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Calculating Protein Structures from NMR Data

Peter Giintert

1. Introduction

Today many, if not most, NMR measurements with proteins are performed
with the ultimate aim of determining their three-dimensional (3D) structure
(1). However, NMR is not a “microscope with atomic resolution” that would
directly produce an image of a protein. Rather, it is able to yield a wealth of
indirect structural information from which the 3D structure can be revealed
only by extensive calculations. The pioneering first structure determinations
of proteins in solution (e.g., 2—6) were year-long struggles, both fascinating
and tedious because of the lack of established NMR techniques and numeri-
cal methods for structure calculation, and hampered by linttations of the
spectrometers and computers of the time. Recent experimental, theoretical,
and technological advances —and the dissemination of the methodological
knowledge—have changed this situation completely: Given a sufficient
amount of a purified, water-soluble protein with less than approx 200 amino
acid residues, its 3D structure in solution can be determined routinely by
the NMR method. Protein structures with up to about 100 residues can be
solved by ['H]-NMR alone, whereas for larger proteins labeling with '3C
and °N is required.

This chapter reviews the computational methods for solution structure
determination of proteins from a practical point of view. This chapter will also
summarize the key NMR data carrying structural information that can be
exploited readily in a structure calculation; treat the conversion from this NMR
data to geometric conformational restraints; explain the preliminaries of a
structure calculation, such as the systematic analysis of local conformation
and stereospecific assignments; concentrate on the currently used structure
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Fig. 1. Flowchart of a protein structure calculation. Various steps of a structure
calculation are represented by boxes, and arrows indicate the flow of data. In paren-
theses, the names of computer programs in the DIANA and XEASY program pack-
ages (51,98) that perform the corresponding step are given.

calculation algorithms; discuss general ways of analyzing NMR solution
structures of proteins; and, finally, give a brief overview on structure refine-
ment methods (Fig. 1).
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Fig. 2. Representation of the network of NOE distance restraints used for the struc-
ture calculation of the protein toxin K from the black mamba, Dendroaspis polylepis
polylepis (97). Covalent bonds between nonhydrogen atoms are shown as bold lines.
Each of the 809 upper distance bounds is indicated by a thin line connecting the two
atoms (hydrogens or pseudoatoms) involved in the restraint.

2. NMR Data for Protein Structure Calculation
2.1. Nuclear Overhauser Effects

The NMR method for protein structure determination relies on a dense
network of distance restraints derived from nuclear Overhauser effects
(NOEs) between nearby hydrogen atoms in the protein (/,7-9; Fig. 2). NOEs
are the essential NMR data to define the secondary and tertiary structure of a
protein because they connect hydrogen atoms separated by less than about 5 A
(1A=0.1 nm) in amino acid residues that may be far away along the protein
sequence but close together in space. The NOE reflects the transfer of mag-
netization between spins coupled by the dipole—dipole interaction in a mol-
ecule that undergoes Brownian motion in a liquid (/0—14). The intensity of a
NOE, that is the volume, V, of the corresponding crosspeak in a NOESY
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Fig. 3. Two-dimensional '"H NOESY spectrum of toxin K in H,O at pH 4.6 and
36°C (protein concentration 10 mM, mixing time t,, = 40 ms; 97).

spectrum (/35; Fig. 3), is related to the distance, r, between the two interact-
ing spins by

Ve (r= f(z0) M

The averaging indicates that in molecules with inherent flexibility the dis-
tance r may vary and thus has to be averaged appropriately. The remaining
dependence of the magnetization transfer on the motion enters through the
function f(t,) that includes the effects of global and internal motions of the
molecule in a nontrivial way. Since globular proteins are relatively rigid—with
the exceptions of the protein surface and disordered segments of the polypeptide
chain—often it is assumed that there exists a single rigid conformation that is
compatible with all NOE data simultaneously, provided that the NOE data are
interpreted in a conservative, semiquantitative manner (/). More sophisticated
treatments that take into account that the result of a NOESY experiment repre-
sents an average over time and space usually are deferred to the structure
refinement stage (16,17).

