.

The NOE reflects the transfer of magnetization between spins coupled by the

dipole–dipole interaction in a molecule that undergoes Brownian motion in a

liquid (Solomon,  ; Macura & Ernst,  ; Neuhaus & Williamson, ).

The intensity of a NOE, i.e. the volume V of the corresponding cross peak in a

NOESY spectrum (Jeener et al.  ; Kumar et al.  ; Macura & Ernst, ),

is related to the distance r between the two interacting spins by

V¯©r−'ª f (τ
c
). ()

The averaging indicates that in molecules with inherent flexibility the distance

r may vary and thus has to be averaged appropriately. The remaining dependence

of the magnetization transfer on the motion enters through the function f (τ
c
) that

includes effects of global and internal motions of the molecule. Since, with the

exceptions of the protein surface and disordered segments of the polypeptide

chain, globular proteins are relatively rigid, it is generally assumed that there

exists a single rigid conformation that is compatible with all NOE data

simultaneously, provided that the NOE data are interpreted in a conservative,

semi-quantitative manner (Wu$ thrich, ). More sophisticated treatments that

take into account that the result of a NOESY experiment represents an average

over time and space are usually deferred to the structure refinement stage (Torda

et al. , ).

In principle, all hydrogen atoms of a protein form a single network of spins,

coupled by the dipole–dipole interaction. Magnetization can be transferred from

one spin to another not only directly but also by ‘spin diffusion’, i.e. indirectly via

other spins in the vicinity (Kalk & Berendsen,  ; Macura & Ernst, ). The

approximation of isolated spin pairs is valid only for very short mixing times in the

NOESY experiment. However, the mixing time cannot be made arbitrarily short

because (in the limit of short mixing times) the intensity of a NOE is proportional

to the mixing time (Kumar et al. ). In practice, a compromise has to be made
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Fig. . Short- and medium-range restraints in the experimental NMR data set for the

protein cyclophilin A (Ottiger et al. ). The first three lines below the amino acid

sequence represent torsion angle restraints for the backbone torsion angles φ and ψ, and for

the side-chain torsion angle χ". For φ and ψ a triangle pointing upwards indicates a restraint

that allows the torsion angle to take the values observed in an ideal α-helix (φ¯®°, ψ¯
®°) or 

"!
-helix (φ¯®°, ψ¯®°) ; a triangle pointing downwards indicates

compatibility with an ideal parallel or antiparallel β-strand (φ¯®°, ψ¯®°, or φ¯
®°, ψ¯®°, respectively; Schultz & Schirmer, ) ; a restraint represented by a
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between the suppression of spin diffusion and sufficient cross peak intensities,

usually with mixing times in the range of – ms for high-quality structures.

Spin diffusion effects can be included in the structure calculation by complete

relaxation matrix refinement (Keepers & James,  ; Yip & Case,  ; Mertz

et al. ). Because also parameters about internal and overall motions that are

difficult to measure experimentally enter into the relaxation matrix refinement,

care has to be taken not to bias the structure determination by overinterpretation

of the data. Relaxation matrix refinement has been used mostly in situations where

the conservative and robust interpretation of NOEs as upper distance limits would

not be sufficient to define the three-dimensional structure, especially in the case of

nucleic acids (Wijmenga et al.  ; Pardi,  ; Varani et al. ).

The quantification of an NOE amounts to determining the volume of the

corresponding cross peak in the NOESY spectrum (Ernst et al. ). Since the

line-widths can vary appreciably for different resonances, cross peak volumes

should be determined by integration over the peak area rather than by measuring

peak heights, for example by counting contour lines. Integration is straightforward

for isolated cross peaks. For clusters of overlapping cross peaks deconvolution

methods have been proposed to distribute the total volume among the individual

signals (e.g. Denk et al.  ; Koradi et al. ). While the reliable quantification

of NOEs is important to obtain a high-quality protein structure, one should also

keep in mind that, according to equation (), the relative error of the distance

estimate is only one sixth of the relative error of the volume determination.

On the basis of equation (), NOEs are usually treated as upper bounds on

interatomic distances rather than as precise distance restraints because the

presence of internal motions and, possibly, chemical exchange may diminish the

strength of an NOE (Ernst et al. ). In fact, much of the robustness of the

NMR structure determination method is due to the use of upper distance bounds

instead of exact distance restraints in conjunction with the observation that

internal motions and exchange effects usually reduce rather than increase the

NOEs (Wu$ thrich, ). For the same reason, the absence of a NOE is in general

not interpreted as a lower bound on the distance between the two interacting

spins. Certain NOEs, however, may also be enhanced by internal motions or

chemical exchange and then be incompatible with the assumption of a rigid

structure that fulfils all NMR data simultaneously (Torda et al.  ;

Bru$ schweiler et al. ).

star encloses conformations of both α and β secondary structure types; and a filled circle

marks a restraint that excludes the torsion angle values of these regular secondary structure

elements. Torsion angle restraints for χ" are depicted by filled squares of three different

decreasing sizes, depending on whether they allow for none, one, two or all three of the

staggered rotamer positions χ"¯®, , °. Torsion angle restraints for χ" that exclude

all three staggered rotamer positions are shown as filled circles. Upper distance limits for

sequential and medium-range distances are shown by horizontal lines connecting the

positions of the two residues involved. The thickness of the lines for the sequential distances

d
NN

(i, i­), dαN
(i, i­) and dβN

(i, i­) is inversely proportional to the squared upper

distance bound. The plot was produced with the program  (Gu$ ntert et al. ).
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Upper bounds u on the distance between two hydrogen atoms are derived from

the corresponding NOESY cross peak volumes V according to ‘calibration

curves’, V¯ f (u). Assuming a rigid molecule, the calibration curve is

V¯
k

u'

()

with a constant k that depends on the arbitrary scaling of the NOESY spectrum.

The value u obtained from equation () may either be used directly as an upper

distance bound, or NOEs may be calibrated into different classes according to

their volume, using the same upper bound u for all NOEs in a given class. In this

case, it is customary to set the upper bound to ± AI for ‘strong’ NOEs, ± AI for

‘medium’ NOEs, and ± AI for ‘weak’ NOEs (Williamson et al.  ; Clore et al.

b).

The constant k in equation  can be determined on the basis of known distances,

for example the sequential distances d(Hα

i
, HN

i+"
) and d(HN

i
, HN

i+"
) in regular

secondary structure elements (Billeter et al. ), or by reference to a preliminary

structure (Gu$ ntert et al. b). Sometimes, especially in the course of an

automatic NOESY assignment procedure, it is convenient to get an estimate of k

independent from the knowledge of certain distances or preliminary structures.

This can be obtained, based on the observation that the average value ua of the

upper distance bounds u for NOEs among the backbone and β protons is similar

in all globular proteins, by setting k such that the average upper distance bound

becomes ua ¯ ± AI (Mumenthaler et al. ).

In practice, it has been observed that more conservative calibration curves, for

example of the type V¯ k}un, with n¯  or , may be advantageous for NOEs

with peripheral side-chain protons (Gu$ ntert et al. b). The uniform average

model (Braun et al. ) provides another, very conservative, calibration curve

by making the assumption that, due to internal motions, the interatomic distance,

r, assumes all values between the steric lower limit, l, and an upper limit, u, with

equal probability:

V¯
k

u®l &
u

l

dr

r'
¯

k«
u®l 0



l&
®



u&
1. ()

NOEs that involve groups of protons with degenerate chemical shifts, in

particular methyl groups, are commonly referred to pseudoatoms located in the

centre of the protons that they represent, and the upper bound is increased by a

pseudoatom correction equal to the proton–pseudoatom distance (Wu$ thrich et al.

).

Sometimes, especially in the case of nucleic acid structure determination, where

the standard, conservative interpretation of NOEs might not be sufficient to

obtain a well-defined structure, also lower distance limits have been attributed to

NOEs, either based on the intensity of the NOE or to reflect the absence of a

corresponding cross peak in the NOESY spectrum (Pardi,  ; Varani et al.

). Such practices should be exercised with care because they may carry the

danger of overinterpretation of the experimental data and potentially jeopardize

the robustness of the NMR approach to structure determination.
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Fig. . Long-range distance restraints in the experimental NMR data set for the protein

cyclophilin A (Ottiger et al. ). Restraints between atoms five or more residues apart in

the sequence are represented by lines going from upper left to lower right (restraints

between side-chain atoms), or from lower left to upper right (restraints involving backbone

atoms). On the left and right hand sides the amino acid sequence of cyclophilin A is given.

Distance restraints can be visualized in a number of different ways. Short- and

medium-range restraints are best plotted against the sequence, as in Fig.  which

was produced automatically by the program  on the basis of the experimental
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Table . Karplus relations, $J(θ)¯A cos# θ­B cos θ­C, for proteins between a

vicinal scalar coupling constant $J and the corresponding torsion angle θ defined by

the three covalent bonds between the two scalar coupled atoms

Angle Coupling A (Hz) B (Hz) C (Hz)

Offseta

(degrees) Reference

φ HN–Hα ± ®± ± ® Wang & Bax ()

HN–C« ± ± ±  Wang & Bax ()

HN–Cβ ± ®± ±  Wang & Bax ()

C«
i−"

–Hα ± ± ±  Wang & Bax ()

C«
i−"

–Cβ ± ®± ± ® Hu & Bax ()

ψ Hα–N
i+"

®± ®± ®± ® Wang & Bax ()

χ" Hα–Hβ ± ®± ± ®} de Marco et al. (a)

N–Hβ ®± ± ± }® de Marco et al. (b)

C«–Hβ ± ®± ± } Fischman et al. ()

a Difference between θ and the standard torsion angle φ, ψ or χ". In the case of β-

methylene protons the first number is for Hβ
#, the second for Hβ

$.

NMR data set for cyclophilin A (Ottiger et al. ). It is possible to identify

secondary structure elements, especially helices, from characteristic patterns in

such plots (Wu$ thrich, ). The distribution of long-range distance restraints

can be shown schematically as in Fig. , or overlaid over the structure as in Fig.

d below.

± Scalar coupling constants

Vicinal scalar coupling constants, $J, between atoms separated by three covalent

bonds from each other are related to the enclosed torsion angle, θ, by Karplus

relations (Karplus, ) :

$J(θ)¯A cos# θ­B cos θ­C. ()

The parameters A, B and C have been determined for various types of couplings

by a best fit of the measured J values to the corresponding values calculated with

equation () for known protein structures. The most commonly used Karplus

relations in proteins are given in Table  and illustrated in Fig. .

In contrast to NOEs, scalar coupling constants give information only on the

local conformation of a polypeptide chain. They are nevertheless important to

accurately define the local conformation, to obtain stereospecific assignments for

diastereotopic protons (usually for the β protons), and to detect torsion angles

(usually χ") that occur in multiple states.

Scalar couplings are manifested in the cross peak fine structures of most NMR

spectra (Ernst et al. ). Many NMR experiments have been proposed for the

measurement of scalar coupling constants (Kessler et al.  ; Biamonti et al.

 ; Case et al.  ; Vuister et al.  ; Cavanagh et al. ). Scalar coupling

constants are conventionally measured from the separation of fine-structure

components in anti-phase spectra. One has to be aware, however, of the
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Fig. . Karplus relations between vicinal scalar coupling constants and the torsion angles φ,

ψ and χ" in proteins. Karplus curves are drawn as solid lines for couplings between two

hydrogen atoms, as dotted lines for couplings between a carbon and a hydrogen atom, as

dot-dashed lines for couplings between two carbon atoms, and as dashed lines for couplings

between a nitrogen and a hydrogen atom. See also Table .

cancellation effects between positive and negative fine-structure elements that lead

both to an overestimation of the coupling constant and to a decrease of the overall

cross peak intensity (Neuhaus et al.  ; Cavanagh et al. , pp. –).

These effects inhibit the determination of coupling constant values that are much

smaller than the line-width from anti-phase cross-peaks. The cancellation effects

can be reduced in E. COSY type spectra (Griesinger et al. ) where the cross

peak fine-structure is simplified by suppression of certain components of the

fine-structure. Other methods to determine coupling constants rely on the

measurement of cross peak intensity ratios (Vuister et al. ), on a series of

spectra with cross peak volumes modulated by the coupling constant (Neri et al.

), or on in-phase spectra (Szyperski et al. a). When interpreting scalar

coupling constants using equation () one has to take into account not only the

measurement error but also that there may be averaging due to internal mobility

and that both the functional form and the parameters of the Karplus curves are

approximations.
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Fig. . Relations between vicinal scalar coupling constants for β-methylene protons in

proteins. Solid and dotted lines correspond to the Karplus curves given in Table . Values

in the shaded areas result from additional mobility leading to χ" torsion angles that are

uniformly distributed within up to ³° around a given value. Ticks on the curves are set

in intervals of °, and the rotamer positions gauche­ (χ"¯°), gauche® (χ"¯®°) and

trans (χ"¯°) are labelled.

Motions that lead to fluctuations of θ about an average value reduce the

amplitude of the Karplus curve but do not strongly change the functional form.

For instance, if the torsion angle values are distributed uniformly in an interval

[θ®∆θ}, θ­∆θ}] of width ∆θ centred at θ, the resulting Karplus curve

maintains the shape of equation () but with parameters A, B, C replaced by

A«¯A
sin ∆θ

∆θ
, B«¯B

sin∆θ

∆θ
, C«¯C­

A

 0®
sin ∆θ

∆θ 1. ()

In the case of uniform fluctuations of, say, the φ torsion angle of ³° around a

central value, this amounts to a maximal deviation of the Karplus curve given by

equations () from the corresponding one for a rigid molecule of ± Hz for

$J
H

N
H

α (Table ).

A different situation arises if the torsion angle fluctuates between distinctively

different conformations, for example if several rotamers of the χ" torsion angle are

populated. Under such conditions a direct interpretation of the measured J value

with equations () and () becomes meaningless. However, if several scalar

coupling constant values can be measured for a given torsion angle, the set of

values provides a method to detect whether the torsion angle is significantly

disordered because only certain combinations of the J values for different atom

pairs are compatible with a rigid structure (Fig. ).
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Fig. . Conversion of scalar coupling constants to torsion angle restraints. Top: The shaded

range for the measured value of a scalar coupling constant leads, according to a Karplus

curve, to three separate allowed intervals of the corresponding torsion angle. Bottom: The

same allowed angle ranges, shown as sectors of a circle, and three torsion angle restraints,

represented by the inner concentric circles. Each restraint restricts the torsion angle to one

allowed interval. Applied simultaneously, the three restraints confine the torsion angle to

values that are in agreement with the measured coupling constant.

Torsion angle restraints in the form of an allowed interval are used to

incorporate scalar coupling information into the structure calculation. Using

equation (), an allowed range for a scalar coupling constant value in general leads

to several (up to four) allowed intervals for the enclosed torsion angle (Fig. ).

Restraining the torsion angle to a single interval that encloses all torsion angle

values compatible with the scalar coupling constant then often results in a loss of

structural information because the torsion angle restraint may encompass large

regions that are forbidden by the measured coupling constant. It is therefore often

advantageous to combine local data – for example all distance restraints and scalar

coupling constants within the molecular fragment defined by the torsion angles φ,

ψ, and χ" – in a systematic analysis of the local conformation and to derive torsion

angle restraints from the results of this grid search rather than from the individual

NMR parameters (see Section . below; Gu$ ntert et al. ).

Alternatively, scalar coupling constants can be introduced into the structure

calculation as direct restraints by adding a term of the type

V
J
¯ k

J
3
i

($Jexp
i

®$Jcalc
i

)# ()

to the target function of the structure calculation program (Kim & Prestegard,

 ; Torda et al. ). The sum in equation () extends over all measured
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Fig. . (a) Hydrogen bond restraints used during a structure calculation (Williamson et al.

). (b) Criterion used to detect hydrogen bonds when analyzing a structure (Billeter et al.

 ; Koradi et al. ).

couplings, k
J

is a weighting factor, and $Jexp
i

and $Jcalc
i

denote the experimental

and calculated value of the coupling constant, respectively. The latter is obtained

from the value of the corresponding torsion angle by virtue of equation ().

. Hydrogen bonds

Slow hydrogen exchange indicates that an amide proton is involved in a hydrogen

bond (Wagner & Wu$ thrich, ). Unfortunately, the acceptor oxygen or

nitrogen atom cannot be identified directly by NMR, and one has to rely on NOEs

in the vicinity of the postulated hydrogen bond or on assumptions about regular

secondary structure to define the acceptor. The standard backbone-backbone

hydrogen bonds in regular secondary structure can be identified with much higher

certainty than hydrogen bonds with side-chains. Hydrogen bond restraints are

thus either largely redundant with the NOE network or involve structural

assumptions, and should be used with care, or not at all. They can, however, be

useful during preliminary structure calculations of larger proteins when not

enough NOE data are available yet. Hydrogen bond restraints are introduced into

the structure calculation as distance restraints, typically by confining the acceptor-

hydrogen distance to the range ±–± AI and the distance between the acceptor

and the atom to which the hydrogen atom is covalently bound to ±–± AI (Fig.

a). The second distance restraint restricts the angle of the hydrogen bond. Being

tight medium- or long-range distance restraints, their impact on the resulting

structure is considerable. Restraints for architectural hydrogen bonds in secondary

structures enhance the regularity of the secondary structure elements. In fact,

helices and, to a lesser extent, β-sheets can be defined by hydrogen bond restraints

alone without the use of NOE restraints (Fig. ). On the other hand, hydrogen

bond restraints may lead, if assigned mechanically without clear-cut evidence, to

overly regular structures in which subtle features such as a 
"!

-helix-like final turn

of an α-helix may be missed.

. Chemical shifts

Chemical shifts are very sensitive probes of the molecular environment of a spin.

However, in many cases their dependence on the structure is complicated and

either not fully understood or too intricate to allow the derivation of reliable

conformational restraints (Oldfield,  ; Williamson & Asakura, ). An
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(a) (b)

Fig. . Potential of hydrogen bond restraints to define three-dimensional protein structures.

(a) Group of ten conformers calculated with the program  for a -residue polyalanine

fragment. Only standard α-helical hydrogen bond restraints, steric lower limits, and loose

restraints that restrict the torsion angle φ to the range ®%φ%° (in order to exclude

mirror images) were used in the structure calculation. (b) Group of four conformers for the

β-barrel structure in the protein cyclophilin A, calculated with the program . The

same input was used as in (a) except that hydrogen bond restraints were imposed on all

HN–O pairs that are connected by a hydrogen bond in more than half of the  energy-

refined conformers of the solution structure of cyclophilin A (Ottiger et al. ).

exception in this respect are the deviations of "$Cα (and, to some extent, "$Cβ)

chemical shifts from their random coil values that are correlated with the local

backbone conformation (Spera & Bax,  ; de Dios et al. ) : "$Cα chemical

shifts larger than the random coil values tend to occur for amino acid residues in

α-helical conformation, whereas deviations towards smaller values are observed

for residues in β-sheet conformation. Such information can be included in a

structure calculation by restricting the local conformation of a residue to the α-

helical or β-sheet region of the Ramachandran plot, either through torsion angle

restraints (Luginbu$ hl et al. ) or by a special potential (Kuszewski et al.

b) although care should be applied because the correlation between chemical

shift deviation and structure is not perfect. Similar to hydrogen bond restraints,

conformational restraints based on "$Cα chemical shifts are therefore in general

only used as auxiliary data in special situations, in particular at the beginning of

a structure calculation when the NOE network is still sparse. There have also been

attempts to use "H chemical shifts as direct restraints in structure refinement
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(O> sapay et al.  ; Kuszewski et al. a). More often, however, they are used

to delineate secondary structure elements by virtue of the ‘chemical shift index’

(Wishart et al. ) or to assess the quality of a structure (Williamson et al. ).

. Residual dipolar couplings

Recently, a new class of conformational restraints has been introduced that

originates from residual dipolar couplings in partially aligned molecules and gives

information on angles between covalent bonds and globally defined axes in the

molecule, namely those of the magnetic susceptibility tensor (Tolman et al.  ;

Tjandra et al. ). In contrast to vicinal scalar couplings or "$C secondary

chemical shifts that probe exclusively local features of the conformation, residual

dipolar couplings can provide information on long-range order which is not

directly accessible from other commonly used NMR parameters.

Residual dipolar couplings arise because the strong internuclear dipolar

couplings are no longer completely averaged out – as it is the case in a solution of

isotropically oriented molecules – if there is a small degree of molecular alignment

with the static magnetic field due to an anisotropy of the magnetic susceptibility.

The degree of alignment depends on the strength of the external magnetic field

and results in residual dipolar couplings that are proportional to the square of the

magnetic field strength (Gayathri et al. ). They are manifested in small, field-

dependent changes of the splitting normally caused by one-bond scalar couplings

between directly bound nuclei and can thus be obtained from accurate

measurements of "J couplings at different magnetic field strengths (Tolman et al.