In principle, all hydrogen atoms of a protein form a single network of spins,
coupled by the dipole—dipole interaction. Magnetization can be transferred from
one spin to another not only directly but also via other spins in the vicinity—an
effect called spin diffusion (73,18,19). The approximation of isolated spin pairs
is only valid for short mixing times in the NOESY experiment. However, the
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mixing time cannot be made arbitrarily short because (in the limit of short mix-
ing times) the intensity of a NOE is proportional to the mixing time (20). In
practice, a compromise has to be made between the suppression of spin diffusion
and sufficient crosspeak intensities, usually with mixing times in the range of
40-80 ms. Spin diffusion effects can also be included in the structure calculation
by complete relaxation matrix refinement (2/-24). However, since assumptions
about internal and overall motions that hardly can be confirmed experimentally
also enter into the relaxation matrix refinement, care has to be taken not to bias the
structure determination by overinterpretation of the data.

The quantification of a NOE is equivalent to determining the volume of the
corresponding crosspeak in the NOESY spectrum (79). Since the linewidths
can vary appreciably for different resonances, crosspeak volumes should be
determined by integration over the peak area rather than by measuring peak
heights, for example, by counting contour lines. For isolated crosspeaks
integration is straightforward, and for clusters of overlapping crosspeaks
deconvolution methods have been proposed to distribute the total volume
among the individual signals (25). Although the reliable quantification of NOEs
is important to obtain a high-quality protein structure, one should also keep in
mind that, according to Eq. (1), the relative error of the distance estimate is
only one-sixth of the relative error of the volume determination.

2.2. Scalar Coupling Constants ¥

A second source of structural information are vicinal scalar coupling con-
stants between atoms separated by three covalent bonds from each other (26).
These scalar coupling constants, 3/, are related to the enclosed dihedral angle,
0, by Karplus relations (27). For the structure determination of proteins the
most important Karplus relations are (26,28-30):

ina(©®) = 6.4cos?0—1.4cos0+ 1.9
3Jup(0) = 9.5c0s20— 1.6 cos O + 1.8 ?)
3np(0) =—4.4 cos20 + 1.2 cos 0 +0.1
3Jep(0) = 8.0cos?0—2.0cos O

3Junq denotes the scalar coupling constant between a backbone amide pro-
ton and an a-proton, 3JaB between an a- and a -proton, 3J,\,ﬁ between a back-
bone nitrogen and a B-proton, and 3JC-B between a backbone carbonyl and a
B-proton. All coupling constants are given in Hertz. In contrast to distance
restraints derived from NOESY spectra, scalar coupling constants give infor-
mation only on the local conformation of a polypeptide chain. They are, never-
theless, important to define accurately the local conformation, to obtain
stereospecific assignments for diastereotopic protons (usually for the B-pro-
tons), and to detect dihedral angles (usually ') that occur in multiple states.
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Scalar couplings are manifested in the crosspeak fine structures of mogt
NMR spectra (19). Many NMR experiments have been proposed for the mea-
surement of scalar coupling constants (3/). Scalar coupling constants convep.
tionally are measured from the separation of fine-structure components ip
antiphase spectra. One has to be aware, however, of the cancellation effectg
between positive and negative fine-structure elements that lead both to an over.
estimation of the coupling constant and to a decrease of the overall crosspeak
intensity (32). These effects inhibit the determination of coupling constant val-
ues that are much smaller than the line-width from antiphase crosspeaks. The
cancellation effects can be reduced in E. COSY type spectra where the
crosspeak fine-structure is simplified by suppression of certain components of
the fine-structure (33). Other methods to determine coupling constants rely on
a series of spectra with crosspeak volumes modulated by the coupling constant
(34) or on in-phase spectra (35). In general, scalar coupling constants can be
determined in proteins with an accuracy of up to about =1 Hz, but one has to
keep in mind when interpreting them with the use of Eq. (2) that there is aver-
aging because of internal mobility and that both the functional form and the
parameters of the Karplus curves are approximations. This second source of
error usually limits the applicable accuracy to approximately +2 Hz.

2.3. Other NMR Data

NOE:s and scalar coupling constants are the NMR data that most directly pro-
vide structural information. Additional NMR parameters that are sometimes used
in structure determinations include hydrogen exchange data and chemical
shifts, in particular for '*C. Slow hydrogen exchange indicates that an amide
proton is involved in a hydrogen bond (9). Unfortunately, the acceptor oxygen
or nitrogen atom cannot be identified directly by NMR, and one has to rely on
NOE:s in the vicinity of the postulated hydrogen bond or on assumptions about
regular secondary structure to define the acceptor. Hydrogen bond restraints are
thus either largely redundant with the NOE network or involve structural assump-
tions, and they should only be used in special situations, for instance, if not enough
NOE data are available in preliminary structure calculations of larger proteins.

It was recognized that the deviations of '3C% (and, to some extent, '3CP)
chemical shifts from their random coil values are correlated with the local back-
bone conformation (36,37): '3C* chemical shifts larger than the random coil
values tend to occur for amino acid residues in a-helical conformation, whereas
deviations toward smaller values are observed for residues in B-sheet confor-
mation. Such information can be included in a structure calculation by restrict-
ing the local conformation of a residue to the a-helical or B-sheet region of the
Ramachandran plot, although care should be applied because the correlation
between chemical shift deviation and structure is not perfect. Similar to hydro-

Calculating Protein Structures 163

gen bond restraints, conformational restraints based on 13Ca chemical shifts
therefore should be used only as auxiliary data in special situations.

3. Conformational Restraints

For use in a structure calculation, geometric conformational restraints have
to be derived from the NMR parameters. These geometric restraints should, on
the one hand, convey to the structure calculation as much as possible of the
structural information inherent in the NMR data, and, on the other hand, be
simple enough to be used efficiently by the structure calculation algorithms.
Therefore, predominantly distance and dihedral angle restraints are used in
practice.

3.1. Distance Restraints

On the basis of Eq. (1), NOEs are usually treated as upper bounds on inter-
atomic distances rather than precise distance restraints because the presence of
internal motions and, possibly, chemical exchange may diminish the strength of
aNOE (79). In fact, much of the robustness of the NMR structure determination
method is owing to the use of upper distance bounds instead of exact distance
restraints in conjunction with the observation that internal motions and exchange
effects usually reduce rather than increase the NOEs (/). For the same rea-
son, the absence of a NOE should not be interpreted as a lower bound on the
distance between the two interacting spins. Certain NOEs, however, may also be
enhanced by internal motions or chemical exchange and then be incompatible with
the assumption of a rigid structure that fulfills all NMR data simultaneously (77,38).

The upper bounds, u, are derived from the corresponding NOESY crosspeak
volumes, ¥, according to calibration curves, V' = f(u), for example, assuming a
rigid molecule,

V=k/ub 3)
Here, k denotes a constant that depends on the arbitrary scaling of the NOESY
spectrum. This constant is determined on the basis of known distances, for
example, d,, and dyy in regular secondary structure elements (39), or by refer-
ence to a preliminary structure.

In practice, it has been observed that flatter calibration curves, for example,
of the type

=k/u" 4)
with n =4 or 5, may often give a better representation of the volume-to-distance
relationship, in particular for NOEs that involve peripheral side chain protons

(40). The uniform average model (2) provides another, very conservative, cali-
bration curve by making the assumption that, because of internal motions, the



164 Giintert

Table 1
Repulsive Core Radii Used
by the Program DIANA?

Atom type Radius, A
Amide hydrogen 0.95
Other hydrogen 1.00
Aromatic carbon 1.35
Other carbon 1.40
Nitrogen 1.30
Oxygen 1.20
Sulfur 1.60

“From Braun and Go (6/) and Giintert et
al. (51).

interatomic distance, r, assumes all values between the steric lower limit, /, and
an upper limit, u, with equal probability:
u
V=kiu=1)[drir = k' [1/I5 = 1/u5)/(u - 1) 5)
!

In practice, either the upper distance bounds ‘obtained from Egs. (3—5) are
directly used as distance restraints, or they are classified into the three classes
of strong, medium, and weak crosspeaks (6,41), with corresponding upper lim-
its of, typically, 2.7, 3.3, and 5.0 A. NOEs that involve groups of protons with
degenerate chemical shifts, in particular methyl groups, commonly are referred
to pseudoatoms located in the center of the protons that they represent, and the
upper bound is increased by a pseudoatom correction equal to the proton—
pseudoatom distance (42).