 ; Tjandra et al. ). The magnetic susceptibility anisotropy is relatively

large in paramagnetic proteins (Tolman et al. ) but in general very small for

diamagnetic globular proteins. It can, however, be enhanced strongly if the

protein is brought into a liquid-crystalline environment (Losonczi & Prestegard,

 ; Tjandra & Bax, ).

Assuming an axially symmetric magnetic susceptibility tensor and neglecting

the very small contribution from ‘dynamic frequency shifts ’, the difference ∆Jobs

between the apparent J-values at two different magnetic field strengths, B(")

!
and

B(#)

!
, is given by (Tjandra et al. )

∆Jobs¯
hγαγβχa

S

 π#d$
αβkB

T
(B(#)

!
®B(")

!
)# ( cos# θ®), ()

where h is Planck’s constant, γα and γβ are the gyromagnetic ratios of the two spins

α and β, dαβ the distance between them, k
B

the Boltzmann constant, T the

temperature, χ
a

the axial component of the magnetic susceptibility tensor, and S

the order parameter for internal motions (Lipari & Szabo, ). The structural

information is contained in the angle θ between the covalent bond connecting the

two scalar coupled atoms α and β and the main axis of the magnetic susceptibility

tensor; given all other constants, equation () yields an experimental value for

cos#θ. It is then straightforward to add an orientation restraint term to the target
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function of a structure calculation program that measures the deviation between

the value of cos#θobs obtained from equation () and the corresponding value

cos#θcalc calculated from the structure. Provided that the structure calculation

program allows free global reorientation of the molecule in space, the angle θcalc

can be measured simply with respect to an arbitrary fixed axis, for instance the z-

axis of the global coordinate system. The molecule will then rotate during the

structure calculation such as to align, under the simultaneous influence of all

orientation restraints, the main axis of the magnetic susceptibility tensor with the

z-axis. Tjandra et al. () have shown that such orientation restraints can be

used in conjunction with conventional distance and angle restraints during the

structure calculation, and that they can have a beneficial effect on the quality of the

resulting structure. Being in an early stage of their application, the potential of

orientation restraints in biomolecular structure calculation remains to be assessed

by further research. A particularly interesting, as yet unanswered question is

whether they will open an avenue towards non-NOE-based NMR structure

determination.

. Other sources of conformational restraints

Additional types of conformational restraints have been used occasionally in

NMR structure determination. These included, for example, ad hoc restraints to

enforce certain conformations that were believed to be present but could not be

found unambiguously on the basis of the ‘normal’ conformational restraints,

conformational database potentials to confine the structure to those regions of the

Ramachandran plot or side-chain conformation space that are populated in high-

resolution X-ray structures (Kuszewski et al. ), and restraints that are

available only for special systems. The latter include, for example, restraints

derived from pseudocontact shifts in paramagnetic proteins (Banci et al. ).

.     

. Systematic analysis of local conformation

Due to the size and complexity of the conformation space of a biological

macromolecule, it is not possible to perform an exhaustive search that would yield

a complete description of the accessible regions in conformation space. However,

for limited fragments of the macromolecule exhaustive searches are feasible if

conformation space is discretized in the form of a multidimensional grid in which

each dimension corresponds to a torsion angle or to a group of dependent torsion

angles. The basic advantage of such ‘grid searches’ over statistical sampling

methods is that no conformations (on the grid) will be missed and that therefore

definite answers to questions like: ‘Are the local experimental data consistent with

a single rigid structure?’ can be given.

The role of grid searches in NMR structure calculation is three-fold: First,

inconsistencies among the experimental data can be detected. In general, a
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significant fraction of the experimental restraints are short-range in nature and can

therefore be checked by considering limited fragments of the complete molecule.

Second, stereospecific assignments of diastereotopic protons or isopropyl groups

can be obtained by performing separate grid searches for both possible

stereospecific assignments (Gu$ ntert et al.  ; Nilges et al.  ; Polshakov et al.

). Third, experimental data such as scalar coupling constants and NOEs can

be converted into direct restraints on torsion angles that can be used by structure

calculation programs in order to improve both the precision of the resulting

structure and the success rate of the calculation.

Grid searches have been used most commonly to analyze the local conformation

of protein fragments involving the three torsion angles φ, ψ and χ" of an amino

acid residue, for example employing the programs  (Gu$ ntert et al. ) or

 (Nilges et al. ), with the aims of determining the stereospecific

assignment of the β-protons and obtaining restraints for the torsion angles φ, ψ

and χ" on the basis of intramolecular and sequential NOEs, and scalar coupling

constants within the fragment. Torsion angle restraints can be generated

regardless of whether or not an unambiguous stereospecific assignment for the β-

protons is obtained, simply by merging the results of the two grid searches for

both possible stereospecific assignments. Compared to manual, qualitative

conversions of scalar coupling constants into angle restraints (Wu$ thrich, )

and manually derived stereospecific assignments based on the assumption that the

χ" angle adopts only the three staggered rotamer positions, the automatic grid

search approach is more convenient and more objective. Grid search methods are

expected to be especially useful also in DNA}RNA structure determination,

because long-range NOEs are relatively scarce in nucleic acids and hence short-

range restraints become more important (Wijmenga et al.  ; Pardi,  ;

Varani et al. ).

A new grid search algorithm, implemented as a module of the D structure

calculation program (Gu$ ntert et al. ), extends the previous  approach in

various directions (P. Gu$ ntert, M. Billeter, O. Ohlenschla$ ger, unpublished). It

can be applied in a straightforward manner as an automated step of a structure

calculation and is described here as an example of a versatile grid search algorithm.

In contrast to  that was specific for φ, ψ and χ" fragments in proteins,

arbitrary fragments, defined as connected subsets of torsion angles in the

molecule, can be investigated. Covalent geometry parameters (bond lengths, bond

angles etc.) and Karplus curve relations (Table ) are stored in the standard 

residue library. This allows the treatment of any type of molecule, in particular

proteins and nucleic acids. The fragment size is limited in practice only by the

computing power available. All upper and lower limit distance restraints, scalar

couplings and angle restraints available within the fragment are used. Criteria to

accept or reject conformations can be based either on the maximal restraint

violation in the fragment or on the local  target function value (see below),

calculated for all restraints within the fragment. Stereospecific assignments can be

determined also for other groups than βCH
#

and even if the fragment contains

more than one pair of diastereotopic substituents. Sets of dependent torsion angles
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are treated as a single degree of freedom. For example, the dependencies of the

ribose ring torsion angles ν
!
, ν

"
, ν

#
, ν

$
, ν

%
on the pseudorotation angle P are given

by (Saenger, ) :

ν
k
¯ ν

max
cos 0P­

π


(k®)1 (P ` [,π] ; ν

max
¯ °). ()

The parameter P is used as a single degree of freedom in the grid search. This

ensures that the relations among the dependent torsion angles are always fulfilled

and significantly increases the efficiency of the algorithm. Output torsion angle

restraints may comprise more than one allowed interval for one torsion angle (Fig.

). Results from different grid searches for overlapping fragments can be

combined, both in order to reduce the computational effort required for higher-

dimensional grid searches and in order to generate the narrowest possible output

torsion angle restraints.

The molecular fragment to be analysed in the grid search is defined by selecting

a connected subset of torsion angles (Fig. a). The program then extracts from

the data for the complete molecule the subset of conformational restraints within

the chosen fragment and evaluates them in a multidimensional grid search. The

grid search is implemented by n nested loops, each of which corresponds to a

degree of freedom. In routine applications the results of the grid search comprise

the number of allowed conformations, N, and the sets of allowed values for each

torsion angle in the fragment (Fig. b), i.e. information about correlations

between torsion angles is discarded. It is, however, possible to save all allowed

conformations for further analysis. The number of allowed conformations yields

the important information whether the set of restraints for a fragment is

compatible, within the given limits on the target function value or the sizes of

violations, with a rigid conformation (N" ) or not (N¯ ). Inconsistencies

among the local restraints can be detected in this way at the beginning of an NMR

structure determination. If the fragment under investigation contains M pairs of

diastereotopic substituents for which the stereospecific assignment is not known,

M grid searches will be performed, one for each combination of possible

stereospecific assignments, and their results will be combined. Alternatively, the

algorithm can be used also to find stereospecific assignments on the basis of local

restraints by checking whether the restraints are compatible with only one of the

two possible stereospecific assignment of a diastereotopic pair. In practice, a

complete local conformation analysis of a macromolecule includes many grid

searches for (possibly overlapping) fragments, and finally restraints are generated

for all torsion angles that formed part of at least one of the fragments.

. Stereospecific assignments

The standard method for obtaining resonance assignments in proteins (Wider et

al.  ; Wu$ thrich et al. ) cannot provide stereospecific assignments, i.e.

individual assignments for the two diastereotopic substituents of a prochiral

centre, for example in methylene groups and in the isopropyl groups of valine and
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Fig. . (a) Ball-and-stick representation of a molecular fragment defined by the four torsion

angles φ, ψ, χ" and χ# (indicated by thick bonds) of the central Glu amino acid residue.

Atoms not included in the fragment are marked with ‘X’. (b) Allowed torsion angle ranges

(horizontal bars) obtained with the grid search module of the program  for two φ-ψ-

χ"-χ#-fragments of the protein Pa, using the experimental NMR data set of Ferna!ndez et

al. ().

leucine. In the absence of stereospecific assignments restraints involving

diastereotopic substituents have to be referred to pseudoatoms (Wu$ thrich et al.

), or otherwise treated such that they are invariant under exchange of the two

diastereotopic substituents (see next section), which inevitably results in a loss of

information and less well defined structures (Gu$ ntert et al.  ; Table  below).

It is therefore important for obtaining a high-quality structure that as many

stereospecific assignments as possible are determined. Stereospecific assignments

of valine and leucine isopropyl groups can be determined experimentally by

biosynthetical fractional "$C-labelling (Senn et al.  ; Neri et al. ).

Stereospecific assignments for methylene protons have to be determined in the

course of the structure calculation, either manually (Hyberts et al. ), by

systematic analysis of the local conformation around a methylene group, or by

reference to preliminary three-dimensional structures.
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The local method, introduced by Gu$ ntert et al. (), consists of two separate

grid searches, one for each of the two assignment possibilities. An unambiguous

stereospecific assignment results if allowed conformations occur only for one of

the two possible assignments. It relies exclusively on scalar coupling constants and

local distance restraints. Assuming realistic error ranges for experimental data it

will not be possible to obtain unambiguous stereospecific assignments by the local

method in all cases. Using complete simulated sets of local distance restraints and

homonuclear coupling constants with an accuracy of ³ Hz, it was estimated that

the program  can yield unambiguous stereospecific assignments for about

% of the β-methylene protons (Gu$ ntert et al. ).

In contrast to the local method, global methods aim at the determination of

stereospecific assignments either during the calculation of a three-dimensional

structure or by reference to preliminary three-dimensional structures. They have

the potential advantage over the local method that all conformational restraints,

not only local ones, can be exploited, but, on the other hand, a systematic search

of allowed conformations is no longer feasible, and the stereospecific assignments

have to be based on a statistical analysis of a limited number of conformers. In

conjunction with structure calculation programs working in Cartesian coordinate

space, the so-called method of ‘floating stereospecific assignments’ (Weber et al.

) can be used: At the beginning of a structure calculation a strong reduction

of the corresponding potential energy terms allows the two diastereotopic

substituents to interchange freely under the influence of the restraints before they

later become fixed when the potential energy terms are slowly restored to their

normal values (which inhibit an interchange of the diastereotopic substituents). A

stereospecific assignment is considered to be unambiguous if it is found

consistently in all conformers that were calculated. Another simple method for

obtaining stereospecific assignments is implemented in the program  of the

 package (Gu$ ntert et al. a) and consists of an analysis of preliminary

three-dimensional structures: If there are two NOEs of significantly different

strength from a given proton to both diastereotopic substituents of a prochiral

centre and if the distances from the given proton to the two diastereotopic

substituents differ consistently in the structures, the stronger NOE can be

identified with the diastereotopic substituent that is closer to the given proton.

. Treatment of distance restraints to diastereotopic protons

Distance restraints involving diastereotopic substituents that could not be assigned

stereospecifically have to be modified such that they are invariant under exchange

of the two diastereotopic substituents. Traditionally, this is achieved by referring

the restraints to a pseudoatom located centrally with respect to the two

diastereotopic substituents and a concomitant increase of the upper distance

bound, b
Q
, by a pseudoatom correction, c

Q
, equal to the distance from the

pseudoatom to the individual protons, i.e. b
Q

¯min(b
"
, b

#
)­c

Q
, where b

"
and b

#

are two individual upper bounds (Wu$ thrich et al. ). This approach, however,

completely discards the weaker of the two possible NOEs from a given proton to
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the two diastereotopic substituents. Another straightforward method symmetrizes

the two restraints by imposing the less restrictive of the two upper bounds,

max (b
"
, b

#
), simultaneously on both distances to the individual diastereotopic

substituents. The pseudoatom and symmetrization treatments are not equivalent

and a combination of the two treatments, implemented in the programs 

(Gu$ ntert et al. a) and  (Gu$ ntert et al. ), can give improved results.

In addition, it makes use of the information from both upper bounds, b
"

and b
#
,

also by assigning a more restrictive upper limit, b
Q
, to the restraint to the

pseudoatom,

b
Q

¯
b#
"
­b#

#


®c#

Q
. ()

Yet another approach, used for example in the program  (Bru$ nger, ),

does not introduce a pseudoatom explicitly but assumes that the NOE originates

from both diastereotopic substituents simultaneously and imposes a distance

restraint on a ‘sum-averaged’ distance,

©dª¯ (d−'
"

­d−'
#

)−"
', ()

rather than on the individual distances to the two diastereotopic substituents, d
"

and d
#
. Such sum-averaged distance restraints can be used for all groups of non-

stereoassigned or degenerate protons without the need for multiplicity or

pseudoatom corrections (Fletcher et al. ).

Fig.  illustrates and compares the various methods in the two cases of

significantly different or similar upper bounds on the distances from the two

diastereotopic substituents to a third proton. Obviously, none of the methods can

completely make up for the loss of information that results from the absence of a

stereospecific assignment but there are significant differences between the various

procedures. In general, the loss of information is largest with the original

pseudoatom concept and smallest with the } treatment, which leads to

more precise structures (Gu$ ntert et al. a).

. Removal of irrelevant restraints

The number of experimental distance restraints used in a structure calculation is

an important parameter that determines the precision of the resulting structure.

To allow for meaningful comparisons it is therefore important to report the

number of relevant distance restraints, i.e. of those that actually restrict the

allowed conformation space, rather than the total number of NOESY cross peaks

that have been assigned. In addition, the removal of irrelevant distance restraints

increases slightly the efficiency of the structure calculation by obviating

unnecessary computations. In practice, often more than half of the intraresidual

and many sequential restraints are irrelevant. Those include restraints for fixed

distances, for example between geminal protons among the protons attached to an

aromatic ring, and distance bounds that cannot be reached by any conformation,

for example an upper bound of ± AI for the intraresidual distance between the
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Fig. . Treatment of distance restraints with diastereotopic protons. The situation of two

distance restraints of ± AI and ± AI (left column), or ± AI and ± AI (right column) from

two geminal methylene protons with a separation of  AI to a common third atom is shown.

The methylene protons are shown as black dots, surrounded by white spheres with a radius

of  AI that represent the sterically forbidden area around them. Dark shading indicates the

area of allowed positions for the third atom if the methylene protons are stereospecifically

assigned. Additionally allowed areas in the absence of a stereospecific assignment are shaded

in medium grey, and the individual distance restraints are shown as lightly shaded thin

circles. (a) Stereospecific assignment is available. (b) Conventional pseudoatom treatment

(Wu$ thrich et al. ). (c) The larger of the two upper distance bounds is applied to both

methylene protons. (d ) Combination of a pseudoatom treatment with minimal pseudoatom

correction and the method of two identical upper bounds as implemented in the programs

 and . (e) The smaller of the two distance bounds is applied to the r−' sum of

the distances to the two methylene protons.
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backbone amide- and the α-proton. Assuming rigid bond lengths and bond angles,

the latter condition can be checked readily for distances that depend on one or two

torsion angles (Gu$ ntert et al. a).

.   

The calculation of the three-dimensional structure forms a cornerstone of the

NMR method for protein structure determination. Due to the complexity of the

problem – a protein typically consists of more than a thousand atoms which are

restrained by a similar number of experimentally determined restraints in

conjunction with stereochemical and steric conditions – it is in general neither

feasible to do an exhaustive search of allowed conformations nor to find solutions

by interactive model building. In practice, the calculation of the three-dimensional

structure is therefore usually formulated as a minimization problem for a target

function which measures the agreement between a conformation and the given set

of restraints. In the following, the four most widely used types of algorithms

(Table ) are discussed. Because the earlier methods have been reviewed

extensively already (Braun,  ; Bru$ nger & Nilges,  ; Sutcliffe,  ; James,

 ; Nilges, ), special emphasis is given to the new structure calculation

method based on torsion angle dynamics which is currently the most efficient way

to calculate NMR structures of biological macromolecules.

± Metric matrix distance geometry

Distance geometry based on the metric matrix was the first approach used for the

structure calculation of proteins on the basis of NMR data (Braun et al.  ;

Havel & Wu$ thrich, ). It relies on the fact that the NOE data and most of the

stereochemical data can be represented as distance restraints. Metric matrix

distance geometry is based on the theorem (Blumenthal,  ; Crippen,  ;

Crippen & Havel, ) that, given exact values for all distances among a set of

points in three-dimensional Euclidean space, it is possible to determine Cartesian

coordinates for these points uniquely except for a global inversion, translation and

rotation.

To see this, assume that all n¬n distances D
ij
¯ r r

i
®r

j
r are known among

n points in three-dimensional Euclidean space with (unknown) coordinates

r
"
,… , r

n
that can be assumed, without loss of generality, to fulfill the relation

3
i
r
i
¯ . Then, the n¬n metric matrix G, with elements

G
ij
¯ r

i
[r

j
¯
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can be calculated. G has at most three positive eigenvalues λα with corresponding

n-dimensional eigenvectors eα that are related to the Cartesian coordinates

r
"
,… , r

n
of the n points by

rα

i
¯oλα eα

i
(α¯ , , ). ()

Equations () and () provide a straightforward way to embed a distance

matrix in three-dimensional space, i.e. to obtain Cartesian coordinates for a set of

points if all distances are known exactly. To make use of this theorem in a

structure calculation one has to account for the fact that in practice neither

complete nor exact distance information is available. Only for a small subset of all

distances d
ij
, restraints in the form of lower and upper bounds, l

ij
! d

ij
! u

ij
, can

be determined. Upper bounds result from NOEs, lower bounds from the steric

repulsion, and there are some exact distance constraints from known bond lengths

and bond angles of the covalent structure. To apply equations () and (),

unknown upper bounds are first initialized to a large value, and unknown lower

bounds to zero. Subsequently they are reduced by ‘bounds smoothing’ (Crippen,

), i.e. repeated application of the triangle inequality until all lower and upper

bounds are consistent with the triangle inequality. Then a complete set of

distances is produced by ‘randomly’ selecting for each distance a value between

the corresponding lower and upper bounds, and the embedding procedure

equations () and () is used to obtain Cartesian coordinates. Because the

assumptions of the embedding theorem are not met exactly, the resulting structure

will in general have the correct three-dimensional fold (or its mirror image) but

will be severely distorted. It needs to be regularized extensively, for example by

conjugate gradient minimization of an appropriate target function in Cartesian

coordinate space (Havel & Wu$ thrich, ). Nowadays a crudely regularized

structure is usually passed as start structure to simulated annealing by molecular

dynamics (Nilges et al. a ; Bru$ nger, ). Starting from the smoothed

distance bound matrix, the calculation is repeated with different ‘random’

selections of distances, in order to obtain a group of conformers whose spread

should give an indication of the allowed conformation space.

Despite the elegance of embedding method given by equations () and ()

there are a number of problems that have to be dealt with. Since all conformational

data has to be encoded into the distance matrix, it is not possible to introduce any

handedness or chirality. A structure and its mirror image are always equivalent for

metric matrix distance geometry. The correct handedness is only enforced during

regularization. For the same reason, torsion angle restraints cannot be used

directly in the embedding; they have to be represented by distance bounds,

thereby loosing part of their information.

The sampling of conformation space by a group of conformers resulting from

metric matrix distance geometry is decisively determined by the ‘random’

selection of distance values between corresponding lower and upper bounds. The

most straightforward method, namely selecting the distances as independent,

uniformly distributed random variables between the two limits, leads, because

meaningful upper bounds exist only for a small subset of all distances, on the
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average to an overestimation of the true distances with the consequence of

artificially expanded structures (Metzler et al.  ; Havel, ). This effect is

most pronounced in regions of the polypeptide chain for which only few restraints

are available. For example, chain ends that are unstructured in solution tend to be

forced into an extended conformation. A method to reduce – at the expense of

considerably increased computation time – such biased sampling of the allowed

conformation space is metrization (Havel & Wu$ thrich, ) : instead of selecting

the individual distances independently from each other, the bounds smoothing is

repeated each time after a distance value has been chosen, thereby resulting in a

more consistent set of distances for the embedding. This introduces, however, a

strong dependence of the sampling properties on the order in which the distances

are chosen (Havel, ). Good sampling can be achieved if the distances are

chosen in random order (Havel, , ). The computational efficiency of

metrization can be enhanced by partial metrization, i.e. by repeating the bounds

smoothing only after the selection of the first few percent of the randomly chosen

distances (Kuszewski et al. ).

. Variable target function method

The basic idea of the variable target function algorithm (Braun & Go, ) is to

gradually fit an initially randomized starting structure to the conformational

restraints collected with the use of NMR experiments, starting with intraresidual

restraints only, and increasing the ‘target size’ step-wise up to the length of the

complete polypeptide chain. Advantages of the method are its conceptual

simplicity and the fact that it works in torsion angle space, strictly preserving the

covalent geometry during the entire calculation. The variable target function

algorithm was implemented first in the program  (Braun & Go, ) and

most commonly used in its implementation in the program  (Gu$ ntert et al.

a), which is discussed here. Today, however, the variable target function

method has been superseded largely by the more efficient torsion angle dynamics

algorithm. Since both algorithms work in torsion angle space, they have many

features in common. These are described in detail in the section about torsion

angle dynamics below (see Section .).

The variable target function algorithm is based on the minimization of a target

function that includes terms for experimental and steric restraints. To reduce the

danger of becoming trapped in a local minimum with a function value much

higher than the global minimum, the target function is varied during a structure

calculation. At the outset only local restraints with respect to the polypeptide

sequence are considered. Subsequently, restraints between atoms further apart

with respect to the primary structure are included in a step-wise fashion (Fig. ).

Consequently, in the first stages of a structure calculation the local features of the

conformation will be established, and the global fold of the protein will be

obtained only towards the end of the calculation. The minimization algorithm

used in the program  is the well-known method of conjugate gradients

(Powell, ) that tries to find the minimum by taking exclusively downhill steps.
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Fig. . Active restraints at various minimization levels L of the variable target function

algorithm. At a given minimization level L, all distance restraints between residues i and j

with r j®i r%L are considered.

As an alternative, a Newton–Raphson minimization algorithm that uses the matrix

of second derivatives (Abe et al. ) has been used in the program 

(Endo et al. ).

A drawback of the basic implementation of the variable target function

algorithm (Braun & Go, ) is that for all but the simplest molecular topologies

only a small percentage of the calculations converge with small residual restraint

violations, which is a typical local minimum problem. Because of the low yield of

acceptable conformers, calculations had to be started with a large number of

randomized start conformers in order to obtain a group of good solutions,

sometimes compromising between the requirements of small restraint violations

and the available computing time (Kline et al. ). The introduction of the

optimized program  (Gu$ ntert et al. a) reduced significantly the

computation time needed for the calculation of a single conformer, and a workable

situation was achieved for α-helical proteins (Gu$ ntert et al. b). Nonetheless,

the situation for β-proteins with more complex topology remained unsatisfactory

and was improved decisively only with the use of redundant dihedral angle

restraints ( ; Gu$ ntert & Wu$ thrich, ).

When using , the structure calculation is performed in iterative cycles that

provide a partial feedback of structural information gathered from the conformers

of the preceding cycle. To this end, an amino acid residue in a given conformer

is considered to have an acceptable conformation if the target function value due

to violations of restraints involving atoms or torsion angles of this residue is below

a predefined value, and if the same condition holds for the two sequentially

neighbouring residues, too. Redundant torsion angle restraints are then generated

and added to the input for the next cycle of  structure calculations for all
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residues that were found to be acceptable in a sufficient number of conformers by

taking the two extreme torsion angle values in the group of acceptable conformers

as upper and lower bounds. This method is able to reduce the computational effort

required to obtain a set of converged conformers by a factor of  already in the

case of a small protein like BPTI. This improvement is achieved without

detectable reduction in the sampling of conformation space (Gu$ ntert & Wu$ thrich,

). To rationalize the empirically found higher yield of good conformers with

the use of  it is important to note that in many regions of a protein structure,

in particular in β-strands, the local conformation is determined not only by the

local conformational restraints, but also by long-range restraints, such as

interstrand distance restraints in β-sheets. The local restraints alone may allow for

multiple local conformations at low target levels in a variable target function

calculation, of which some may be incompatible with the long-range restraints

taken into account later during the calculation. Obviously, incorrect local

conformations that satisfy the experimentally available local restraints are potential

local minima that could only be ruled out from the beginning if the information

contained in the long-range restraints were already available at low levels of the

minimization. The use of  achieves this : information contained in the

complete data set is translated into (by definition intraresidual) torsion angle

restraints. It further makes clear why the yield of good solutions with the original

variable target function method (Braun & Go, ) was in general higher for α-

proteins than for β-proteins, since the conformation of an α-helix is particularly

well-determined by sequential and medium-range restraints.

. Molecular dynamics in Cartesian space

This third major method for NMR structure calculation is based on numerically

solving Newton’s equation of motion in order to obtain a trajectory for the

molecular system (Allen & Tildesley, ). The degrees of freedom are the

Cartesian coordinates of the atoms. In contrast to ‘standard’ molecular dynamics

simulations (McCammon & Harvey,  ; Brooks et al.  ; van Gunsteren &

Berendsen, ) that try to simulate the behaviour of a real physical system as

closely as possible (and do not include restraints derived from NMR), the purpose

of a molecular dynamics calculation in an NMR structure determination is simply

to search the conformation space of the protein for structures that fulfil the

restraints, i.e. that minimize a target function which is taken as the potential

energy of the system. Therefore, simulated annealing (Kirkpatrick et al.  ;

Nilges et al. a ; Scheek et al.  ; Bru$ nger & Nilges, , Bru$ nger et al.

) is performed at high temperature using a simplified force field that treats the

atoms as soft spheres without attractive or long-range (i.e. electrostatic) non-

bonded interactions, and that does not include explicit consideration of the

solvent. The distinctive feature of molecular dynamics simulation when compared

to the straightforward minimization of a target function is the presence of kinetic

energy that allows to cross barriers of the potential surface, thereby reducing

greatly the problem of becoming trapped in local minima. Since molecular
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dynamics simulation cannot generate conformations from scratch, a start structure

is needed, that can be generated either by metric matrix distance geometry (Nilges

et al. a) or by the variable target function method, but – at the expense of

increased computation time – it is also possible to start from an extended structure

(Nilges et al. c) or even from a set of atoms randomly distributed in space

(Nilges et al. b). Any general molecular dynamics program, such as 

(Brooks et al. ),  (Pearlman et al. ), or  (van Gunsteren et

al. ), can be used for the simulated annealing of NMR structures, provided

that pseudoenergy terms for distance and torsion angle restraints have been

incorporated. In practice, the program best adapted and most widely used for this

purpose is  (Bru$ nger, ).

The classical dynamics of a system of n particles with masses m
i
and positions

r
i
is governed by Newton’s equation of motion,

m
i

d#r
i

dt#
¯F

i
(i¯ ,… , n), ()

where the forces F
i

are given by the negative gradient of the potential energy

function E
pot

with respect to the Cartesian coordinates: F
i
¯®~

i
E

pot
. For

simulated annealing a simplified potential energy function is used that includes

terms to maintain the covalent geometry of the structure by means of harmonic

bond length and bond angle potentials, torsion angle potentials, terms to enforce

the proper chiralities and planarities, a simple repulsive potential instead of the

Lennard-Jones and electrostatic non-bonded interactions, as well as terms for

distance and torsion angle restraints. For example, in the program 

(Bru$ nger, ),

E¯ 3
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k
b
, kθ, kφ, k

repel
, k

d
and k

a
denote the various force constants, r the actual and r

!

the correct bond length, respectively, θ the actual and θ
!
and correct bond angle,

φ the actual torsion angle or improper angle value, n the number of minima of the

torsion angle potential, δ an offset of the torsion angle and improper potentials,

R
min

the distance where the van der Waals potential has its minimum, R the actual

distance between a non-bonded atom pair, s a scaling factor, and ∆
d
and ∆

a
the size

of the distance or torsion angle restraint violation. As an alternative to the square-

well potential of equation (), distance restraints are often represented by a

potential with linear asymptote for large violations (Bru$ nger, ). To obtain a

trajectory, the equations of motion are numerically integrated by advancing the

coordinates r
i
and velocities v

i
¯ rd

i
of the particles by a small but finite time step
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∆t, for example according to the ‘ leap-frog’ integration scheme (Hockney,  ;

Allen & Tildesley, ) :

v
i
(t­∆t})¯ v

i
(t®∆t})­∆t F

i
(t)}m

i
­O(∆t$), ()

r
i
(t­∆t)¯ r

i
(t)­∆t v

i
(t­∆t})­O(∆t$). ()

The O(∆t$) terms indicate that the errors with respect to the exact solution

incurred by the use of a finite time step ∆t are proportional to ∆t$. The time step

∆t must be small enough to sample adequately the fastest motions, i.e. of the order

of −"& s. In general the highest frequency motions are bond length oscillations.

Therefore, the time step can be increased if the bond lengths are constrained to

their correct values by the  method (Ryckaert et al. ). The temperature

may be controlled by coupling the system loosely to a heat bath (Berendsen et al.

). For the simulated annealing of a (possibly distorted) start structure, certain

measures have to be taken in order to achieve sampling of the conformation space

within reasonable time (Nilges et al. a). In a typical simulated annealing

protocol (Bru$ nger, ), the simulated annealing is performed for a few

picoseconds at high temperature, say T¯  K, starting with a very small

weight for the steric repulsion that allows atoms to penetrate each other, and

gradually increasing the strength of the steric repulsion during the calculation.

Subsequently, the system is cooled down slowly for another few picoseconds and

finally energy-minimized. This process is repeated for each of the start conformers.

The alternative of selecting conformers that represent the solution structure at

regular intervals from a single trajectory is used rarely because it is difficult to

judge whether the spacing between the ‘snapshots ’ is sufficient for good sampling

of conformation space. In general, simulated annealing by molecular dynamics

requires substantially more computation time per conformer (Bru$ nger, )

than, for example, the variable target function method but this effect may be

compensated by a higher success rate of –% of the start conformers which

is due to the ability of the algorithm to escape from local minima.

. Torsion angle dynamics

Torsion angle dynamics, i.e. molecular dynamics simulation using torsion angles

instead of Cartesian coordinates as degrees of freedom (Bae & Haug,  ;

Gu$ ntert et al.  ; Jain et al.  ; Katz et al.  ; Kneller & Hinsen,  ;

Mathiowetz et al.  ; Mazur & Abagyan,  ; Mazur et al.  ; Rice &

Bru$ nger,  ; Stein et al. ), provides at present the most efficient way to

calculate NMR structures of biomacromolecules. In this section the torsion angle

dynamics algorithm implemented in the program  (Gu$ ntert et al. ) is

described in some detail. This seems warranted in light of the wide-spread but

incorrect belief that dynamics in generalized coordinates is hopelessly complicated

and cannot be done efficiently.  employs the torsion angle dynamics

algorithm of Jain et al. () that requires a computational effort proportional to

the system size, as it is the case for molecular dynamics simulation in Cartesian
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Table . Comparison of molecular dynamics simulation in Cartesian and torsion

angle space

Quantity Cartesian space Torsion angle space

Degrees of

freedom

N coordinates:

x
"
, … , x

N

n torsion angles:

θ
"
, … , θ

n

Equations Newton’s equations: Lagrange equations:

of motion
m

i
xX
i
¯®

¥E
pot

¥x
i

d

dt 0
¥L

¥θd
k

1®¥L

¥θ
k

¯ (L¯E
kin

®E
pot

)

Kinetic energy E
kin

¯



3
N

i="

m
i
xd #
i

E
kin

¯



3
n

k, l="

M(θ)
kl
θd
k
θd
l

Mass matrix M Diagonal, elements m
i

n¬n, non-diagonal, non-constant

Accelerations xX
i
¯®



m
i

¥E
pot

¥x
i

θX ¯M(θ)−" C(θ, θd ) (n linear equations)

Computational

complexity of

acceleration

calculation

Proportional to N If solving system of linear equations:

proportional to n$

If exploiting tree structure of molecule:

proportional to n

space, too. The advantages of torsion angle dynamics, especially the much longer

integration time steps that can be used, are therefore effective for molecules of all

sizes, and in particular for large biological macromolecules. A comparison of

molecular dynamics simulation in Cartesian and torsion angle space in Table 

shows the close analogy between the two methods.

.. Tree structure of the molecule

For torsion angle dynamics calculations with  the molecule is represented

as a tree structure consisting of a base rigid body that is fixed in space and n rigid

bodies, which are connected by n rotatable bonds (Fig. a ; Katz et al.  ; Abe

et al. ). The degrees of freedom are exclusively torsion angles, i.e. rotations

about single bonds. Each rigid body is made up of one or several mass points

(atoms) with invariable relative positions. The tree structure starts from a ‘base’,

typically at the N-terminus of the polypeptide chain, and terminates with ‘ leaves’

at the ends of the side-chains and at the C-terminus. The rigid bodies are

numbered from  to n. The base has the number . Each other rigid body, with

a number k& , has a single nearest neighbour in the direction toward the base,

which has a number p(k)! k (Fig. ). The torsion angle between the rigid bodies

p(k) and k is denoted by θ
k
. The conformation of the molecule is uniquely

specified by the values of all torsion angles, θ¯ (θ
"
,… , θ

n
). For each rotatable

bond, e
k

denotes a unit vector in the direction of the bond, and r
k

is the position

vector of its end point, which is subsequently used as the ‘reference point ’ of the

rigid body k. In the following description these and all other three-dimensional

vectors are referred to an inertial frame of reference that is fixed in space. Covalent
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(a)

(b)
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Fig. . (a) Tree structure of torsion angles for the tripeptide Val–Ser–Ile. Circles represent

rigid units. Rotatable bonds are indicated by arrows that point towards the part of the

structure that is rotated if the corresponding dihedral angle is changed. (b) Excerpt from the

tree structure formed by the torsion angles of a molecule, and various quantities required by

the torsion angle dynamics algorithm of Jain et al. ().

bonds that are incompatible with a tree structure because they would introduce

closed flexible rings, for example disulphide bridges, are treated, as in Cartesian

space dynamics, by distance constraints.

.. Potential energy

The target function V takes the role of the potential energy E
pot

, i.e. E
pot

¯w
!
V,

with an overall weighting factor w
!
¯  kJ mol−"AI −#. The target function V& 

is defined such that V¯  if and only if all experimental distance restraints and

torsion angle restraints are fulfilled and all non-bonded atom pairs satisfy a

check for the absence of steric overlap. It measures restraint violations such that

V(θ)!V(θ«) whenever a conformation θ satisfies the restraints more closely than

another conformation θ«. The exact definition of the  target function is :

V¯ 3
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Upper and lower bounds, bαβ, on distances between two atoms α and β, dαβ, and

restraints on individual torsion angles θ
i

in the form of allowed intervals,

[θmin
i

, θmax
i

], are considered. I
u
, I

l
and I

v
are the sets of atom pairs (α, β) with

upper, lower or van der Waals distance bounds, respectively, and I
a

is the set of

restrained torsion angles. w
u
, w

l
, w

v
and w

a
are weighting factors for the different

types of restraints. Γ
i
¯π®(θmax

i
®θmin

i
)} denotes the half-width of the forbidden

range of torsion angle values, and ∆
i

is the size of the torsion angle restraint

violation. The target function of equation () is continuously differentiable over

the entire conformation space, and is chosen such that the contribution of a single

small violation δ
c
is given by w

c
δ#
c
for all types of restraints. The sets I

u
, I

l
and I

v

of distance restraints that contribute to the target function can include all distance

restraints or only those between residues with sequence numbers that differ by not

more than a given target level L (Fig. ).

The function f
c
(d, b) that measures the contribution of a violated distance

restraint to the target function can be a simple square potential,

f
c
(d, b)¯ (d®b)#, ()

or have the form used in the program  (Gu$ ntert et al. a),

f
c
(d, b)¯ 0d#®b#

b 1#, ()

or be a function with a linear asymptote for large restraint violations

f
c
(d, b)¯ β#b# 9 ­0d®b

βb 1
#

®:, ()

where β is a dimensionless parameter that weighs large violations relative to small

ones. For small restraint violations equations ()–() all yield the same

contribution, which is always equal to the square of the restraint violation, but

there is a pronounced difference for large violations, where the contributions are

proportional to the second, fourth and first power of the restraint violation,

respectively (Fig. ).

The torques about the rotatable bonds, i.e. the negative gradients of the

potential energy with respect to torsion angles, ®~E
pot

, are calculated by the fast

recursive algorithm of Abe et al. (). The partial derivative of the function V

of equation () with respect to a torsion angle θ
k

is given by
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Fig. . Contribution of a distance restraint with an upper limit of  AI to the target

function. The solid line corresponds to the  target function (Gu$ ntert et al. a), the

dotted line to a square potential, and the dashed line to a square potential with linear

asymptote for large violations. The inset shows a blow-up of the region of small restraint

violations.

rα and rβ denote the position vectors of the atoms α and β, respectively, e
k
denotes

the unit vector along the rotatable bond k, r
k

the start point of it (Fig. b), and

M
k

the set of all atoms whose positions are affected by a change of the torsion

angle k.

.. Kinetic energy

For all rigid bodies with k¯ , … , n (Fig. ), the angular velocity vector ω
k

and

the linear velocity of the reference point, v
k
¯ rd

k
, are calculated recursively (Jain

et al. () :

ω
k
¯ω

p(k)
­e

k
θd
k

and v
k
¯ v

p(k)
®(r

k
®r

p(k)
)gω

p(k)
. ()

Denoting the vector from the reference point to the centre of mass of the rigid

body k by Y
k
, its mass by m

k
, and its inertia tensor by I

k
(Fig. b), the kinetic

energy is given by

E
kin

¯



3
n

k="

[m
k
v#
k
­ω

k
[I

k
ω

k
­v

k
[(ω

k
gm

k
Y

k
)]. ()

The inertia tensor I
k

is a symmetric ¬ matrix with elements (Arnold, )

(I
k
)
ij
¯3

α

mα(ryα r #δ
ij
®yαi

yαj
). ()

The sum runs over all atoms α with mass mα in the rigid body k. yα is the vector

from the reference point to the atom α, and δ
ij

is the Kronecker symbol. Since the

shape of a rigid body enters the equations of motion only by the inertia tensor and

the centre of mass vector, it is not essential to derive these quantities from the

masses and relative positions of the individual atoms that constitute the rigid
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body, as in equation (). In fact, the efficiency of the torsion angle dynamics

algorithm can be improved by treating the rigid bodies as solid spheres of mass m
k

and radius ρ centred at the reference points r
k
:

Y
k
¯  and I

k
¯ #

&
m

k
ρ#

$
, ()

where 
$
is the ¬ unit matrix. In  ρ¯  AI and m

k
¯ on

k
m

!
are used,

where n
k

denotes the number of atoms in the rigid body k (not counting

pseudoatoms), and m
!
¯ ±¬−#( kg is the atomic mass unit. In this way, fast

motions of light rigid bodies, for example hydroxyl protons, are slowed down,

thereby permitting longer integration time steps. Equation () does not imply an

approximation of the van der Waals interaction: the steric repulsion is still

calculated for each individual atom pair.

.. Torsional accelerations

The calculation of the torsional accelerations, i.e. the second time derivatives of

the torsion angles, is the crucial point of a torsion angle dynamics algorithm. The

equations of motion for a classical mechanical system with generalized coordinates

are the Lagrange equations

d

dt 0
¦L

¦θd
k

1®¦L

¦θ
k

¯  (k¯ , … , n), ()

with the Lagrange function L¯E
kin

®E
pot

(Arnold, ). They lead to

equations of motion of the form

M(θ)θX ­C(θ, θd )¯ . ()

In the case of torsion angles as degrees of freedom, the n¬n mass matrix M(θ) and

the n-dimensional vector C(θ, θd ) can be calculated explicitly (Mazur & Abagyan,

 ; Mazur et al. ). However, to integrate the equations of motion, equation

() would have to be solved in each time step for the torsional accelerations, θX .
This requires the solution of a system of n linear equations and hence entails a

computational effort proportional to n$ that would become prohibitively expensive

for larger systems. Therefore, in  the fast recursive algorithm of Jain et al.