Hydrogen bonds also can be introduced into the structure calculation as
distance restraints, typically by restraining the acceptor-hydrogen distance to
1.8-2.0 A and the distance between the acceptor and the atom to which the
hydrogen atom is covalently bound to 2.7-3.0 A. The second distance restraint
restricts the angle of the hydrogen bond.

Usually, a simple geometric force field is used for the structure calculation
that retains only the most dominant part of the nonbonded interaction, namely,
the steric repulsion in the form of lower bounds for all interatomic distances
between pairs of atoms separated by three or more covalent bonds from each
other. These steric lower bounds are generated internally by the structure calcu-
lation programs by assigning a repulsive core radius to each atom type (Table 1),
and imposing lower distance bounds given by the sum of the two correspond-
ing repulsive core radii. To allow the formation of hydrogen bonds, potential

Calculating Protein Structures 165

hydrogen bond contacts are treated specially with lower bounds that are smaller
than the sum of the corresponding repulsive core radii.

Depending on the structure calculation program used, special covalent
bonds, such as disulfide bridges or cyclic peptide bonds have to be enforced by
distance restraints. For example, in the program DIANA disulfide bridges are
fixed by restraining the distance between the two sulfur atoms to 2.0-2.1 A and
the two distances between the CP and the sulfur atoms of different residues to

3.0-3.1 A (6).

3.2. Dihedral Angle Restraints

Dihedral angle restraints in the form of an allowed interval are used to
incorporate scalar coupling information into the structure calculation. Using
Egs. (2), a given scalar coupling constant value gives in general rise to several
(up to four) allowed intervals for the enclosed dihedral angle. However, most
structure calculation programs allow only for a single allowed range for a dihe-
dral angle. Using the smallest interval that encloses all dihedral angle values
compatible with the scalar coupling constant often results in a loss of structural
information because the dihedral angle restraint may encompass large regions
that are forbidden by the measured coupling constant. Therefore it is often
advantageous to combine local data—for example, all distance restraints and
scalar coupling constants within the molecular fragment defiged by the dihe-
dral angles ¢, y, and x'—in a systematic analysis of the local conformation
and to derive dihedral angle restraints from the results of this grid search rather
than from the individual NMR parameters (43).

In addition, dihedral angle restraints may be used to restrict the conformation
of the polypeptide chain, for example, to certain regions of the Ramachandran
plot, on the basis of assumptions about regular secondary structure or '3C¢
chemical shifts.

4. Preliminaries
4.1. Systematic Analysis of the Local Conformation

Before starting a structure calculation for the complete protein it is advis-
able to perform a systematic analysis of the local conformation in order to
detect inconsistencies among the local conformational restraints, to derive
dihedral angle restraints from the scalar coupling constant and local NOE data,
and to obtain stereospecific assignments for diastereotopic protons and methyl
groups. A systematic analysis of the local conformation is performed conve-
niently in dihedral angle space as a grid search over all sterically allowed com-
binations of dihedral angle values in a molecular fragment (43,44). In practice,
most of the available coupling constant and local NOE data involve the
polypeptide backbone and the B-protons. They can be analyzed in a grid search
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Fig. 4. Polypeptide fragment whose conformation can be analyzed systematically
by a grid search over the dihedral angles ¢, y, and x' with the program HABAS (43).

over the dihedral angles ¢, y, and y! ofa given residue as it is, for instance,
implemented in the program HABAS (Fig. 4).

4.2. Stereospecific Assignments

The standard method for obtaining resonance assignments in proteing
(45,46) cannot provide stereospecific assignments, i.e., individual assignments
for the two diastereotopic substituents of a prochiral center, for example, in
methylene groups and in the isopropyl groups of valine and leucine. In the
absence of stereospecific assignments, restraints involving diastereotopic sub-
stituents have to be referred to pseudoatoms (42), or otherwise treated such
that they are invariant under exchange of the two diastereotopic substituents,
which inevitably results in a loss of information and less well-defined struc-
tures (43; Fig. 5). It is therefore essential for obtaining a high-quality structure
that as many stereospecific assignments as possible are determined. Stereospe-
cific assignments of valine and leucine isopropyl groups can be determined
experimentally by biosynthetical fractional '*C-labeling (47,48). Stereospecific
assignments for methylene protons have to be determined in the course of the
structure calculation, either manually (49), by systematic analysis of the local
conformation around a methylene group, or by reference to preliminary 3D
structures.