() is implemented to compute the torsional accelerations, which makes

explicit use of the aforementioned tree structure of the molecule in order to obtain

θ$ with a computational effort that is only proportional to n.

The algorithm of Jain et al. () is initialized by calculating for all rigid

bodies, k¯ , … , n, the six-dimensional vectors

a
k
¯ 9 (ω

k
ge

k
)θd

k

ω
p(k)

g(v
k
®v

p(k)
):, e

k
¯ 9ek
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k
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k

(ω
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k
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k
Y

k

:, ()

and the ¬ matrices

P
k
¯ 9 I

k

®m
k
A(Y

k
)

m
k
A(Y

k
)

m
k

$

: and φ
k
¯ 9$


$

A(r
k
®r

p(k)
)


$

:. ()



 Peter GuX ntert


$

is the ¬ zero matrix, and A(x) denotes the antisymmetric ¬ matrix

associated with the cross product, i.e. A(x)y¯ xgy for all vectors y.

Next, a number of auxiliary quantities is calculated by executing a recursive

loop over all rigid bodies in the backward direction, k¯ n, n®, … ,  :

D
k
¯ e

k
\P

k
e
k

G
k
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k
e
k
}D

k

ε
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¯ e

k
\(z

k
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a
k
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¦V

¦θ
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P
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­φ
k
(P

k
®G

k
eT
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P
k
)φT

k
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" z
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­φ
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(z
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k
a
k
­G

k
ε
k
)

5

6

7

8

()

D
k

and ε
k

are scalars, G
k

is a six-dimensional vector, and ‘" ’ means: ‘assign the

result of the expression on the right hand side to the variable on the left hand side. ’

Finally, the torsional accelerations are obtained by executing another recursive

loop over all rigid bodies in the forward direction, k¯ , … , n :

α
k
¯φT

k
α
p(k)

θX
k
¯ ε

k
}D

k
®G

k
[α

k

α
k
"α

k
­e

k
θX
k
­a

k
.

5

6

7

8

()

The auxiliary quantities α
k
are six-dimensional vectors, with α

!
being equal to the

zero vector. A proof of the correctness of this algorithm can be found in Jain et al.

(). Equations ()–() also show why the computation of the torsional

accelerations requires an effort that is directly proportional to the number of

torsion angles: the algorithm consists of a sequence of three linear loops over the

rigid bodies (i.e. torsion angles) ; all three loops involve for each torsion angle only

the calculation of quantities that are independent of the system size (e.g. scalars,

six-dimensional vectors, and ¬ matrices).

.. Integration of the equations of motion

The integration scheme for the equations of motion in torsion angle dynamics

(Mathiowetz et al. ) is a variant of the leap-frog algorithm used in Cartesian

dynamics. In addition to the basic scheme of equations () and () the

temperature is controlled by weak coupling to an external bath (Berendsen et al.

) and the time step is adapted based on the accuracy of energy conservation.

A slight complication arises because, unlike the situation in Cartesian space

dynamics where the accelerations are a function of the positions only, the torsional

accelerations also depend on the velocities. These, however, are known in the leap-

frog scheme only at half time steps, whereas the positions and accelerations are

required at full time steps. The algorithm below therefore employs linear

extrapolation from the two former values at half time step to obtain an estimate of

the velocity after the full time step, θd
e
(t), which is used in the next integration step

to calculate the torsional accelerations. It can be shown (Gu$ ntert et al. ) that

the intrinsic accuracy of the velocity step remains of order O(∆t$), as in equation
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(). A time step t! t­∆t that follows a preceding time step t®∆t«! t is executed

as follows:

. On the basis of the torsional positions θ(t), calculate the Cartesian coordinates

of all atoms (Katz et al.  ; Gu$ ntert, ), the potential energy E
pot

(t)¯
E

pot
(θ(t)), and the torques ®~E

pot
(t).

. Adapt the torsional velocities θd (both θd (t®∆t«}) and θd
e
(t)) to maintain the

temperature T ref (Berendsen et al. ) and adjust the time step to attain a

desired relative accuracy of energy conservation εref :

θd ¯ θd « ­
T ref®T(t)

τT(t)
and ∆t¯∆t« ­

εref®ε(t)

τε(t)
, ()

where

T(t)¯
E

kin
(t)

nk
B

and ε(t)¯ )E(t)®E(t®∆t«)
E(t) ), ()

respectively, are the instantaneous temperature and the relative change of the total

energy, E¯E
kin

­E
pot

, in the preceding time step. The time constant, τ( , is a

user-defined parameter, measured in units of the time step, with a typical value of

τ¯  ; n denotes the number of torsion angles and k
B

¯ ±¬−#$J K−" is the

Boltzmann constant. Temperature and time step control can be turned off by

setting τ¯¢. To calculate ε(t) in equation (), E(t) is evaluated before velocity

scaling is applied, whereas for E(t®∆t«) the value after velocity scaling in the

preceding time step is used. Thus, the measurement of the accuracy of energy

conservation is not affected by the scaling of velocities. An exact algorithm would

yield E(t)¯E(t®∆t«) and consequently ε(t)¯ .

. Calculate the torsional accelerations, θX (t)¯ θX (θ(t),θd
e
(t)), using equations

()–().

. Using the leap-frog scheme of equations () and () (with r replaced by θ),

calculate the new velocities at half time step, θd (t­∆t}), and the new torsional

positions θ(t­∆t).

The algorithm is initialized by setting t¯ , ∆t«¯∆t, and the initial torsional

velocities are chosen randomly corresponding to a given initial temperature.

Since for optimal efficiency in structure calculations with torsion angle dynamics

the time steps are made as long as possible a safeguard against occasional strong

violations of energy conservation by more than % in a single time step replaces

such time steps by two time steps of half length.

.. Energy conservation and time step length

Energy conservation is a key feature of proper functioning of any molecular

dynamics algorithm (Allen & Tildesley, ). The accuracy of energy

conservation can be monitored by the standard deviation σ
E

¯o©(E®©Eª)#ª,

or by the RMS change of the total energy between successive integration steps,

δ
E

¯o©∆E#ª, where ©…ª denotes the average over all time steps of a molecular

dynamics run (Beeman,  ; van Gunsteren & Berendsen, ). The parameter

δ
E

is closely related to ε(t) in equation () and probes the local error in one time
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step of the integration algorithm, whereas the standard deviation δ
E

is sensitive

both to local errors and to slow drifts of the total energy over many time steps and

is thus dependent on the length of molecular dynamics run. The dependence of

σ
E

and δ
E

on the length of the integration time step ∆t is plotted in Fig.  for a

series of torsion angle dynamics runs performed with the experimental NMR data

set for cyclophilin A (Ottiger et al. ) at temperatures of ,  and ± K

under conditions where the total energy should be conserved, i.e. with τ¯¢ in

equation () (Gu$ ntert et al. ). Fig.  shows that long time steps of up to

 fs are tolerated by the algorithm, that σ
E

is proportional to ∆t#, as expected for

Verlet-type integration algorithms (Verlet,  ; Allen & Tildesley, ), and

that δ
E

is proportional ∆t$. The most relevant result for practical applications is

that long time steps – about ,  and  fs at low, medium and high

temperatures, respectively – can be used in torsion angle dynamics calculations

with . The concomitant fast exploration of conformation space provides the

basis for efficient structure calculation protocols. These time steps should,

however, not be compared directly with those of – fs used in conventional

Cartesian space molecular dynamics (Allen & Tildesley, ) because  uses

more uniform masses (equation ()) and the much simpler potential energy

function of equations ()–() than standard molecular dynamics programs

(Brooks et al.  ; Cornell et al.  ; van Gunsteren et al. ).

.. Simulated annealing schedule

The potential energy landscape of a protein is complex and studded with many

local minima, even in the presence of experimental restraints in a simplified target

function of the type of equation (). Because the temperature, i.e. kinetic energy,

determines the maximal height of energy barriers that can be overcome in a

molecular dynamics simulation, the temperature schedule is important for the

success and efficiency of a simulated annealing calculation. Consequently, quite

elaborated protocols have been devised for structure calculations using molecular

dynamics in Cartesian space (Nilges et al. a ; Bru$ nger, ). In addition to

the temperature, other parameters such as force constants and repulsive core radii

are varied in these schedules that may involve several stages of heating and

cooling. The faster exploration of conformation space with torsion angle dynamics

allows for simpler schedules. The standard simulated annealing protocol used by

the program  (Gu$ ntert et al. ) will serve as an example here.

The structure calculation is started from a conformation with all torsion angles

treated as independent, uniformly distributed random variables and consists of

four parts:

. A short minimization to reduce high energy interactions that could otherwise

disturb the torsion angle dynamics algorithm:  conjugate gradient

minimization steps are performed at target level , i.e. including only distance

restraints between atoms up to  residues apart along the sequence, followed by

a further  minimization steps including all restraints. For efficiency, until step

 below all hydrogen atoms are excluded from the check for steric overlap, and the

repulsive core radii of heavy atoms with covalently bound hydrogens are increased
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Fig. . Dependence of the standard deviation of the total energy, σ
E
¯o©(E®©Eª)#ª, on

the length of the integration time step ∆t in torsion angle dynamics calculations with the

program  using the experimental NMR data set for cyclophilin A (Gu$ ntert et al.

). Each run had a duration of ± ps, and the initial temperatures were , , and

± K, respectively. The inset shows the RMS change of the total energy between

successive integration steps, δ
E
¯o©∆E#ª, for the same trajectories.

by ± AI with respect to their standard values. The weights in the target function

of equation () are set to  for user-defined upper and lower distance bounds, to

± for steric lower distance bounds, and to  AI # for torsion angle restraints.

. A torsion angle dynamics calculation at constant high temperature: One fifth

of all N torsion angle dynamics steps are performed at a constant high reference

temperature T
high

, typically T
high

E  K. The time step is initialized to

∆t¯  fs, and the reference value for the relative accuracy of energy conservation

to εref
!

¯ ±.

. A torsion angle dynamics calculation with slow cooling close to zero

temperature: The remaining N} torsion angle dynamics steps are performed

with reference values for the temperature and the relative accuracy of energy

conservation of

T ref(s)¯ (®s)%T
high

and εref(s)¯ εref
!

¬±s. ()

The parameter s varies linearly from  in the first to  in the last time-step.

. The incorporation of all hydrogen atoms into the check for steric overlap:

After resetting the repulsive core radii to their standard values, and increasing the

weighting factor for steric restraints to ,  conjugate gradient minimization

steps are performed, followed by  torsion angle dynamics steps at zero

reference temperature.

. A final minimization consisting of  conjugate gradient steps.

Throughout the torsion angle dynamics calculation the list of van der Waals

lower distance bounds is updated every  steps using a cutoff of ± AI for the

interatomic distance. The temperature schedule, the effect of automatic time step

adaptation according to equation (), and the average structural change per time

step of the simulated annealing protocol are illustrated in Fig. .
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Fig. . Plots versus the number of torsion angle dynamics steps for a structure calculation

using the standard  simulated annealing protocol (see Section ..) with the

experimental NMR data set for cyclophilin A. (a) Temperature of the heat bath to which

the system is weakly coupled. (b) Integration time-step ∆t which is adapted according to

equation () in order to achieve a certain accuracy of energy conservation. Values of ∆t are

averaged over  time steps and  independently calculated conformers. (c) RMS torsion

angle change between successive torsion angle dynamics steps, δθ ¯o©∆θ#ª, averaged over

 time steps and all rotatable torsion angles of  conformers.

Table . Computation times (seconds) for DYANA structure calculations of the

proteins BPTI and cyclophilin A on different computersa

Computer BPTI Cyclophilin A

NEC SX-  
DEC Alpha  }  
SGI Indigo R ( MHz)  
IBM RS}-  
Cray J-  
Convex Exemplar  
Hewlett–Packard   

a CPU times are for the calculation of one conformer, using the experimental NMR

data sets (Berndt et al.  ; Ottiger et al. ) and the standard  simulated

annealing protocol with  torsion angle dynamics steps.

.. Computation times

With the torsion angle dynamics algorithm of equations ()–() it is possible to

efficiently calculate protein structures on the basis of NMR data. Even for a

system as complex as a protein the program  can execute several thousand

torsion angle dynamics steps within minutes of computation time. Computation

times are below  min for a small protein like BPTI and less than ± min for

cyclophilin A on a wide array of generally available computers (Table ). These
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figures are much lower than those for the variable target function method using

redundant torsion angle restraints, or for the torsion angle dynamics and Cartesian

space molecular dynamics protocols implemented in the program  (Stein et

al. ), and show that an improvement of the efficiency of structure calculation

by more than an order of magnitude can be achieved.

Since an NMR structure calculation always involves the computation of a group

of conformers, it is highly efficient to run calculations of multiple conformers in

parallel. Nearly ideal speedup, i.e. a reduction of the computation time by a factor

close to the number of processors used, can be achieved (Gu$ ntert et al. ).

.. Application to biological macromolecules

Table  summarizes structure calculations performed with the torsion angle

dynamics algorithm implemented in the program  for six different proteins

and a RNA molecule (Gu$ ntert et al. ). For five proteins the experimental

NMR data sets were used. These proteins, with sizes ranging from  to 

amino acid residues, represent different topologies and different qualities of input

data sets that can be obtained by presently used homo- and heteronuclear NMR

measurements. They are complemented by two calculations based on data sets

that were simulated from the three-dimensional structures of a large protein of 

residues and of an RNA structure with  nucleotides in order to demonstrate the

potential of torsion angle dynamics for structure calculations of larger molecules,

for which experimental NMR data sets may become available in the future, and

for nucleic acids. NOE distance restraints with an upper bound ± AI larger than

the actual distance were generated for all proton–proton pairs (excluding OH and

SH) closer than ± AI . Restraints with methyl groups were referred to pseudo

atoms, and stereospecific assignments were assumed only for the methyl groups of

Val and Leu. Torsion angle restraints of ³° about the value in the structure

were simulated for φ, ψ and χ" in PGK, and for all angles in APK, where the

tolerance for torsion angles in sugar rings was reduced to ³° (Gu$ ntert et al.

). Flexibility of the sugar rings was achieved by ‘cutting’ the bond between

C« and O« and imposing distance constraints to fix the length of the C«–O«
bond and the corresponding bond angles.

Structure calculations were performed using the standard simulated annealing

schedule of the program  (see Section ..) with N¯  torsion angle

dynamics steps. For each system  acceptable conformers were computed. The

results in Table  show that this calculation protocol was appropriate for all seven

systems, yielding efficiently structures with small restraint violations.

Two factors determine the overall efficiency of an NMR structure calculation:

the time needed to calculate one conformer (see Section ..), and, equally

important, the ‘success rate’, i.e. the percentage of conformers that reach small

restraint violations as manifested by low target function values. The success rates

for the structures in Table  are between  and %, and the relevant

computation times per accepted conformer range from  s for the smallest to less

than  min for the largest system on a commonly available computer.

The structure calculation with a simulated NMR data set for the -residue
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protein PGK was included in Table  as an example of a larger molecule, for

which experimental NMR data sets may become available in the future. The

results show that the same simulated annealing schedule as for smaller proteins

could be used, and that the yield of acceptable conformers did not differ

significantly from that of the smaller molecules (Table ). A comparison of the

PGK structure calculated using  with the X-ray structure from which the

simulated NMR data set was derived (Davies et al. ) shows that the two

structures coincide closely, with an RMSD bias of the  structure bundle

from the X-ray structure of ± AI for all backbone atoms N, Cα and C«, which is

significantly smaller than the RMSD radius of ± AI for the bundle of accepted

 conformers. In light of these results, the structure calculation is not

expected to become a bottleneck for future NMR structure determinations of

proteins with up to  residues.

NMR structure determination of DNA or RNA molecules is notoriously

difficult because the network of NOE distance restraints in nucleic acids is

intrinsically less dense than in proteins (Wu$ thrich,  ; Wijmenga et al.  ;

Pardi,  ; Varani et al. ). For instance, the number of simulated distance

restraints per degree of freedom is ± times lower for the pseudoknot RNA APK

than for the protein PGK in the data sets of Table , even though the same criteria

were applied to derive NOE distance restraints from the structures. For this

reason, structure calculation programs based on Cartesian space molecular

dynamics and metric-matrix distance geometry may have difficulties to find

nucleic acid conformers that satisfy the experimental data (Stein et al. ) unless

ad hoc assumptions about the three-dimensional structure are made, usually by

starting the calculations from standard A- or B-type duplex conformations. Stein

et al. () showed for a -base pair DNA duplex that torsion angle dynamics

was successful in finding structures that satisfy the experimental restraints in a

situation where metric matrix distance geometry and Cartesian space molecular

dynamics did not lead to acceptable results.

A structure calculation for the -nucleotide pseudoknot RNA (Kang et al.

) was included in Table  to demonstrate that torsion angle dynamics as

implemented in  is able to calculate RNA structures starting from

conformers with random torsion angle values. The results of the structure

calculations show that the standard  simulated annealing protocol for

proteins is also adequate for nucleic acid structure calculations, indicating that

there is no fundamental difference between the two classes of molecules from the

point of view of structure calculation using torsion angle dynamics. In particular,

the  calculations do not need to start from well-defined structures, which

could introduce a bias into the final result of the structure calculation.

These calculations underline that torsion angle dynamics in its implementation

in the program  is a powerful method for the calculation of protein and

nucleic acid structures from NMR data that represents a significant advance over

the other commonly used methods (see Sections .–.), and – as judged by

comparison with the available literature data (Table  of Stein et al. ) – other

presently available implementations of torsion angle dynamics algorithms for
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structure calculation of biological macromolecules from NMR data. Considering

its high efficiency for exploring the conformation space of biological

macromolecules, future applications of  might well also include problems in

molecular modeling, tertiary structure prediction and protein folding.

. Other algorithms

Biomolecular structure calculation has been approached by a number of other

methods that have, however, not gained wide-spread use, be it because they

employ an algorithm that turned out to be unsuitable to solve the problem,

because they were designed for special situations, or because their further

development has been stopped for some reason. Examples include a ‘heuristic

method’ (Altman & Jardetzky, , ), the ellipsoid algorithm (Billeter et al.

), Monte Carlo methods (Levy et al.  ; Ulyanov et al.  ; Abagyan &

Totrov, ), a multiconformational search algorithm for peptides with inherent

flexibility (Bru$ schweiler et al. ), an algorithm based on ‘optimal filtering’

(Koehl et al. ), and the combination of metric matrix distance geometry with

a genetic algorithm (van Kampen et al. ).

.  

. Restraint violations

At the end of a structure calculation, the immediate question arises whether the

structure calculation was successful, i.e. whether the algorithm was able to find

structures that fulfil the given restraints, and, if not, which are the restraints that

could not be satisfied. Therefore an analysis of the residual restraint violations

seen in the final conformers is performed, which is usually summarized in a table

(Table ). In addition, a list of residual restraint violations that indicates, for each

violation separately, the individual conformers where the violation occurs can

reveal consistent violations, and distinguish them from insignificant violations

resulting from the occurrence of different local minima in different conformers.

Consistent violations most likely point to an inconsistency of the input data rather

than to a convergence problem of the structure calculation algorithm.

As an example, Fig.  shows the overview output file of the program 

from a structure calculation with the experimental NMR data set of cyclophilin A.

Restraint violations are analysed in the  conformers with lowest final target

function value that were chosen to represent the solution structure of the protein.

The small size and small number of residual restraint violations show that the

input data represents a self-consistent set, and that the restraints are well satisfied

in all  conformers. The table of violated restraints in the lower part of Fig. 

is typical for the situation of a self-consistent input data set. There are mostly

isolated violations that occur in one or very few conformers; only three distance

restraints are violated in more than a third of the conformers. This situation

indicates the absence of any detectable serious problems in the input data set. If
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Table . Experimental data and structural statistics for cyclophilin A

Quantitya Value Comments

Resonance assignments

Sequence-specificb % "H %, "$C %, "&N, %

Stereospecific and individual NH
#

  CH
#
,  C(CH

$
)
#
,  NH

#
Experimental restraints

Upper distance bounds 
Torsion angle restraints   φ,  ψ,  χ"

Structure calculation

Target function ± AI # Range ±–± AI #
RMSD radius ± AI For N, Cα, C« of all residues

Maximal restraint violations

Upper bounds ± AI Average violation ± AI
Steric lower bounds ± AI Sum of violations ± AI
Torsion angle restraints ±° Average violation ±°

a Averaged over all accepted conformers, when applicable.
b Includes all protons and methyl groups with the exception of hydroxyl protons, and

all "$C and "&N atoms with a directly bound proton.

restraints had been found that were violated in all or almost all conformers, this

finding would be the start point for checking their assignment and volume

integration.

. Atomic root-mean-square deviations

The standard measure used to quantify differences between three-dimensional

structures is the root-mean-square deviation (RMSD) for a given set of

corresponding atoms (McLachlan, ).

For two sets of n atoms each, r
l
, … , r

n
and q

"
, … , q

n
, with 3

i
r
i
¯3

i
q

i
¯ , the

RMSD is defined as the root mean square distance between the positions of

corresponding atoms after optimal superposition of the two structures:

RMSD¯min

R



n
3
n

i="

r r
i
®Rq

i
r #, ()

where R denotes a rotation matrix, and the minimum over all possible rotation

matrices is taken. To find the optimal rotation matrix R the ¬ matrix B with

elements

B
kl

¯


n
3
n

i="

q
ik

r
il
, ()

where q
ik

and r
il

denote the components k and l of the position vectors q
i
and r

i
,

respectively, is computed and decomposed by singular value decomposition (Press

et al. ) into a product B¯UWVT of a matrix U with orthonormal column

vectors, a diagonal matrix W¯diag(ω
"
, ω

#
, ω

$
) with ω

"
&ω

#
&ω

$
& , and a
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Fig. . Overview output file of the program  produced at the end of a structure

calculation using the experimental NMR data set for the protein cyclophilin A (Ottiger et al.

). The  out of  conformers with lowest final target function values were analysed.

The upper table shows, with one row for each conformer, the target function value,

followed by three restraint violation measures – the number of violations that exceed the

corresponding cutoff given at the top, the sum of violations, and the maximal violation – for

each of the four types of restraints : upper distance bounds, lower distance bounds (not used

in this calculation), steric lower distance bounds, and torsion angle restraints. Average

values, standard deviations, minima and maxima of these quantities are given below. The

second part of the file lists all restraint violations larger than the cutoffs and identifies the

conformer(s) in which they occur (‘­ ’ and ‘n ’ signs in the columns on the right).
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Reference structure

Bias
Radius

Individual
conformers

Mean

Fig. . RMSD radius of a bundle of conformers, and RMSD bias of a bundle of

conformers with respect to a reference structure. The RMSD radius is the average of the

RMSD values between each individual conformer of the bundle and its mean coordinates.

The RMSD bias is the RMSD value between the mean coordinates of the bundle and a

reference structure. The mean coordinates of a bundle of n conformers are obtained by

superimposing for minimal RMSD the conformers , … , n onto the first conformer and

then averaging the Cartesian coordinates.

transposed orthogonal matrix V. The rotation matrix R that minimizes the

expression in equation () is then given by

R¯U diag(, , s)VT, ()

where s¯³ denotes the sign of the determinant of the matrix B and ensures that

R is a pure rotation with determinant ­ (McLachlan, ). Without this

precaution incorrect (too small) RMSD values result if the mirror image of a

structure yields a better superposition than the structure itself.

The optimal superposition according to equation () is also used for the

simultaneous display of several conformers on a molecular graphics system

(Koradi et al. ). In practice, RMSD values are usually calculated for the

backbone atoms N, Cα and C«, or for all heavy (i.e. non-hydrogen) atoms of the

residues with well-defined conformation, excluding, for instance, chain termini

and loops that are unstructured in solution.

When RMSD values are used to measure the spread among the m conformers

in a structure bundle, the quantity with the most intuitive meaning is the ‘RMSD

radius’ (Fig. ), defined as the average of the m pairwise RMSD values between

the individual conformers and their mean structure. To compute the mean
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Fig. . Ramachandran plot for a bundle of  conformers of the protein cyclophilin A. The

structures were calculated on the basis of the experimental NMR data set for cyclophilin A

(Ottiger et al. ) with the torsion angle dynamics algorithm of the program 

(Gu$ ntert et al. ), which was also used to create the Ramachandran plot. Each circle

corresponds to the φ}ψ values of a non-glycine residue in one of the  conformers. The

most favourable, additionally allowed, generously allowed, and disallowed regions according

to the program  (Laskowski et al. ) are represented by dark, medium, light

and no shading, respectively.

structure, the conformers are superimposed for minimal RMSD onto the first

conformer, and the arithmetic mean of the corresponding Cartesian coordinates is

taken. As an alternative to the RMSD radius, the average of the m(m®)}

pairwise RMSD values among the individual conformers can be reported. This

quantity is in general about ± times larger than the corresponding RMSD radius.

The deviation of a structure bundle from a given ‘external ’ reference structure is

most easily described by the RMSD value between the mean coordinates of the

bundle and the reference structure, the ‘RMSD bias’ (Fig. ). RMSD radius and

RMSD bias have the intuitive geometric meaning of the radius of a tube

containing the structure bundle and the distance between the centre of the tube

and the reference structure, respectively (Fig. ).

It cannot be overemphasized that a small RMSD value is not by itself indicative

of a high-quality structure. It neither conveys any information about the

consistency with the experimental data nor does it necessarily correspond to the

conformation space that is really allowed by the conformational restraints because
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the sampling of conformation space by the structure calculation algorithm may be

biased, i.e. there would exist structures that agree with the data but differ

significantly from those resulting from the structure calculation. This may be due

to the limited statistics – typically only about  conformers are analysed – or to

an inherent deficiency of the structure calculation algorithm (Metzler et al. ).

Displacements (Billeter et al. ) are a generalization of the RMSD values,

since the set of atoms used for the superposition of the conformers, M
sup

, differs

from the set of atoms for which the root mean square deviation of the positions is

actually calculated, M
RMSD

. For example, for the evaluation of the backbone

displacement Dbb
glob

of a given residue i after global superposition, M
sup

consists of

the backbone atoms N, Cα, and C« of the residues used for global superposition,

and M
RMSD

of the backbone atoms N, Cα and C« of residue i. To evaluate local

backbone displacements Dbb
loc

for a residue i, M
sup

consists of the backbone atoms

N, Cα and C« of the residues i®, i and i­, and M
RMSD

consists of the backbone

atoms of residue i.

. Torsion angle distributions

To analyse the conformation of the polypeptide chain on a local level, plots of the

distributions of the individual values of the torsion angles φ, ψ and χ" versus the

amino acid sequence of the protein and Ramachandran plots (Fig. ) are

convenient. They allow, for example, the identification of secondary structure

elements, the classification of tight turns, and an assessment of the local precision

of the structure determination.

To obtain the average value, φ- , and the standard deviation, σ, from the torsion

angle values, φ
"
, … , φ

n
, of the individual conformers, one has to take into account

the periodicity of the torsion angles, for example by using

φa ¯ arg3
k

eiθk and σ¯ ®log ) n 3
k

eiθk ). ()

The values defined by equation () have a clear meaning only when the torsion

angle is well-defined. For example, the common situation that there are two

groups of conformers, each with a well-defined value of the torsion angle, but with

a large difference between the two groups, cannot be distinguished from the

situation of a truly disordered torsion angle by means of equation ().

. Hydrogen bonds

Another important feature of protein structures are hydrogen bonds. They can be

identified readily in the structure, for example by the criterion that the hydrogen-

acceptor distance must be shorter than ± AI and that the angle between the

hydrogen, the atom to which the hydrogen is covalently bound, and the acceptor

must be smaller than ° (Fig. b ; Billeter et al. ). The second condition

ensures that the hydrogen bond is more or less linear.

In accord with what was said about the analysis of restraint violations,
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significance should only be attributed to hydrogen bonds that occur consistently

in a sizeable number of conformers in a structure bundle. Since the geometric

force fields generally used for the structure calculation do not contain potentials

that favour the formation of hydrogen bonds, their abundance, counted according

to the criterion of Fig. , often increases considerably during a subsequent energy

refinement. On the other hand, the use of electrostatic potentials in vacuo tends to

yield spurious intra-protein hydrogen bonds (and salt bridges) on the surface of

the macromolecule (Guenot & Kollman,  ; Luginbu$ hl et al. ), and should

be avoided.

. Molecular graphics

Molecular graphics programs are an indispensable tool to visualize and analyse

NMR structures. Thanks to real-time transformations, stereo displays and ray-

tracing techniques, three-dimensional impressions close to those of real, physically

built models can be produced routinely nowadays. Many molecular graphics

programs are available, for example the academic packages  (Ferrin et al.

),  (Nicholls et al. ),  (Kraulis, ),  (Sayle &

Milner-White, ),  (Koradi et al. ), and the commercial products

 (Molecular Simulations, Inc.) and  (, Inc.).

The program  (Koradi et al. ) is unique in the sense that it has been

designed especially for work with NMR structures that are represented by

bundles of conformers, which are often handled awkwardly by other programs. In

addition to high-quality molecular graphics, a wide array of structure analyses can

be performed with , including the calculation and display of mean

structures, restraint violations, hydrogen bonds, RMSDs, torsion angle

distributions, Ramachandran plots, and electrostatic surfaces. Fig.  presents

four different representations of the solution structure of cyclophilin A that were

produced with the program  : A schematic view (Fig. a) that emphasizes

the secondary structure elements: an eight-stranded antiparallel β-barrel that is

closed by two amphipathic α-helices, and a short 
"!

-helix of residues –

(Ottiger et al. ) ; a bundle of ten conformers (Fig. b) ; another schematic

view that illustrates the local precision of the structure by virtue of a tube with

variable diameter (Fig. c) ; and an all-heavy-atom representation of one

conformer overlaid with the dense network of distance restraints (Fig. d).

. Check programs

Programs have been developed to perform a ‘quality check’ of a structure

determined by X-ray crystallography or NMR spectroscopy. The best known

examples of such programs are  (Laskowski et al. ), including its

NMR-specific extension - (Laskowski et al. ) and 

(Vriend & Sander, ). These software packages try to assess the quality of a

structure primarily by checking whether a number of different parameters are in

agreement with their values in databases derived from high-resolution X-ray
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(a)

(c)

(b)

(d)

Fig. . Solution structure of the protein cyclophilin A, calculated using the torsion angle

dynamics algorithm of the program  on the basis of the experimental NMR data set

collected by Ottiger et al. (). Displays produced with the program  (Koradi et

al. ) : (a) Schematic representation highlighting α-helices and β-strands. (b)

Superposition of the ten conformers with lowest target function values. Only bonds between

the backbone atoms N, Cα and C« are drawn. (c) Another representation that affords an

impression of the variable precision of different parts of the polypeptide backbone. The

diameter of the hose-shaped object reflects the positional spread in the structure bundle

among the corresponding backbone atoms. (d ) One of the cyclophilin A conformers and the

network of distance restraints used in the structure calculation. The structure is represented

by dark cylinders for covalent bonds between heavy atoms; distance restraints are visualized

by thin lines. Intraresidual and sequential distance restraints have been omitted for clarity.

structures. Examples of such parameters include: correct values for covalent bond

lengths and bond angles (Engh & Huber, ), the percentage of residues with

φ}ψ-values in the most favoured regions of the Ramachandran plot, the clustering

of χ"-angles at the staggered rotamer positions, the overall quality of packing, the
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absence of bad non-bonded contacts, the completeness of the hydrogen bonding

network (i.e. a minimal number of atoms with unsatisfied hydrogen bonding

capabilities in the core of the molecule), etc. Outliers of these quantities do not

necessarily point to errors in the structure – they occur, albeit rarely, also in X-ray

structures solved to very high resolution – but should be checked meticulously to

rule out a possible misinterpretation of the experimental data. In addition, check

programs like - (Laskowski et al. ) can read experimental

restraints in a variety of formats and provide measures for the agreement of the

experimental restraints with the structure calculated from them in a way that is

independent from the structure calculation program. Programs like  also

look out for straightforward mistakes of the covalent structure, such as wrong

chiralities, which seem to occur disquietingly often in protein (Hooft et al. )

and nucleic acid structures (Schultze & Feigon, ). Of course, that a structure

fulfils the criteria of a check program does not guarantee it to be correct ; most

checks probe only local features of the conformation.

. A single, representative conformer

The usual representation of an NMR structure as a bundle of conformers, each of

which being an equally good fit to the data, provides a wealth of information about

the conformational uncertainty, which may be correlated to true flexibility of the

molecule. For example, alternative conformations of side-chains and complete

loops may be realized in different conformers, a feature that is difficult, if not

impossible, to represent in a single structure. Nevertheless, it is often desirable to

provide, in addition to the bundle of conformers, a single representative structure

that may be used in the same way as an X-ray structure, avoiding the bewildering

amount of detail in the bundle, for example in pictures or in comparisons of the

structures of different proteins.

Clearly, the Cartesian coordinates averaged over the conformers in the bundle

(after suitable superposition) are no good choice: they lie exactly in the centre of

the bundle, of course, but the averaging entails unacceptable distortions of the

covalent geometry. The average coordinates are thus only used as a reference for

the calculation of RMSD values, namely the RMSD radius of Fig. . Selecting

just one of the conformers in the bundle is another straightforward possibility. In

this case, the representative conformer has, by definition, the same quality as the

bundle. The selection can be random or based on different criteria, for instance,

smallest RMSD to the mean, smallest restraint violations, lowest conformational

energy, highest coincidence with the network of consistent hydrogen bonds in the

bundle, etc. Since all conformers in the bundle are essentially equivalent, the

choice should not be crucial. In general, there will exist structures (not members

of the bundle) that fulfil the restraints as well as those in the bundle but that lie

closer to its centre than any of its individual members, and hence the representative

conformer chosen from among them.

A procedure that can yield such a structure has been introduced by Clore et al.

(a) and is used routinely when structures are determined by simulated
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annealing in Cartesian space: From a bundle of conformers the mean structure is

computed and subsequently regularized by restrained energy minimization. This

results in general in a structure with good stereochemistry and in agreement with

the experimental data that is significantly closer to the mean coordinates of the

bundle than any of the individual conformers.

.      

This chapter discusses a number of general aspects of NMR structure calculation

on the basis of the experimental NMR data set for cyclophilin A (Ottiger et al.

) for which structure calculations by torsion angle dynamics were performed

with the program  (Gu$ ntert et al. ). An especially rich set of

experimental restraints is available for cyclophilin A (Table ) which affords a

particularly suitable platform for these investigations.

Table  and Figs ,  and  also show the results of a structure calculation

with the complete data set that will serve as a reference for various investigations

in this chapter. Fifty random start conformers were subjected to simulated

annealing according to the standard schedule of  (see Section ..), and the

 conformers with lowest final target function value were chosen to represent the

solution structure of the protein.

. Ensemble size

NMR structure calculations are always performed by computing, using the same

algorithm, many different conformers, each starting from another random initial

conformation. Provided that the input data set is self-consistent (as will be

assumed in the following), some of the conformers will be good solutions to the

problem, i.e. exhibit small restraint violations, whereas others might be trapped

in local minima. For this reason it is customary to compute an ensemble consisting

of more conformers than needed, and to select among them the ‘best ’ ones that

will represent the solution structure of the molecule and be analysed further.

Obviously, three choices have to be made in this process: How many conformers

should be computed in the first place? How many conformers should be used to

represent the solution structure? And how should these be selected from the

ensemble of all conformers? The answer to the second question is simple: , or

any other number that offers a reasonable compromise between sufficient statistics

and manageability in graphics and analysis programs. With regard to the third

question, it is clear that the selection of acceptable conformers should never rely

on a measure of conformational spread, for instance the RMSD value, but be

based on how well the experimental and steric restraints are fulfilled and, if the

structure calculation program worked in Cartesian space, how close the covalent

structure parameters are to their optimal values. Since the target function

measures exactly these parameters, the most obvious selection and almost

universally applied criterion is therefore to choose the N conformers with lowest
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Fig. . Dependence of RMSD values on the size of the ensemble from which the 

conformers with lowest target function values were selected at the end of a  structure

calculation. Using the experimental NMR data set for cyclophilin A (Ottiger et al. ) an

ensemble of  conformers was calculated using the standard simulated annealing protocol

of the program  with  torsion angle dynamics steps. The inset shows the average

final target function values of the  conformers with lowest target function values as a

function of the ensemble size.

target function value, usually referred to as the ‘N best conformers’. Alternative

criteria, especially if related to the RMSD value or the presence of certain

desirable features of the conformation, will inevitably produce a biased selection

that neglects certain conformations that are in agreement with the data. All N

conformers chosen should be acceptable in the sense that restraint violations are

in a (subjectively defined) tolerance range, and it is desirable that the target

function values do not vary strongly among them. In the absence of contradicting

restraints this can be achieved by generating a large enough ensemble of

conformers from which the best ones are taken. Depending on the protein, the

data set, and on the structure calculation algorithm used, the distinction between

acceptable and unacceptable conformers might be clear-cut, or gradual.

This brings us back to the first question: How many conformers should be

computed? Obviously, this depends on the success rate of the algorithm used, and

the requirements that are imposed on acceptable conformers. Under the

conditions used for the structure calculations in Table  it would have been

necessary to calculate between ± and ± times more conformers than were used

to represent the solution structure of the molecule. However, the success rate

depends on the protein and on the restraint data set and is unknown at the outset

of the calculation. A common method is to calculate a fixed number of conformers,

typically ± times more than used later on. The question arises whether the final

results of a structure determination depend crucially on such seemingly arbitrary

decisions. Sometimes there is the belief that by selecting the best (as defined

above) few conformers from a very large ensemble it would be possible to achieve
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Fig. . Correlation between RMSD and final target function values in an ensemble of 

cyclophilin A conformers calculated using the standard simulated annealing protocol of the

program  with  torsion angle dynamics steps. RMSD values are calculated for all

backbone atoms of a given conformer relative to the average coordinates of the 

conformers with lowest target function values in the ensemble.

arbitrarily low RMSD values. To address these questions, an ensemble of 

cyclophilin A conformers was produced with the program  and the RMSD

radius of the bundle of  best conformers selected out of the first M conformers

(taken in the order in which they were computed) computed. The results, plotted

in Fig. , show that after an initial drop of the RMSD value with increasing

ensemble size, it exhibits only small fluctuations with no clear trend around a non-

vanishing value. This behaviour of the RMSD radius roughly parallels that of the

average target function value for the  best conformers (inset to Fig. ) and

indicates a correlation between target function and RMSD values within an

ensemble of conformers, all calculated in the same way and from the same data.

Fig.  depicts the RMSD (relative to the mean of the  best conformers) and

final target function values of all  conformers in the ensemble. There is a

correlation between the two quantities if a wide range of target function values is

considered, which, however, becomes weaker for the best conformers with target

function value around  AI #. As a side effect, clusters of points at high target

function values in Fig.  indicate often occurring local minima.

. Different NOE calibrations

The relationship between NOE intensity and upper distance bounds is usually

defined by methods with more than a touch of heuristics (see Section .).

Nonetheless, the choice of calibration function(s) has a strong influence on the

outcome of a structure calculation. To illustrate this, a series of structure

calculations has been performed in which all upper distance limits in the

experimental NMR data set of cyclophilin A have been scaled by constant factors
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Fig. . Influence of scaling of the distance restraints on the outcome of structure

calculations with the experimental NMR data set for cyclophilin A (Ottiger et al. ). All

upper distance limits were scaled by the factor given on the horizontal axis. Ensembles of 

conformers were calculated using the standard simulated annealing protocol of the program

 with  torsion angle dynamics steps, and the  conformers with lowest target

function values were analysed. (a) Average final target function values. (b) RMSD radius

(solid), i.e. the average backbone RMSD values of the  conformers relative to their mean

coordinates, and RMSD bias (dotted), i.e. the backbone RMSD value between the mean

coordinates of the bundles obtained with a given scaling factor and without scaling.

in the range of ± to ± in order to mimic equivalent changes of the calibration

constants k in equations () and (). A scaling factor of one corresponds to the

original experimental data set. The results, plotted in Fig. , show a strong

increase of the target function values with decreasing distance bounds (note the

logarithmic scale in Fig. a), and a less pronounced but clear increase of the

RMSD radius with increasing scaling factor (Fig. b). The RMSD bias of the

structure bundle obtained from scaled distance bounds relative to the mean

coordinates of the original bundle monotonically increases from a minimum at

scaling factor one in both directions (Fig. b). These findings indicate that target

function and RMSD values have no absolute meaning but depend strongly on the

NOE calibration used.