The local method, implemented, for example, in the program HABAS (43),
consists of two separate grid searches, one for each of the two assignment pos-
sibilities. An unambiguous stereospecific assignment results if allowed con-
formations occur only for one of the two possible assignments. This local
method exclusively relies on scalar coupling constants and local distance
restraints, for the stereospecific assignment of B-methylene protons with the
program HABAS, for instance, on distance restraints and scalar coupling con-
stants within the molecular fragment of Fig. 4. Assuming realistic error ranges
for experimental data, generally it will not be possible to obtain unambigu-
ous stereospecific assignments by the local method in all cases. Using com-
plete simulated sets of local distance restraints and homonuclear coupling
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Fig. 5. The influence of stereospecific assignments on the precision of solution
tructures determined by NMR and distance geometry calculations, illustrated by two
roups of 20 conformers of the protein BPTI, one calculated with the use of the 32
- experimentally determined stereospecific assignments (A), the other without (B). In
~ the stereo views, lines indicate covalent bonds between the polypeptide backbone

atoms N, C%, and C'".

o constants with an accuracy of +2 Hz, it was estimated that the program
 HABAS can yield unambiguous stereospecific assignments for about 50% of
the B-methylene protons.
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In contrast to the local method, global methods aim at the determination of
stereospecific assignments either during the calculation of a 3D structure or by
reference to preliminary 3D structures. They have the potential advantage over
the local method that all conformational restraints, not only local ones, can be
exploited, but, on the other hand, a systematic search of allowed conforma.
tions is no longer feasible, and the stereospecific assignments have to be baseq
on a statistical analysis of a limited number of conformers. In conjunction with
structure calculation programs working in Cartesian coordinate space, the
so-called method of “floating stereospecific assignments” (50) can be used: At
the beginning of a structure calculation a strong reduction of the corresponding
potential energy terms allows the two diastereotopic substituents to interchange
freely under the influence of the restraints before they later become fixed whep
the potential energy terms are restored slowly to their normal values (which
inhibit an interchange of the diastereotopic substituents). A stereospecific
assignment is considered to be unambiguous if it is consistently found in al]
conformers that were calculated. Another simple method for obtaining ste-
reospecific assignments is implemented in the program GLOMSA of the
DIANA package (51) and consists of the analysis of preliminary 3D structures:
If there are two NOEs of significantly different strength from a given proton to
both diastereotopic substituents of a prochiral center and if the distances from
the given proton to the two diastereotopic substituents differ consistently in the
structures, the stronger NOE can be identified with the diastereotopic sub-
stituent that is closer to the given proton.

4.3. Treatment of Distance Restraints to Diastereotopic Protons

Distance restraints involving diastereotopic substituents that could not be
assigned stereospecifically have to be modified such that they are invariant
under exchange of the two diastereotopic substituents. Traditionally, this is
achieved by referring the restraints to a pseudoatom located centrally with
respect to the two diastereotopic substituents and a concomitant increase of the
upper distance bound, by, by a pseudoatom correction, ¢y, equal to the dis-
tance from the pseudoatom to the individual protons, i.e., by =min(b,, b,) + ¢,
(42). This approach, however, completely discards the weaker of the two pos-
sible NOEs from a given proton to the two diastereotopic substituents. In this
case, an improved treatment implemented in the program DIANA (5/) makes
use of the information from both upper bounds, b, and b,, by assigning a more
restrictive upper limit, b to the restraint to the pseudoatom,

bo=[(b +b3)2 3] (6)

and simultaneously imposing the weaker of the two upper bounds, max(b,, by),
on both distances to the individual diastereotopic substituents. Another
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approach, used, for example, in the program XPLOR (52), does not explicitly
introduce a pseudoatom but imposes a distance restraint on the average dis-
tance, (d), rather than on the distances to the two diastereotopic substituents, d,
and d,. The average distance is calculated, for example, according to