. Completeness of the data set

The collection of an extensive set of NOE distance restraints constitutes a major

part of the work involved in solving an NMR structure of a protein, and

progressively more effort is required (and increasingly difficult decisions have to

be taken) to assign additional NOEs, the more complete the data set becomes. In

the case of cyclophilin A, the NOESY spectra were analysed as exhaustively as

possible, resulting in a data set of about  relevant distance restraints per residue

(Ottiger et al. ). Sometimes, however, such an effort might not be warranted,
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Table . DYANA structure calculations for the protein Cyclophilin A using the

complete experimental NMR data set and different subsets thereofa

Distance

Success

rate

Target

function

Backbone RMSD (AI )d

Data setb restraints (%)c (AI #) Radius Bias

All experimental

restraints

  ± ± ±

No stereospecific

assignments

e  ± ± ±

No angle restraints   ± ± ±
% of all NOEsf

%   ± ± ±
%   ± ± ±
%   ± ± ±
%   ± ± ±
%   ± ± ±

Only backbone

and Hβ NOEs

  ± ± ±

Only HN–HN NOEs   ± ± ±

a For each data set  conformers were calculated using the standard simulated

annealing protocol of the program  with  torsion angle dynamics steps and a

target function with linear asymptote for large violations. The  conformers with the

lowest final target function values were analysed.
b The different data sets were derived from the complete experimental NMR data set

for Cyclophilin A (Ottiger et al. ) that comprises  meaningful upper distance

limits obtained from NOE measurements and  restraints for the torsion angles φ, ψ
and χ". The same torsion angle restraints were included in all data sets except the one

without any torsion angle restraints.
c Percentage of conformers with final target function values below f

min
­± AI #, where

f
min

is the lowest target function within the bundle (Gu$ ntert et al. ).
d Radius: Average of the  RMSD values between each individual conformer and

the mean coordinates of the bundle. Bias: RMSD value between the mean coordinates

of the bundle and the mean coordinates of the bundle obtained with the complete

experimental data set. The bias for the complete experimental data set was obtained by

performing two structure calculations with different initial structures.
e This number exceeds that for the complete experimental data set because in the

absence of stereospecific assignments pairs of distance restraints to a diastereotopic pair

might be replaced by three restraints, two identical ones to the diastereotopic atoms and

one to the centrally located pseudoatom (see Section . ; Gu$ ntert et al. a).
f Each individual distance restraint is retained with the given probability. Results are

averages over five different random selections.

and one might ask what quality of structure could be attained on the basis of a less

complete but more readily collected data set. To address this question, a number

of structure calculations were performed with subsets of the complete

experimental data set for cyclophilin A (Table ). The subsets were created

alternatively by retaining randomly only a certain percentage of all distance
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restraints, by neglecting stereospecific assignments or torsion angle restraints, or

by restricting the data set to only backbone and Hβ NOEs or to only HN–HN

NOEs. As expected, the precision of the structure decreases with decreasing

information content of the data set (Table ). In parallel it becomes more difficult

for the structure calculation algorithm to find good solutions, i.e. the success rates

sink. However, the absence of stereospecific assignments, torsion angle restraints,

or up to % of the NOE distance restraints has only a moderate effect and does

not preclude the determination of a well-defined structure. Low resolution

structures can still be calculated from as little as % of the distance restraints,

or without any experimental restraints for the side-chain conformation beyond Cβ.

Not astonishingly, however, the success rate of the structure calculation was only

% in the absence of side-chain restraints, an unusually low value for the torsion

angle dynamics algorithm that presumably resulted from the difficulty to pack the

side-chains in the protein core. With only % of the NOEs it is no longer possible

to unambiguously determine the three-dimensional structure, and even less so if

only restraints among backbone amide protons are considered (Table ). The

latter result is in line with the findings of Venters et al. () and Smith et al.

() who have investigated the possibility of global fold determination using

deuterated protein samples and found that it would be necessary to measure

HN–HN distances up to  AI to enable an unambiguous global fold determination.

. Wrong restraints and their elimination

In the course of a protein structure determination by NMR it is always possible

that NOEs with incorrect assignments enter the data set. The normal way to

detect and correct such mistakes is a careful analysis of restraint violations in the

structure calculated from the experimental data. Consistent violations, i.e. those

that occur in all or in a large majority of the conformers, are most likely not due

to imperfections of the structure calculation program but the result of restraints

that contradict each other. An ideal structure calculation method from the point

of view of error detection would pinpoint all mistakes by reporting consistent

violations for all wrong restraints, but not for any other (correct) restraints. In

practice, this is not the case because the structure calculation programs minimize

a target function that is a sum of contributions from all restraints, and to which

the largest violations contribute most. Hence, there is a tendency to ‘smear out’

the problem caused by a wrong restraint over other restraints in the vicinity to the

effect that either additional, correct restraints become consistently violated, or that

the problem is no longer recognized because it was distributed over many, only

slightly violated restraints. The latter problem is normally less severe in torsion

angle space than in Cartesian space, where slight, diffuse distortions of the

covalent geometry offer additional possibilities to disperse violations.

The ability of the torsion angle dynamics algorithm of  to detect and

automatically eliminate erroneous restraints is illustrated in Table  using data

sets from Table  to which % of distance restraints with arbitrary, wrong
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Table . Structure calculations for Cyclophilin A with data sets to which first �%

distance restraints with wrong assignments were added and from which subsequently

consistently violated distance restraints were eliminateda

Restraints eliminated (%)b Target

function

Backbone RMSD (AI )c

Data set Wrong Correct (AI #) Radius Bias

All experimental

restraints

 ± ± ± ±

No stereospecific

assignments

 ± ± ± ±

No angle restraints  ± ± ± ±
% of all NOEs

%  ± ± ± ±
%  ± ± ± ±
%  ± ± ± ±
%  ± ± ± ±
%  ± ± ± ±

Only backbone

and Hβ NOEs

 ± ± ± ±

a Wrong distance restraints were generated by selecting distance restraints arbitrarily

from the complete experimental data set and replacing one of the two atoms by an

arbitrarily chosen different atom for which the "H chemical shift was available. The

second atom and the upper distance limit of the restraint remained unchanged. With

these wrong restraints added to each data set bundles of  conformers were calculated

using the same protocol as in Table . Consistently violated distance restraints, i.e. those

that are violated by more than ± AI in  or more of the  conformers, were then

eliminated in two steps. In the first round, the % consistently violated distance

restraints with the largest average violations were deleted, and the structure calculation

was repeated. In the second round, all remaining consistently violated distance restraints

were eliminated, and the structure calculation was repeated again. The resulting 
conformers for each data set were analysed.

b Number of wrong distance restraints eliminated, given as a percentage of the total

number of wrong distance restraints that were added to the data set, and number of

correct distance restraints eliminated, given as a percentage of the total number of

distance restraints in the original data set without wrong restraints.
c RMSD radius and bias are defined as in Table .

assignments have been added. Incorrect restraints were detected and eliminated in

three rounds of structure calculations where consistent violations found at the end

of the first and second round were removed from the data set that became the

input for the following structure calculation. The results (Table ) show that with

good data sets around % of the erroneous restraints could be detected by this

straightforward automatic method, and that significantly less than % of the

correct restraints were falsely eliminated. The resulting structures are of similar

quality as those obtained from correct restraints only, and there is close agreement

between them. In the case of sparse data sets, however, the discriminatory power
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of the procedure deteriorates to the point that only % of the wrong restraints

can be found and removed from the data sets comprising one tenth of all NOEs.

The many wrong NOEs remaining in the data set lead to significantly higher

target function values than the calculations with exclusively correct restraints.

.     

The assignment of cross peaks in NOESY spectra for the collection of NOE upper

distance limits on "H–"H distances is an essential part of the determination of

three-dimensional protein structures in solution by NMR. Obtaining NOESY

cross peak assignments is usually a laborious endeavour, particularly in spectral

regions where chemical shift degeneracies result in excessive cross peak overlap.

Were it not for these inevitable chemical shift degeneracies and the usually

somewhat imprecise cross peak positional information, all assignments could of

course be made in a straightforward manner based on the knowledge of the

chemical shifts resulting from the sequence-specific resonance assignments. In

practice, however, only a fraction of the NOESY cross peaks can be assigned in

this direct way and subsequently used to generate a preliminary, ‘ low resolution’

structure of the protein under investigation. Subsequently, these preliminary

conformers may be used to reduce the number of previously ambiguous

assignments by eliminating pairs of protons which have the chemical shift

coordinates of the cross peak considered but, on the basis of the preliminary

solution structure, are further apart than a predetermined maximum distance

cutoff for the observation of NOEs. The collection of an extensive set of distance

restraints and the calculation of a high-quality structure are thus not separate,

subsequent steps of an NMR structure determination but intertwined in an

iterative process (Fig. a), regardless of whether exclusively manual,

semiautomatic (Gu$ ntert et al.  ; Meadows et al. ) or automatic methods

(Mumenthaler & Braun,  ; Mumenthaler et al.  ; Nilges,  ; Nilges et

al. ) are employed.

. Chemical shift tolerance range

The two fundamental requirements for a valid NOE assignment are agreement

between chemical shifts and the peak position, and spatial proximity in a

(preliminary) structure (Fig. b). Typically only a minority of the NOESY cross

peaks can be assigned unambiguously based on chemical shift agreement alone

because of inevitable small uncertainties in the determination of chemical shifts

and peak positions. Such inaccuracies require the introduction of a non-vanishing

chemical shift tolerance ∆
tol

for the agreement between a "H chemical shift and a

peak position. The size of ∆
tol

, that is the accuracy of chemical shift and peak

position determination, has a very pronounced influence on the number of

possible assignments for an NOE cross peak. This can be rationalized as follows

(Mumenthaler et al. ).
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(a) (b) Conditions for valid NOESY assignmentsAmino acid sequence
Sequence-specific
assignment
Positions and volumes
of NOESY cross peaks

Find NOE
assignments

Structure
calculation

Evaluate NOE
assignments

NOE assignments

3D structure

Atom A

Atom B

dAB < dmax

xA

xB

Dtol

Peak at
(x1, x2)

|x1 – xA| < Dtol,|x2 – xB| < Dtol

Fig. . (a) Flowchart of the iterative process of NOESY cross peak assignment and

structure calculation. (b) The two conditions that must be fulfilled by valid NOESY cross

peak assignments: Agreement between chemical shifts and the peak position, and spatial

proximity in a (preliminary) structure.

In a two-dimensional NOESY spectrum with N cross peaks for a protein

containing n hydrogen atoms with chemical shifts distributed evenly over a region

of width ∆ω, the probability of finding a "H shift in an interval [ω®∆
tol

, ω­∆
tol

]

about any selected position ω is

p¯
∆

tol

∆ω
. ()

In the absence of structural information, the number of peaks that can be assigned

unambiguously based on the agreement of chemical shifts within the tolerance is

expected to be

N(")¯N(®p)#n−#ENe−#np. ()

Equation () predicts that the percentage of peaks that can be assigned

unambiguously without knowledge of a preliminary structure decreases

exponentially with increasing size of the protein and increasing tolerance range.

The number of peaks with exactly two assignment possibilities is expected to be

N(#)¯Np(n®) (®p)#n−$E npN("). ()

N(#) vanishes for very small ∆
tol

values, but increases linearly as a function of

N(") with a coefficient that is proportional to the protein size and the ∆
tol

value. At

∆
tol

¯ ± ppm, N(#) is usually – times larger than N("). Fig.  shows that the

simple model of equations ()–() provides a remarkably good description of the

situation in a real protein.

For peak lists obtained from "$C- or "&N-resolved D ["H,"H]-NOESY spectra,
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N (1) N (2)
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400

0
0 0·01 0·02 0 0·01 0·02

(a) Peaks with one
      assignment possibility

(b) Peaks with two
      assignment possibility

Chemical shift tolerance Dtol (ppm)

Fig. . Numbers of cross peaks with exactly one (N("), shown in (a)) or exactly two (N(#),

shown in (b)) possible assignments on the basis of agreement between "H chemical shifts

and the peak positions within a tolerance ∆
tol

in a two-dimensional NOESY spectrum of the

protein WmKT (Antuch et al. ). No structural information has been used to resolve

ambiguities. The NOESY peak list was simulated on the basis of the experimental chemical

shift list by postulating a cross peak between any pair of protons separated by less than  AI
in the best NMR conformer (Antuch et al. ). In both (a) and (b) the curved lines

represent the corresponding values predicted by equations () and () for N¯ peaks,

n¯ protons, and a spectral width of ∆ω¯ ppm.

the ambiguity in the proton dimension correlated to the hetero-spin is normally

resolved. Equation () then adopts the form

N(")ENe−np. ()

The expected percentage of unambiguously assigned peaks is thus the same as in

a two-dimensional NOESY spectrum for a protein of half the size, or for half the

chemical shift tolerance.

In order to assign the majority of the NOESY cross peaks, the ambiguity of

assignments based exclusively on chemical shifts must be resolved by reference to

a preliminary structure. The ambiguity is resolved completely if all but one of the

potential assignments correspond to pairs of hydrogen atoms separated by more

than a maximal distance d
max

for which a NOE may be observed. Assuming that

the hydrogen atoms are evenly distributed within a sphere of radius R that

represents the protein, the probability q to find two randomly selected hydrogen

atoms closer to each other than d
max

is given approximately by the ratio between

the volumes of two spheres with radii d
max

and R, respectively:

q¯ 0dmax

R 1$. ()

For a nearly spherical protein with radius R¯  AI and d
max

¯  AI this

probability becomes approximately %, indicating that only % of the peaks

with two assignment possibilities can be assigned uniquely by reference to the

protein structure. The total number of uniquely assigned peaks, N
unique

, can be

increased optimally to

N
unique

¯N(")­(®q)N(#)­(®q)#N($)­… ()
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Even by reference to a perfectly refined structure it is therefore impossible, on

fundamental grounds, to resolve all assignment ambiguities because q will never

vanish and hence N
unique

!N.

. Semiautomatic methods

Semiautomatic NOE assignment methods provide for each NOESY cross peak a

list of the assignment possibilities according to the criteria of Fig. b. These are

analysed by the spectroscopist who may be able to further reduce their number by

visual inspection of the corresponding cross peaks and line shapes in the NOESY

spectrum. Peaks that can be assigned unambiguously by this method are added to

the input data set for the next round of structure calculation. The program 

(Gu$ ntert et al. ) that is normally used in conjunction with the interactive

spectrum analysis program  (Bartels et al. ) uses this principle for

automated removal of ambiguities arising from chemical shift degeneracies and

thus supports the collection of an extensive set of NOE distance restraints in

several rounds of NOESY cross peak assignments and structure calculations.

. Ambiguous distance restraints

An elegant approach to the NOE assignment problem was introduced by Nilges

(, ) who accounted for the ambiguity in the purely chemical-shift-based

NOE assignments by ‘ambiguous distance restraints ’, i.e. by interpreting the peak

volumes as r−'-weighted sums of contributions from all possible peak assignments

in the NOE target function. Ambiguous distance restraints are thus a

generalization of the r−'-summation method of equation () that can be applied

to restraints with diastereotopic protons in the absence of stereospecific

assignments. An optimization procedure based on simulated annealing by

molecular dynamics was described that is capable of using highly ambiguous input

data for ab initio structure calculations, where it is possible to specify the restraint

list directly in terms of the proton chemical shift assignment and the NOESY

cross peak positions (Nilges, ). This procedure was applied in structure

calculations of the basic pancreatic trypsin inhibitor (BPTI) from simulated

NOESY spectra (Nilges, ), and has been used also for the calculation of

symmetric oligomeric structures from NMR data, where all peaks are a

superposition of at least two NOE signals (Nilges,  ; Donoghue et al. ).

In contrast to the normal manual approach, in which unambiguous assignments

are sought and peaks that cannot be assigned unambiguously are not used in the

structure calculation, the notion of ambiguous distance restraints allows one to

exploit the information carried by all NOESY cross peaks, regardless of whether

a peak has a unique assignment possibility or not. There are always some NOESY

cross peaks that reflect contributions from more than one spatially proximate

proton pair; these can be treated more realistically by ambiguous distance

restraints than by uniquely assigned NOEs.

Recently, Nilges et al. () have proposed a novel structure calculation
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(a) Cycle 12 (b) Cycle 16 (c) Final structure

Fig. . Structures of the SH domain of human p Lck tyrosine kinase (Hiroaki et al.

 ; M. Salzmann, unpublished) at various stages of the automated combined NOESY

assignment and structure calculation method of Mumenthaler et al. (). The calculation

is based on the experimental NMR data set. Shown are backbone superpositions of ten

conformers at the end of the intermediate cycles  (a) and  (b), as well as the final

structure (c).

method that combines ambiguous distance restraints with an iterative assignment

strategy (see next section), whereby unambiguous assignments can be derived for

many NOE cross peaks that were entered into the calculation initially as

ambiguous restraints.

. Iterative combination of NOE assignment and structure calculation

An alternative approach for automatic NOESY assignment was proposed

(Mumenthaler & Braun,  ; Mumenthaler et al. ) that uses as input only

the chemical shift lists obtained from the sequence-specific resonance assignment

and a list of NOESY cross peak positions. Ambiguous peak assignments are

treated as separate distance restraints in the structure calculations, and erroneous

assignments are eliminated in iterative cycles. An error-tolerant target function

reduces the impact of erroneous restraints on the calculated structures. In contrast

to the approach of Nilges (), noise and artifact peaks can be removed

automatically during the procedure, and peaks are ultimately assigned to single

proton pairs. This allows a critical comparison of the NOE assignments obtained

automatically with those from manual procedures not only on the level of the final

structures but also on the level of individual NOE assignments.

The method of Mumenthaler et al. () performs normally  cycles of

automatic assignment and structure calculation (Fig. ), each with the three main

steps given in Fig. a. For the NOE assignment step in Fig. a, a list of the

assignment possibilities based on a given chemical shift tolerance ∆
tol

is prepared.

In the first cycle, when no structural information is available, this list is used

directly. Otherwise, i.e. from the second cycle onwards, the preliminary structure

available from the preceding cycle is used to eliminate assignment possibilities

that correspond to proton pairs further apart than a limiting distance d
max

which



Structure calculation of biological macromolecules

is decreased linearly from ± AI in the first to ± AI in the last cycle. Using the

automatic calibration method described in Section ., new distance restraints are

then added as ‘test assignments’ to the input for the structure calculation for all

so far unassigned NOESY cross peak with less than M assignment possibilities,

where M¯  for the first  cycles, M¯  for cycles –, and M¯  for cycles

–. It is necessary to use M"  because otherwise the low number of

unambiguous assignments at the outset would preclude convergence to a well-

defined structure. In the structure calculation step of Fig. a an ensemble of

conformers is calculated using the standard protocol of the program 

(Gu$ ntert et al. ). Because for a given peak up to M different restraints, of

which normally only one will turn out to be correct, are included in the input data

for the structure calculation it is important to use a functional form of the target

function that will not be dominated too much by strongly violated restraints

(Mumenthaler & Braun, ). In the NOE evaluation step of Fig. a the ten

conformers with lowest target function values are analysed. Each peak for which

test assignments have been added to the input is transferred either to the list of

unambiguous assignments, or returned to the list of unassigned peaks, which will

be analysed again in the next cycle. Peaks that have been classified as unambiguous

in previous cycles can be reclassified if the corresponding distance restraint is

violated in most conformers.

Applications of this procedure to the experimental data sets for six proteins are

summarized in Table  (Mumenthaler et al. ). For all six proteins nearly

complete sequence-specific resonance assignments were available, and their

solution structure had been calculated on the basis of manually assigned NOE

cross peaks. The start point for the automatic procedure were the original peak

lists from which all assignments were deleted. Tolerance ranges ∆
tol

of ±, ±

and ± ppm were used for protons in two-dimensional NOESY spectra, three-

dimensional NOESY spectra of Pa, and three-dimensional NOESY spectra of

DnaJ, respectively. The NOE assignments and the structures obtained from the

automatic procedure closely resemble those obtained from manually made

assignments. On average, the extent of assignments is somewhat lower from the

automatic method, and different assignments by the two approaches were

obtained for less than % of the peaks. The target functions and RMSD radii of

the final structures were comparable, and the automatically determined structures

show little bias from the original structures (Table ).

Further calculations conducted by Mumenthaler et al. () showed that the

automatic assignment method was remarkably robust with respect to imperfect

NOE peak lists and could produce acceptable structures from incomplete NOE

input. In contrast, the method was quite susceptible to incomplete "H chemical

shift lists. In spite of the progress made with the automatic method,

spectroscopists working interactively with NOESY spectra still have several

advantages because they can exclude assignment possibilities by line shape

considerations and often intuitively use smaller tolerance ranges between peak

positions and chemical shifts. This contributes in general to a more complete

NOESY assignment by the interactive method than by the automated approach.
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.  

There exist many possibilities for the refinement of NMR structures of proteins.

The following brief overview can only mention a few often used refinement

methods.

. Restrained energy minimization

The structure calculation algorithms for NMR structures usually use a simplified

force field that contains only the most dominant parts of the conformational

energy. Therefore, the resulting structures may be unfavourable with respect to a

full, ‘physical ’ energy function (Momany et al.  ; Brooks et al.  ; Cornell

et al.  ; van Gunsteren et al. ) that includes, in addition to the terms used

by the structure calculation algorithms of Section , also a Lennard-Jones

potential and electrostatic interactions for non-bonded atom pairs, torsion angle

potentials, and possibly other terms. The conformational energy of a conformation

obtained from a structure calculation program can be reduced significantly by

restrained energy minimization, i.e. by locating a local minimum of the

conformational energy function in the near vicinity of the input structure.

Restrained energy minimization of a correct structure results in only small

changes of the conformation (Billeter et al. ). Because no large-scale

conformational changes are necessary, the restraining potentials for distance and

angle restraints may be chosen steeper than in the preceding structure calculation,

thereby reducing the maximal restraint violations. Potentials proportional to the

sixth (instead of second) power of the distance restraint violation have been used

frequently (Billeter et al. ). Generally the extent and regularity of hydrogen

bonds shows a marked improvement upon energy minimization because the

geometric force fields used for the structure calculation normally do not contain

a driving force for hydrogen bond formation (unless explicit hydrogen bond

restraints were used, of course). Since the solvent surrounding the macromolecule

is very important for a realistic representation of electrostatic interactions,

restrained energy minimizations should be performed in a box or shell of explicit

water molecules. Energy minimization in vacuo exaggerates electrostatic

interactions and can lead to artifacts such as charged and polar side-chains on the

protein surface that bend back to the protein, forming spurious salt-bridges and

hydrogen bonds (Luginbu$ hl et al. ).

. Molecular dynamics simulation

An unrestrained or restrained molecular dynamics simulation under physiological

conditions using the full physical force field and explicit water to represent the

solvent can often give new insights into a protein structure, in particular for the

generally disordered protein surface (McCammon & Harvey,  ; Brooks et al.

 ; van Gunsteren & Berendsen, ). Such molecular dynamics simulations

try to represent the solvated molecular system as faithfully as possible and are
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fundamentally different from simulated annealing, where artificial conditions such

as high temperature are chosen in order to enhance the sampling of conformation

space. A limiting factor in molecular dynamics simulations are the relatively short

simulation times of up to a few nanoseconds that are feasible with present

computers, because many motions in proteins occur on longer time scales.

. Time- or ensemble averaged restraints

The commonly used structure calculation algorithms try to find rigid

conformations that fulfill all distance and torsion angle restraints simultaneously,

and the effects of internal mobility of the polypeptide chain are taken into account

implicitly by interpreting the NOE data as conservative upper distance bounds

instead of exact distance restraints (Wu$ thrich, ). In reality, the NOEs and

scalar coupling constants measured by NMR constitute an average over time and

space. Methods have been devised to include distance and torsion angle restraints

as time-averaged rather than instantaneous restraints into a molecular dynamics

simulation (Kessler et al.  ; Pearlman & Kollman,  ; Torda et al. ,

,  ; van Gunsteren et al. ). In another approach, a molecular

dynamics simulation is performed simultaneously for an ensemble of conformers,

such that the restraints are not required to be fulfilled by each individual

conformer but only by the ensemble as a whole (Scheek et al.  ; Bonvin &

Bru$ nger, , ).

. Relaxation matrix refinement

Both spin diffusion and internal mobility influence the NOE intensities from

which distance restraints are derived for the structure calculation. Complete

relaxation matrix refinement (Keepers & James,  ; Boelens et al.  ; Yip &

Case, ) can, in principle, take these factors into account and thus may make

it possible to make more quantitative use of the NOE data as with the initial rate

approximation (Kumar et al. ) and the semi-quantitative calibration of

distance restraints (Wu$ thrich, ). However, there can be a danger of

overinterpreting the data because many of the parameters entering the relaxation

matrix cannot be measured experimentally. In particular, assumptions are needed

about internal and overall motions of the protein (Macura & Ernst, ). Two

different methods of complete relaxation matrix refinement are in use: Either the

relaxation matrix treatment is used to derive a more precise set of distance

restraints, which is then used in a conventional structure calculation (Keepers &

James,  ; Boelens et al. ), or the three-dimensional structure may be

refined directly against the observed NOE intensities (Borgias & James,  ; Yip

& Case,  ; Mertz et al. ). The second approach is conceptually more

attractive but also more time-consuming. In analogy to the practice in X-ray

crystallography, it is possible to define R-factors that measure the agreement

between the NOESY spectrum and the three-dimensional structure (Gonzales et

al.  ; Thomas et al.  ; Withka et al. ).



Structure calculation of biological macromolecules

. 

I thank Prof. Kurt Wu$ thrich for generous support, Mr Michael Salzmann for

providing Fig. , and Prof. Martin Billeter for helpful discussions. The use of the

computing facilities of the Competence Centre for Computational Chemistry of

ETH Zu$ rich is gratefully acknowledged.

. 

A, R. & T, M. (). Biased probability Monte Carlo conformational

searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. ,

–.

A, H., B, W., N, T. & G, N. (). Rapid calculation of first and second

derivatives of conformational energy with respect to dihedral angles in proteins.

General recurrent equations. Computers & Chemistry , –.

A, A. (). Principles of Nuclear Magnetism. Oxford: Clarendon Press.

A, B. J. & W, T. E. (). Studies of molecular dynamics. I. General

method. J. Chem. Phys. , –.

A, M. P. & T, D. J. (). Computer Simulation of Liquids. Oxford:

Clarendon Press.

A, R. B. & J, O. (). New strategies for the determination of

macromolecular structure in solution. J. Biochem. , –.

A, R. B. & J, O. (). Heuristic refinement method for determination

of solution structure of proteins from nuclear magnetic resonance data. Meth.

Enzymol. , –.

A, W., G$ , P. & W$ , K. (). Ancestral βγ-crystallin precursor

structure in a yeast killer toxin. Nature Struct. Biol. , –.

A, V. I. (). Mathematical Methods of Classical Mechanics. New York:

Springer.

A, A. S., K, V. I., M, V. N. & B, V. F. (). NMR

solution spatial structure of ‘short ’ scorpion insectotoxin I
&
A. FEBS Lett. , –.

B, D. S. & H, E. J. (). A recursive formulation for constrained mechanical

system dynamics: Part I. Open loop systems. Mech. Struct. Mech. , –.

B, L., B, I., B, K. L., C, M. A., G, H. B., L, C. &

T, P. (). The use of pseudocontact shifts to refine solution structures of

paramagnetic metalloproteins: MetAla cyano-cytochrome c as an example. J. Biol.

Inorg. Chem. , –.

B, C., X, T., B, M., G$ , P. & W$ , K. (). The

program  for computer-supported NMR spectral analysis of biological

macromolecules. J. Biomol. NMR , –.

B, D. (). Some multistep methods for use in molecular dynamics calculations.

J. Comput. Phys. , –.

B, H. J. C., P, J. P. M.,  G, W. F., DN, A. & H,

J. R. (). Molecular dynamics with coupling to an external bath. J. Chem. Phys. ,

–.

B, K. D., G$ , P., O, L. P. M. & W$ , K. (). Determination

of a high-quality NMR solution structure of the bovine pancreatic trypsin inhibitor

(BPTI) and comparison with three crystal structures. J. Mol. Biol. , –.



 Peter GuX ntert

B, F. C., K, T. F., W, G. J. B., M, E. F., J., B, M. D.,

R, J. R., K, O., S, T. & T, M. (). The Protein

Data Bank: a computer-based archival file for macromolecular structures. J. Mol.

Biol. , –.

B, C., R, C. B., L, B. A. & M, G. T. (). Multi-

dimensional NMR experiments and analysis techniques for determining homo- and

heteronuclear scalar coupling constants in proteins and nucleic acids. Adv. Biophys.

Chem. , –.

B, M., B, W. & W$ , K. (). Sequential resonance assignments in

protein "H nuclear magnetic resonance spectra. Computation of sterically allowed

proton-proton distances and statistical analysis of proton-proton distances in single

crystal protein conformations. J. Mol. Biol. , –.

B, M., H, M. & W$ , K. (). The ellipsoid algorithm as a method

for the determination of polypeptide conformations from experimental distance

constraints and energy minimization. J. Comp. Chem. , –.

B, M., K, A. D., B, W., H, R. & W$ , K. ().

Comparison of the high-resolution structures of the α-amylase inhibitor tendamistat

determined by nuclear magnetic resonance in solution and by X-ray diffraction in

single crystals. J. Mol. Biol. , –.

B, M., S, T., B, W. & W$ , K. (). Restrained energy

refinement with two different algorithms and force fields of the structure of the α-

amylase inhibitor tendamistat determined by NMR in solution. Biopolymers ,

–.

B, L. M. (). Theory and Applications of Distance Geometry. Cambridge,

UK: Cambridge University Press.

B, R., K, T. M. G.,   M, G. A.,  B, J. H. & K,

R. (). Iterative procedure for structure determination from proton–proton NOEs

using a full relaxation matrix approach. Application to a DNA octamer. J. Magn.

Reson. , –.

B A. M. & B$ , A. T. (). Conformational variability of solution nuclear

magnetic resonance structures. J. Mol. Biol. , –.

B A. M. & B$ , A. T. (). Do NOE distances contain enough information

to assess the relative populations of multi-conformer structures? J. Biomol. NMR ,

–.

B, B. A. & J, T. L. (). , a method for constrained refinements

of macromolecular structure based on two-dimensional nuclear Overhauser spectra. J.

Magn. Reson. , –.

B, C. & T, J. (). Introduction to Protein Structure. New York &

London: Garland Publishing.

B W. (). Distance geometry and related methods for protein structure

determination from NMR data. Q. Rev. Biophys. , –.

B, W. & G, N. (). Calculation of protein conformations by proton–proton

distance constraints. A new efficient algorithm. J. Mol. Biol. , –.

B, W., B$ , C., B, L. R., G, N. & W$ , K. (). Combined use

of proton-proton overhauser enhancements and a distance geometry algorithm for

determination of polypeptide conformations. Application to micelle-bound glucagon.

Biochim. Biophys. Acta , –.

B, B. R., B, R. E., O, B. D., S, D. J., S, S. &



Structure calculation of biological macromolecules

K, M. ().  : a program for macromolecular energy minimization

and dynamics calculations. J. Comp. Chem. , –.

B III, C. L., K, M. & P, B. M. (). Proteins. A Theoretical

Perspective of Dynamics, Structure, and Thermodynamics. New York: Wiley.

B$ , A. T. (). X-PLOR, Version �.�. A System for X-ray Crystallography and

NMR. New Haven: Yale University Press.

B$ , A. T. & N, M. (). Computational challenges for macromolecular

structure determination by X-ray crystallography and solution NMR-spectroscopy.

Q. Rev. Biophys. , –.

B$ , A. T., C, G. M., G, A. M. & K, M. (). Three-

dimensional structure of proteins determined by molecular dynamics with interproton

distance restraints: application to crambin. Proc. Natl. Acad. Sci. USA , –.

B$ , A. T., A, P. D. & R, L. M. (). New applications of simulated

annealing in X-ray crystallography and solution NMR. Structure , –.

B$ , R., B, M. & E, R. R. (). Multi-conformational

peptide dynamics derived from NMR data: a new search algorithm and its application

to antamanide. J. Biomol. NMR , –.

C, D. A., D, H. J. & W, P. (). Use of chemical shifts and coupling

constants in nuclear magnetic resonance structural studies on peptides and proteins.

Meth. Enzymol. , –.

C, J., F, W. J., P III, A. G. & S, N. (). Protein

NMR spectroscopy. Principles and Practice. San Diego: Academic Press.

C, G. M. & G, A. M. (). Applications of three- and four-

dimensional heteronuclear NMR spectroscopy to protein structure determination.

Prog. NMR Spectrosc. , –.

C, G. M., G, A. M., B$ , A. T. & K, M. (). Solution

conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic

AMP receptor protein of Escherichia coli. Combined use of "H nuclear magnetic

resonance and restrained molecular dynamics. J. Mol. Biol. , –.

C, G. M., B$ , A. T., K, M. & G, A. M. (a).

Application of molecular dynamics with interproton distance restraints to three-

dimensional protein structure determination: a model study of crambin. J. Mol. Biol.

, –.

C, G. M., N, M., S, D. K., B$ , A. T., K, M. &

G, A. M. (b). The three-dimensional structure of a-purothionin in

solution: combined use of nuclear magnetic resonance, distance geometry and

restrained molecular dynamics. EMBO J. , –.

C, W. D., C, P., B, C. I., G, I. R., M J., K. M., F,

D. M., S, D. C., F, T., C, J. W. & K, P. A. (). A

second generation force field for the simulation of proteins, nucleic acids, and organic

molecules. J. Amer. Chem. Soc. , –.

C, T. (). Proteins. Structures and Molecular Properties. nd ed. New

York: Freeman.

C, G. M. (). A novel approach to the calculation of conformation: Distance

geometry. J. Comp. Phys. , –.

C, G. M. & H, T. F. (). Stable calculation of coordinates from distance

information. Acta Cryst. A, –.

C, G. M. & H, T. F. (). Distance Geometry and Molecular Conformation.

Taunton, UK: Research Studies Press.



 Peter GuX ntert

D, G. J., G, S. J., L, J. A., D, Z., W, K. S. &

W, H. C. (). Structure of the ADP complex of the -phosphoglycerate

kinase from Bacillus sterothermophilus at ± AI . Acta Cryst. D, –.

 D, A. C., P, J. G. & O, E. (). Secondary and tertiary structural

effects on protein NMR chemical shifts : an ab initio approach. Science , –.

 M, A., L! , M. & W$ , K. (a). Analysis of the "H-NMR spectra

of ferrichrome peptides. I. The non-amide protons. Biopolymers , –.

 M, A., L! , M. & W$ , K. (b). "H-N spin–spin couplings in

alumichrome. Biopolymers , –.

D, W., B, R. & W, G. (). Quantitative evaluation of cross-peak

intensities by projection of two-dimensional NOE spectra on a linear space spanned

by a set of reference resonance lines. J. Magn. Reson. , –.

D, S. I., K, G. F. & N, M. (). Calculation of symmetric multimer

structures from NMR data using a priori knowledge of the monomer structure, co-

monomer restraints, and interface mapping: the case of leucine zippers. J. Biomol.

NMR , –.

D, J. (). Principles of Protein X-ray Crystallography. New York: Springer.

D, A., W, G. & W$ , K. (). Individual assignments of amide proton

resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor.

Biochem. Biophys. Acta , –.

E, A. S., A, F., W, W. M., M, E. S. & M, J. L.

(). Practical introduction to theory and implementation of multinuclear,

multidimensional nuclear magnetic resonance experiments. Meth. Enzymol. ,

–.

E, S., W, H., N, K. & G, N. (). A new version of  (Distance

Analysis in Dihedral Angle Space) and its performance. In Computational Aspects of

the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy

(ed. J. C. Hoch, F. M. Poulsen & C. Redfield), pp. –, New York & London:

Plenum Press.

E, R. A. & H, R. (). Accurate bond and angle parameters for X-ray protein

structure refinement. Acta Crystallogr. A, –.

E, R. R., B, G. & W, A. (). The Principles of Nuclear

Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press.

F! , C., S, T., B' , T., R, P., M$ , E. & W$ ,

K. (). NMR solution structure of the pathogenesis-related protein Pa. J. Mol.

Biol. , –.

F, T. E., H, C. C., J, L. E. & L, R. (). The  display

system. J. Mol. Graph. , –.

F, A. J., L, D. H., W, H. R., A, W. C. & C, D.

(). Torsion angles in the cystine bridge of oxytocin in aqueous solution.

Measurements of circumjacent vicinal couplings between "H, "$C, and "&N. J. Amer.

Chem. Soc. , –.

F, C. M., J, D. N. M., D, R. & N, D. (). Treatment of

NOE constraints involving equivalent or nonstereoassigned protons in calculations of

biomacromolecular structures. J. Biomol. NMR , –.

G, C., B-B, A. A.,  Z, P. C. & ML, C. (). Dipolar

magnetic field effects in NMR spectra of liquids. Chem. Phys. Lett. , –.

G, C., R, J. A. C., B, A. M. J. J., B, R. & K, R.

(). Toward an NMR R factor. J. Magn. Reson. , –.



Structure calculation of biological macromolecules

G, D. M. & H, R. K. (eds.) (). Encyclopedia of NMR. Vol. �: Historical

Perspectives. Chichester, UK: Wiley.

G, C., S, O. W. & E, R. R. (). Two-dimensional correlation

of connected NMR transitions. J. Amer. Chem. Soc. , –.

G, J. & K, P. (). Molecular dynamics studies of a DNA-binding

protein: . An evaluation of implicit and explicit solvent models for the molecular

dynamics simulation of the Escherichia coli trp repressor. Prot. Sci. , –.

G$ , P. (). Neue Rechenverfahren fuX r die Proteinstrukturbestimmung mit Hilfe

der magnetischen Kernspinresonanz. Zu$ rich: Ph.D. thesis ETH .

G$ , P. & W$ , K. (). Improved efficiency of protein structure

calculations from NMR data using the program  with redundant dihedral angle

constraints. J. Biomol. NMR, , –.

G$ , P., B, W., B, M. & W$ , K. (). Automated

stereospecific "H NMR assignments and their impact on the precision of protein

structure determinations in solution. J. Amer. Chem. Soc. , –.

G$ , P., B, W. & W$ , K. (a). Efficient computation of three-

dimensional protein structures in solution from nuclear magnetic resonance data using

the program  and the supporting programs ,  and . J. Mol.

Biol. , –.

G$ , P., Q, Y. Q., O, G., M$ , M., G, W. J. & W$  K.

(b). Structure determination of the Antp(C��!S) homeodomain from nuclear

magnetic resonance data in solution using a novel strategy for the structure calculation

with the programs , ,  and . J. Mol. Biol. , –.

G$ , P., B, K. D. & W$ , K. (). The program  for computer-

supported collection of NOE upper distance constraints as input for protein structure

determination. J. Biomol. NMR , –.

G$ , P., M, C. & W$ , K. (). Torsion angle dynamics for

NMR structure calculation with the new program . J. Mol. Biol. , –.

H, T. F. (). The sampling properties of some distance geometry algorithms

applied to unconstrained polypeptide chains: a study of  independently computed

conformations. Biopolymers , –.

H, T. F. (). An evaluation of computational strategies for use in the

determination of protein structure from distance constraints obtained by nuclear

magnetic resonance. Prog. Biophys. Mol. Biol. , –.

H, T. F. & W$ , K. (). A distance geometry program for determining

the structures of small proteins and other macromolecules from nuclear magnetic

resonance measurements of intramolecular "H–"H proximities in solution. Bull. Math.

Biol. , –.

H, T. F. & W$ , K. (). An evaluation of the combined use of nuclear

magnetic resonance and distance geometry for the determination of protein

conformations in solution. J. Mol. Biol. , –.

H, T. F., C, G. M. & K, I. D. (). The effect of distance constraints

on macromolecular conformation. II. Simulation of experimental results and

theoretical predictions. Biopolymers , –.

H, T. F., K, I. D. & C, G. M. (). Theory and practice of distance

geometry. Bull. Math. Biol. , –.

H, H., K, W. & S, H. (). Determination of the SH domain of

human p Lck tyrosine kinase. J. Biomol. NMR , –.



 Peter GuX ntert

H, R. W. (). The potential calculation and some applications. Meth. comput.

Phys. , –.

H, M. E., P, J. W. & C, D. P. (). The NMR solution structure

of intestinal fatty acid-binding protein complexed with palmitate: application of a

novel distance geometry algorithm. J. Mol. Biol. , –.

H, R. W., V, G., S, C. & A, E. E. (). Errors in protein

structures. Nature , –.

H, J. S. & B, A. (). Determination of φ and χ" angles in proteins from "$C–"$C

three-bond J couplings measured by three-dimensional heteronuclear NMR. How

planar is the peptide bond? J. Amer. Chem. Soc. , –.

H, S. G., M$ , W. & W, G. (). Stereospecific assignments of side-

chain protons and characterization of torsion angles in eglin c. Eur. J. Biochem. ,

–.

J, A., V, N. & R, G. (). A fast recursive algorithm for molecular

dynamics simulation. J. Comp. Phys. , –.

J, T. L. (). Strategies pertinent to NMR solution structure determination.

Curr. Opin. Struct. Biol. , –.

J, J., M, B. H., B, P. & E, R. R. (). Investigation of

exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. ,

–.

K, A. & B, H. J. C. (). Proton magnetic relaxation and spin diffusion

in proteins. J. Magn. Reson. , –.

K, H., H, J. V. & T J., I. (). Conformation of a non-frameshifting

RNA pseudoknot from mouse mammary tumor virus. J. Mol. Biol. , –.

K, R., Z, E. R. P., S, R. M., B, R. &  G,

W. F. (). A protein structure from nuclear magnetic resonance data. lac repressor

headpiece. J. Mol. Biol. , –.

K, M. (). Vicinal proton coupling in nuclear magnetic resonance. J. Amer.

Chem. Soc. , –.

K, H., W, R., S, R. L. (). Rotational dynamics of large molecules.

Computers & Chemistry , –.

K, J. W. & J, T. L. (). A theoretical study of distance determinations

from NMR. Two-dimensional nuclear Overhauser effect spectra. J. Magn. Reson. ,

–.