(dy=dT +d7) "6 ©)

4.4. Removal of Irrelevant Distance Restraints

The number of experimental distance restraints used in a structure calcula-
tion is an important parameter that determines the accuracy of the resulting
structure. To allow for meaningful comparisons it is therefore important to
report the number of relevant distance restraints, i.e., of those actually that
restrict the allowed conformation space, rather than the total number of NOESY
crosspeaks that have been assigned. In addition, the removal of irrelevant dis-

- tance restraints slightly increases the efficiency of the structure calculation. In

practice, often more than half of the intraresidual and many sequential restraints
are irrelevant. Those include restraints for fixed distances, for example,
between geminal protons among the protons attached to an aromatic ring, and

distance bounds that cannot be reached by any conformation, for example, an
upper bound of 3.5 A for the intraresidual distance between the amide- and the

a-proton. Assuming rigid bond lengths and bond angles, the latter condition
can be checked readily for distances that depend on one or twardihedral angles
(51). The distance dj; between two atoms, i and j, that are separated by a single
dihedral angle, a, is confined to the range

(A-B)"2<d;<(4+B)" 8)
where

A= d} +d} — e, d) (e, d), B=2{[d} — (e, d)1 [d} — (e, - d)]}'"? (9)

- - - -

In Eq. (9), c?, = ;,-— ;a c?; = rj—r,, r;and r; denote the position of the atoms

i and j, and r, and €, denote the position of the start point and a unit vector

- along the rotatable bond a, respectively. Similar, albeit more complicated for-

mulas can be derived for distances that depend on two dihedral angles.

5. Structure Calculation

The calculation of the 3D structure forms a cornerstone of the NMR method
for protein structure determination. Because of the complexity of the prob-
lem—a protein consists typically of more than one thousand atoms that are
restrained by a similar number of experimentally determined restraints in con-
junction with stereochemical and steric constraints—in general it is neither
possible to do an exhaustive search of allowed conformations nor to find solu-
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tions by interactive model building. In practice, the calculation of the 3D stryc.
ture therefore is formulated usually as a minimization problem for a targe;
function that measures the agreement between a conformation and the gjvey,
set of restraints. In the following, the three most widely used types of algo-
rithms are discussed.

5.1. Metric Matrix Distance Geometry

Distance geometry based on the metric matrix was the first approach used for
the structure calculation of proteins on the basis of NMR data (2,53,54). It relieg
on the fact that the NOE data and most of the stereochemical data can be repre-
sented as distance restraints. Metric matrix distance geometry is based on the
theorem (55, 56) that, given exact values for all distances among a set of points i
3D Euclidean space, it is possible to determine Cartesian coordinates for thege
points, which are unique except for a global inversion, translation, and rotation

To see this, assume that we are given n points in 3D Euclidean space
with coordinates, 7;, ...,7,, chosen such that I, 7; = 0. The distance matrix,
D, and the metric matrix, G, are the n x n matrices with elements

D;= IFi— ’—‘;'l
and (10)

Gj=ri-r
The metric matrix can be obtained from the distance matrix according to
the relations

Gy = n 2. D}~ 12n*2. D}
i ik

and ' (11)
G;=(Gy+ G;— D2

It is positive semidefinite because for any x|, ..., x, we have
3
%xi Gpy= 2 (Zrx)?20 (12)
and of (maximal) rank 3 because for any x,, ..., x, that fulfill the three linear

conditions Z,rx; =0 (a =1, 2, 3) it follows that ZjG,-f-xj = (. Therefore, the metric

matrix has at most three positive eigenvalues, A%, with corresponding eigenvectors,

e%, that are related to the Cartesian coordinates, r, ..., r,, of the n points by
= ()2 % (a=1,2,3) (13)

Egs. (10-13) provide a straightforward way to embed a distance matrix in
3D space, i.e., to obtain Cartesian coordinates for a set of points if all distances
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are known exactly. To use this idea in a structure calculation one has to account
for the fact that in practice neither complete nor exact distance information is
available: Only for a small subset of all distances, dj, restraints in the form of lower
and upper bounds, /;; < d;; < u;;, can be determined. Upper bounds result from
NOEs, lower bounds from the steric repulsion, and there are some exact dis-
tance constraints from known bond lengths and bond angles of the covalent
structure. To apply Eqgs. (10—-13), unknown upper bounds first are initialized to
alarge value, and unknown lower bounds to zero. Subsequently they are reduced
by “bounds smoothing” (53), i.e., repeated application of the triangle inequal-
ity until all lower and upper bounds are consistent with the triangle inequality.
Then a complete set of distances is produced by “randomly” selecting a value
between the corresponding lower and upper bounds, and the embedding proce-
dure, Egs. (10-13), is used to obtain Cartesian coordinates. Because the
assumptions of the embedding theorem are not met exactly, the resulting struc-
ture will in general have the correct 3D fold (or its mirror image) but will be
very distorted. It has to be regularized extensively, typically by conjugate gra-
dient minimization of an appropriate target function in Cartesian coordinate
space (53), before it can be used as start structure for molecular dynamics simu-
lated annealing (52,57). Starting from the smoothed distance bound matrix, the
calculation is repeated with different “random” selections of distances, in order
to obtain a group of conformers whose spread should give an.indication of the
allowed conformation space. ¥

Note that, since all conformational data have to be encoded into the distance
matrix, it is not possible to introduce any handedness or chirality, and that for

. metric matrix distance geometry, a structure and its mirror image are always

equivalent. The correct handedness is only enforced during regularization. For

the same reason, dihedral angle restraints cannot be used directly in the embed-
- ding; they have to be represented by distance bounds too, thereby losing part of

the information.

The sampling of conformation space by a group of conformers resulting
from metric matrix distance geometry is determined decisively by the “ran-
dom” selection of distance values between corresponding lower and upper
bounds. The most straightforward method, namely, selecting the distances as
independent, uniformly distributed random variables between the two limits,
leads, because meaningful upper bounds exist only for a small subset of all
distances, on the average to an overestimation of the true distances with the
consequence of artificially expanded structures (58,59). This effect is most pro-
nounced for regions of the polypeptide chain for which only few restraints are
available. For example, chain ends that are unstructured in solution tend to be
in an extended conformation. A method to reduce—at the expense of consider-
ably increased computation time—such biased sampling of the allowed con-
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Table 2

Computation Times for the Calculation

of a Group of 50 Conformers of the 40-Residue
Protein Er-2 with the Program DIANA?

Computer type CPU time, min
NEC SX-3 8.1
Cray Y-MP 8.5
IBM RS-6000-590 19.7
HP 9000/735 22.8
Convex C3820 39.6
Sun Sparcstation 5 132.5
Silicon Graphics Indigo 132.7

90n the basis of an experimental NMR data set consist-
ing of 604 distance and 89 dihedral angle restraints (93) 50
conformers of the pheromone Er-2 from Euplotes raikovi
were calculated with the program DIANA, using the REDAC
strategy for convergence improvement. The average num-
ber of target function evaluations per conformer was 7200.

formation space is metrization (53): Instead of selecting the individual dis-
tances independently from each other, the bounds smoothing is repeated after a
next distance value has been chosen, thereby resulting in a more consistent set
of distances for the embedding. This, however, introduces a strong dependence
of the sampling properties on the order in which the distances are chosen (59).
The efficiency of metrization can be enhanced by partial metrication, i.e., by
repeating the bounds smoothing only after the selection of the first few percent
of the distances, which are chosen in random order (60).

The first metric matrix distance geometry program commonly used for
protein structure calculation was the program DISGEO (53). Other widely
used implementations include its successor, DG-II (59), and the program
XPLOR (52).

5.2. Variable Target Function Method

The basic idea of the variable target function algorithm (61) is to fit gradu-
ally an initially randomized starting structure to the conformational restraints
collected with the use of NMR experiments, starting with intraresidual
restraints only, and increasing the “target size” stepwise up to the length of
the complete polypeptide chain. Advantages of the method are its concep-
tual simplicity, its computational efficiency (Table 2), and the fact that it
works in dihedral angle space, so that the covalent geometry is preserved
during the entire calculation (62). The variable target function algorithm
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Fig. 6. Tree structure of dihedral angles as it is used in the program DIANA for the
tripeptide Val-SerIle. Numbered circles represent rigid units. Rotatable bonds are indi-
cated by arrows that point toward the part of the structure that is rotated if the corre-
sponding dihedral angle is changed.