K, H., G, M. & G, C. (). Two-dimensional NMR

spectroscopy: background and overview of the experiments. Angew. Chem. Int. Ed.

, –.

K, H., G, C., L, J., M$ , A.,  G, W. F. &

B, H. J. C. (). Conformational dynamics detected by nuclear magnetic

resonance NOE values and J coupling constants. J. Amer. Chem. Soc. ,

–.

K, Y. & P, J. H. (). Refinement of the NMR structures for acyl carrier

protein with scalar coupling data. Proteins , –.

K, S., G J., C. D. & V, M. P. (). Optimization by simulated

annealing. Science , –.

K, A. D., B, W. & W$ , K. (). Studies by "H nuclear magnetic

resonance and distance geometry of the solution conformation of the α-amylase

inhibitor Tendamistat. J. Mol. Biol. , –.



Structure calculation of biological macromolecules

K, A. D., B, W. & W$ , K. (). Determination of the complete

three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous

solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol. ,

–.

K, G. R. & H, K. (). Generalized Euler equations for linked rigid

bodies. Phys. Rev. E , –.

K, P., L' , J.-F. & J, O. (). Computing the geometry of a

molecule in dihedral angle space using n.m.r.-derived constraints. A new algorithm

based on optimal filtering. J. Mol. Biol. , –.

K, R., B, M. & W$ , K. ().  : a program for display and

analysis of macromolecular structures. J. Mol. Graph. , –.

K, R., B, M., E, M., G$ , P. & W$ , K. (). Towards

fully automatic peak picking and integration of biomolecular NMR spectra. J. Magn.

Reson., submitted.

K, P. J. ().  : a program to produce both detailed and schematic

plots of protein structures. J. Appl. Cryst. , –.

K, A., E, R. R. & W$ , K. (). A two-dimensional nuclear

Overhauser enhancement (D NOE) experiment for the elucidation of complete

proton-proton cross-relaxation networks in biological macromolecules. Biochem.

Biophys. Res. Comm. , –.

K, I. D., C, G. M. & K, P. A. (). Application of distance

geometry to protein tertiary structure calculations. Biopolymers , –.

K, J., N, M. & B$ , A. T. (). Sampling and efficiency of metric

matrix distance geometry: a novel partial metrization algorithm. J. Biomol. NMR, ,

–.

K, J., G, A. M. & C, G. M. (a). The impact of direct

refinement against proton chemical shifts on protein structure determination by

NMR. J. Magn. Reson. B, –.

K, J., Q, J., G, A. M. & C, G. M. (b). The impact of

direct refinement against "$Cα and "$Cβ chemical shifts on protein structure

determination by NMR. J. Magn. Reson. B, –.

K, J., G, A. M. & C, G. M. (). Improving the quality of

NMR and crystallographic protein structures by means of a conformational database

potential derived from structure databases. Protein Sci. , –.

L, R. A., MA, M. W., H, E. G. & T, J. M.

().  : a program to check stereochemical quality of protein structures. J.

Appl. Cryst. , –.

L, R. A., R, J. A. C., MA, M. W., K, R. &

T, J. M. ().  and - : programs for checking the

quality of protein structures solved by NMR. J. Biomol. NMR , –.

L, R. M., B, D. A., K, D. B. & P, A. (). Solution structures

of proteins from NMR data and modeling: alternative folds for neutrophil peptide .

Biochemistry , –.

L, G. & S, A. (). Model-free approach to the interpretation of nuclear

magnetic resonance in macromolecules. . Theory and range of validity. J. Amer.

Chem. Soc. , –.

L, J. A. & P, J. H. (). Nuclear magnetic resonance charac-

terization of the myristoylated, N-terminal fragment of ADP-ribosylation factor  in

a magnetically oriented membrane array. Biochemistry , –.



 Peter GuX ntert

L$ , P., S, T. & W$ , K. (). Statistical basis for the use of

"$Cα chemical shifts in protein structure determination. J. Magn. Reson. B,

–.

L$ , P., G$ , P., B, M. & W$ , K. (). The new program

 for molecular dynamics simulation of biological macromolecules. J. Biomol.

NMR , –.

M, S. & E, R. R. (). Elucidation of cross relaxation in liquids by D

NMR spectroscopy. Mol. Phys. , –.

M, A. M., J, A., K, N. & G III, W. A. (). Protein

simulations using techniques suitable for large systems: the cell multipole method for

nonbond interactions and the Newton–Euler inverse mass operator method for

internal coordinate dynamics. Proteins , –.

M, A. K. & A, R. A. (). New methodology for computer-aided

modelling of biomolecular structure and dynamics. I. Non-cyclic structures. J.

Biomol. Struct. Dynam. , –.

M, A. K., D, V. E. & A, R. A. (). Derivation and testing of

explicit equations of motion for polymers described by internal coordinates. J. Comp.

Phys. , –.

MC, J. A., G, B. R. & K, M. (). Dynamics of folded proteins.

Nature , –.

MC, J. A. & H, S. C. (). Dynamics of Proteins and Nucleic Acids.

Cambridge, UK: Cambridge University Press.

ML, A. D. (). Gene duplication in the structural evolution of chymo-

trypsin. J. Mol. Biol. , –.

M, R. P., O, E. T. & F, S. W. (). A computer-based protocol

for semiautomated assignments and D structure determination of proteins. J.

Biomol. NMR , –.

M, J. E., G$ , P., W$ , K. & B, W. (). Complete relaxation

matrix refinement of NMR structures of proteins using analytically calculated

dihedral angle derivatives of NOE intensities. J. Biomol. NMR. , –.

M, N., R, M., R, A., T, A. & T, E. ().

Equation of state calculations by fast computing machines. J. chem. Phys. ,

–.

M, W. J., H, D. R. & P, A. (). Limited sampling of conformational

space by the distance geometry algorithm: implications for structures generated from

NMR data, Biochemistry , –.

M, F. A., MG, R. F., B, A. W. & S, H. A. (). Energy

parameters in polypeptides. VII. Geometric parameters, partial atomic charges,

nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials

for the naturally occurring amino acids. J. phys. Chem. , –.

M, C. & B, W. (). Automated assignment of simulated and

experimental Noesy spectra of proteins by feedback filtering and self-correcting

distance geometry. J. Mol. Biol. , –.

M, C., G$ , P., B, W. & W$ , K. (). Automated

procedure for combined assignment of Noesy spectra and three-dimensional protein

structure determination. J. Biomol. NMR , –.

N, T., K, A. & N, H. (). Intrinsic nature of the three-

dimensional structure of proteins as determined by distance geometry with good

sampling properties. J. Biomol. NMR , –.



Structure calculation of biological macromolecules

N, D., S, T., O, G., S, H. & W$ , K. (). Stereospecific

nuclear magnetic resonance assignments of the methyl groups of valine and leucine in

the DNA-binding domain of the  repressor by biosynthetically directed fractional

C labelling. Biochemistry , –.

N, D., O, G. & W$ , K. (). New nuclear magnetic resonance

experiment for measurements of the vicinal coupling constants $J
HNα in proteins. J.

Amer. Chem. Soc. , –.

N, D. & W, M. P. (). The nuclear Overhauser effect in structural

and conformational analysis. New York: VCH.

N, A. J., S, K. A. & H, B. (). Protein folding and association:

insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins

, –.

N, M. (). A calculation strategy for the structure determination of symmetric

dimers by "H NMR. Proteins , –.

N, M. (). Calculation of protein structures with ambiguous distance restraints.

Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities.

J. Mol. Biol. , –.

N, M. (). Structure calculation from NMR data. Curr. Opin. Struct. Biol. ,

–.

N, M., C, G. M. & G, A. M. (a). Determination of three-

dimensional structures of proteins from interproton distance data by hybrid distance

geometry–dynamical simulated annealing calculations. FEBS Lett. , –.

N, M., C, G. M. & G, A. M. (b). Determination of three-

dimensional structures of proteins from interproton distance data by dynamical

simulated annealing from a random array of atoms. FEBS Lett. , –.

N, M., G, A. M., B$ , A. T. & C, G. M. (c).

Determination of three-dimensional structures of proteins by simulated annealing

with interproton distance restraints. Application to crambin, potato carboxypeptidase

inhibitor and barley serine protease inhibitor . Protein Eng. , –.

N, M., C, G. M. & G, A. M. (). "H-NMR stereospecific

assignments by conformational data-base searches. Biopolymers , –.

N, M., K, J. & B$ , A. T. (). Sampling properties of simulated

annealing and distance geometry. In Computational Aspects of the Study of Biological

Macromolecules by Nuclear Magnetic Resonance Spectroscopy (ed. J. C. Hoch, F. M.

Poulsen & C. Redfield), pp. –, New York & London: Plenum Press.

N, M., M, M., O’D, S. I. & O, H. (). Automated

NOESY interpretation with ambiguous distance restraints: the refined NMR solution

structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. ,

–.

O, E. (). Chemical shifts and three-dimensional protein structures. Protein

Sci. , –.

O> , K., T, Y., W, P. E. & C, D. A. (). Solution structure of

carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and

chemical shift constraints. J. Mol. Biol. , –.

O, M., S, T., L$ , P., O, C., L, P., B,

R. A. & W$ , K. (). The NMR solution structure of the pheromone Er-

from the ciliated protozoan Euplotes raikovi. Protein Science , –.

O, M., Z, O., G$ , P. & W$ , K. (). The NMR solution

conformation of unligated human Cyclophilin A. J. Mol. Biol. , –.



 Peter GuX ntert

P, A. (). Multidimensional heteronuclear NMR experiments for structure

determination of isotopically labeled RNA. Meth. Enzymol. , –.

P, D. A., C, D. A., C, J. C., S, G. L., C S, U.,

W, P. & K, P. A. ().  ., University of California, San

Francisco.

P, D. A. & K, P. A. (). Are time-averaged restraints necessary for

nuclear magnetic resonance refinement? J. Mol. Biol. , –.

P, M., S, T., W, D., G, C. & W$ , K. ().

NMR structure of the J-domain and the Gly}Phe-rich region of the Escherichia coli

DnaJ chaperone. J. Mol. Biol., , –.

P, K., B, M., S, G. & W$ , K. (). Structural role of the

buried salt bridge in the  repressor DNA-binding domain. J. Mol. Biol., ,

–.

P, J., W, E., H, R. & V!, L. (). Crystal structure

determination, refinement and the molecular model of the α-amylase inhibitor Hoe-

A. J. Mol. Biol. , –.

P, V. I., F, T. A., B, B., S, A. & F, J. ().

Determination of stereospecific assignments, torsion-angle constraints, and rotamer

populations in proteins using the program . J. Magn. Reson. B, –.

P, M. J. D. (). Restart procedures for the conjugate gradient method. Math.

Programming , –.

P, W. H., F, B. P., T, S. A. & V, W. T. ().

Numerical Recipes. The Art of Scientific Computing. Cambridge, UK: Cambridge

University Press.

R, A. (). Correlations in the motion of atoms in liquid argon. Phys. Rev.

A, –.

R, L. M. & B$ , A. T. (). Torsion angle dynamics: Reduced variable

conformational sampling enhances crystallographic structure refinement. Proteins ,

–.

R, R., H, S., W, G., B, M., G, R. & W$ ,

K. (). NMR structure of the mouse prion protein domain PrP(–). Nature

, –.

R, J.-P., C, G. & B, H. J. C. (). Numerical integration of

the Cartesian equations of motion of a system with constraints: molecular dynamics

of n-alkanes. J. Comput. Phys. , –.

S, W. (). Principles of Nucleic Acid Structure. New York: Springer.

S, R. A. & M-W, E. J. ().  : Biomolecular graphics for all.

Trends. Biochem. Sci. , –.

S, R. M.,  G, W. F. & K, R. (). Molecular dynamics

simulation techniques for determination of molecular structures from nuclear

magnetic resonance data. Methods Enzymol. , –.

S, R. M., T, A. E., K, J. &  G, W. F. (). Structure

determination by NMR: The modeling of NMR parameters as ensemble averages. In

Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic

Resonance Spectroscopy (ed. J. C. Hoch, F. M. Poulsen & C. Redfield), pp. –,

New York & London: Plenum Press.

S, P. & F, J. (). Chirality errors in nucleic acid structures. Nature

, .



Structure calculation of biological macromolecules

S, G. E. & S, R. H. (). Principles of Protein Structure. New York:

Springer.

S, H., W, B., M, B. A., W, C., T, R. & W$ , K.

(). Stereospecific assignment of the methyl "H NMR lines of valine and leucine

in polypeptides by non-random "$C labelling. FEBS Lett. , –.

S, B. O., I, Y., R, A., T, S., B-T, L., N, D.,

B, R. W., T, T., K, M., O, H., S, T.,

Y, S. & L, E. D. (). An approach to global fold determination using

limited NMR data from larger proteins selectively protonated at specific residue

types. J. Biomol. NMR, , –.

S, I. (). Relaxation processes in a system of two spins. Phys. Rev. ,

–.

S, S. & B, A. (). Empirical correlation between protein backbone

conformation and Cα and Cβ "$C nuclear magnetic resonance chemical shifts. J. Amer.

Chem. Soc., , –.

S, E. G., R, L. M. & B$ , A. T. (). Torsion-angle molecular dynamics

as a new efficient tool for NMR structure calculation. J. Magn. Reson. , –.

S, M. J. (). Structure determination from NMR data. II. Computational

approaches. In NMR of Macromolecules. A Practical Approach (ed. G. C. K. Roberts),

pp. –, Oxford: Oxford University Press.

S, T., G$ , P., O, G. & W$ , K. (a). Determination of

scalar coupling constants by inverse Fourier transformation of in-phase multiplets. J.

Magn. Reson. , –.

S, T., G$ , P., S, S. R. & W$ , K. (b). The NMR

solution structure of hirudin(–) and comparison with corresponding three-

dimensional structures determined using the complete -residue hirudin polypeptide

chain. J. Mol. Biol. , –.

T, P. D., B, V. J. & J, T. L. (). Protein solution structure

determination using distances from D NOE experiments: effect of approximations

on the accuracy of derived structures. Proc. Natl. Acad. Sci. U.S.A. , –.

T, N. & B, A. (). Direct measurements of distances and angles in

biomolecules by NMR in a dilute liquid crystalline medium. Science , –.

T, N., G, S. & B, A. (). Magnetic field dependence of nitrogen-

proton J-splittings in "&N-enriched human ubiquitin resulting from relaxation

interference and residual dipolar couplings. J. Amer. Chem. Soc. , –.

T, N., O, J. G., G, A. M., C, G. M. & B, A. ().

Use of dipolar "H–"&N and "H–"$C couplings in the structure determination of

magnetically oriented macromolecules in solution. Nature Struct. Biol. , –.

T, J. R., F, J. M., K, M. A. & P, J. H. (). Nuclear

magnetic dipole interactions in field-oriented proteins: information for structure

determination in solution. Proc. Natl. Acad. Sci. U.S.A. , –.

T, A. E., S, R. M. &  G, W. F. (). Time-dependent

distance restraints in molecular dynamics simulations. Chem. Phys. Lett. ,

–.

T, A. E., S, R. M. &  G, W. F. (). Time-averaged nuclear

Overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. ,

–.

T, A. E., B, R. M., H, T., K, H. &  G, W. F.



 Peter GuX ntert

(). Structure refinement using time-averaged J-coupling constant constraints. J.

Biomol. NMR , –.

U, N. B., S, U. & J, T. L. (). Metropolis Monte Carlo

calculations of DNA structure using internal coordinates and NMR distance

restraints: an alternative method for generating a high-resolution solution structure.

J. Biomol. NMR , –.

 G, W. F. & B, H. J. C. (). Algorithms for macromolecular

dynamics and constraint dynamics. Mol. Phys. , –.

 G, W. F. & B, H. J. C. (). Molecular dynamics: Perspective

for complex systems. Biochem. Soc. Trans. , –.

 G, W. F. & B, H. J. C. (). Computer simulation of molecular

dynamics: methodology, applications and perspectives in chemistry. Angew. Chem.

Int. Ed. , –.

 G, W. F., B, R. M., G, P.,  S, R. C., S, C. A.

& T, A. E. (). Accounting for molecular mobility in structure determination

based on nuclear magnetic resonance spectroscopic and X-ray diffraction data. Meth.

Enzymol. , –.

 G, W. F., B, S. R., E, A. A., H$ , P. H., K$ ,

P., M, A. E., S, W. R. P. & T, I. G. (). Biomolecular Simulation:

the GROMOS�� Manual and User Guide. Zu$ rich: vdf Hochschulverlag.

 K, A. H., B, L. M., L, C. B. & B, M. J. ().

Optimisation of metric matrix embedding by genetic algorithms. J. Biomol. NMR ,

–.

V, G., A-, F. & A, F. H. T. (). NMR investigation of RNA

structure. Prog. NMR Spectrosc. , –.

V, J., B, M., W, G., A! , F. X. & W$ , K. (). The

NMR structure of the activation domain isolated from porcine procarboxypeptidase

B. EMBO J. , –.

V, R. A., M, W. J., S, L. D., M, L. & F II, B. T.

(). Use of "H
N
–"H

N
NOEs to determine protein global folds in perdeuterated

proteins. J. Amer. Chem. Soc. , –.

V, L. (). Computer ‘experiments’ on classical fluids. I. Thermodynamical

properties of Lennard-Jones molecules. Phys. Rev. , –.

V, G. & S, C. (). Quality control of protein models: directional atomic

contact analysis. J. Appl. Crystallogr. , –.

V, G. W., G, S., D, F., W, A. C., T, R., Z, G. &

B, A. (). Measurement of homo- and heteronuclear J couplings from

quantitative J correlation. Meth. Enzymol. , –.

W, G. & W$ , K. (). Amide proton exchange and surface conformation

of the basic pancreatic trypsin inhibitor in solution. J. Mol. Biol. , –.

W, G., B, W., H, T. F., S, T., G, N. & W$ , K.

(). Protein structures in solution by nuclear magnetic resonance and distance

geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined

using two different algorithms,  and . J. Mol. Biol. , –.

W, A. C. & B, A. (). Reparametrization of the Karplus relation for $J(Hα–N)

in peptides from uniformly "$C}"&N enriched human ubiquitin. J. Amer. Chem. Soc.

, –.

W, A. C. & B, A. (). Determination of the backbone dihedral angles φ in



Structure calculation of biological macromolecules

human ubiquitin from reparametrized empirical Karplus equations. J. Amer. Chem.

Soc. , –.

W, P. L., M, R. & H, D. (). Determining stereo-specific "H nuclear

magnetic resonance assignments from distance geometry calculations. J. Mol. Biol.

, –.

W, G., L, K. H. & W$ , K. (). Sequential resonance assignments in

protein "H nuclear magnetic resonance spectra. Glucagon bound to perdeuterated

dodecylphosphocholine micelles. J. Mol. Biol. , –.

W, S. S., M, M. M. W. & H, C. W. (). NMR of nucleic acids;

from spectrum to structure. In NMR of Macromolecules. A Practical Approach (ed.

G. C. K. Roberts), pp. –, Oxford: Oxford University Press.

W, M. P. & A, T. (). Protein chemical shifts. In Protein NMR

techniques (ed. D. G. Reid), pp. –, Totowa, NJ: Humana Press.

W, M. P., H, T. F. & W$ , K. (). Solution conformation of

proteinase inhibitor IIa from bull seminal plasma by "H nuclear magnetic resonance

and distance geometry. J. Mol. Biol. , –.

W, M. P., K, J. & A, T. (). Application of "H NMR

chemical shifts to measure the quality of protein structures. J. Magn. Reson. B,

–.

W, D. S., S, B. D. & R, F. M. (). The chemical shift index: A

fast and simple method for the assignment of protein secondary structure through

NMR spectroscopy. Biochemistry , –.

W, J. M., S, J. & B, P. H. (). Problems with, and alternatives

to, the NMR R factor. J. Magn. Reson. , –.

W$ , K. (). NMR of Proteins and Nucleic Acids. New York: Wiley.

W$ , K., W, G., W, G. & B, W. (). Sequential resonance

assignments as a basis for determination of spatial protein structures by high

resolution proton nuclear magnetic resonance. J. Mol. Biol. , –.

W$ , K., B, M. & B, W. (). Pseudo-structures for the 

common amino acids for use in studies of protein conformations by measurements of

intramolecular proton–proton distance constraints with nuclear magnetic resonance.

J. Mol. Biol. , –.

Y, P. & C, D. A. (). A new method for refinement of macromolecular

structures based on nuclear Overhauser effect spectra. J. Magn. Reson. , –.

Z, E. R. P., B, M., B, R., S, R. M., W$ , K. &

K, R. (). Spatial arrangement of the three α helices in the solution

structure of E. coli lac repressor DNA-binding domain. FEBS Lett. , –.