~ was first implemented in the program DISMAN (61). Today, the program

DIANA (51) is the most commonly used implementation to which the follow-
ing description refers.

The algorithm is based on the minimization of a variable target function,
T(9y, ..., §,), where the n degrees of freedom are the dihedral angles, ¢,, ..., ¢,
about rotatable bonds of the polypeptide chain. During the calculation bond
lengths, bond angles and chiralities of the covalent structure are kept fixed at
the standard values of the ECEPP force field (63,64). The molecule thus is
represented as a tree structure made up of rigid units that consist of one or
several atoms and that are connected by rotatable bonds (Fig. 6). The target
function, 7, with 7> 0, is defined such that 7= 0 if and only if all experimental
distance and dihedral angle restraints are fulfilled and all nonbonded atom pairs
satisfy a check for the absence of steric overlap. 7(9,, ..., 9,) < T(¢'}, ..., §',) if
the conformation (¢,, ..., ¢,,) satisfies the restraints “better” than the conforma-
tion (¢';, ..., ¢',). The problem to be solved is to find values (¢, ..., ¢,) that
yield low values of the target function.

The exact definition of the DIANA target function is as follows: Upper and
lower bounds ¢, on distances between two atoms a and P, and restraints on

' individual dihedral angles ¢, in the form of allowed intervals [¢,™", ¢,™]

with ¢,™min < ¢, ™% < ¢, Min + 21 are considered. Let [, =1 — (¢,"* — $,™")/2 be
the half-width of the forbidden interval of dihedral angle values, and A, the
size of the dihedral angle restraint violation. /,, /;, and /, denote the sets of atom
pairs o, for which upper, lower, or van der Waals distance bounds u,g, /o, OF
Vap €xist, I'. C I, (c = u, I, v) subsets thereof, /, the set of restrained dihedral
angles, w,, w;, w,, and w, weighting factors for the different types of restraints,
dyp the distance between the atoms o und 3, ©,(7) = max(0, ¢) and O,(f) =0 (?)
=min(0, £). Then the target function, 7, is defined by (5/):
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Fig. 7. Illustration of the variable target function algorithm as implemented in the
program DIANA (51). Boxes indicate examples of allowed ranges of active restraints
at various minimization levels L.

T= Z We Z [@c(daB-CuB)/zcaB]
c=uly apele (]4)

+wa 20 [1=1/2 (A/T,)2] A2
ae ld

The target function of Eq. (14) is differentiable continuously over the entire
conformation space, and is chosen such that the contribution of a single small
violation, &, is given by w82 for all types of restraints. Because only squared
interatomic distances and no square roots have to be computed, the target func-
tion can be calculated rapidly. The subsets /', C I. (¢ = u,,v) for which the
program DIANA can calculate the target function consist of all distance
restraints between residues whose sequence numbers differ by not more than a
given minimization level, L (Fig. 7).

To reduce the danger of becoming trapped in a local minimum with a
function value much higher than the global minimum, the target function is
varied during a structure calculation. At the outset, only local restraints with
respect to the polypeptide sequence are considered. Subsequently, restraints
between atoms further apart with respect to the primary structure are included
in a stepwise fashion (Fig. 7). Consequently, in the first stages of a structure
calculation the local features of the conformation will be established, and the
global fold of the protein will be obtained only toward the end of the calcula-
tion (Fig. 8).
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randomized

= start

% conformer ﬁ L=5
— —-

Fig. 8. Randomized starting conformer, intermediate structures, and final, con-
verged structure of the protein toxin K during variable target function minimization
with the program DIANA. Covalent bonds among the backbone atoms N, C%, and C'
of the random start conformation, and of the conformations at the end of the minimiza-
tion levels L=1, 5, 10, 22, and L_,, = 57 are shown (97).

g

The minimization algorithm used in the program DIANA is the well-known
- method of conjugate gradients (65). At each minimization step c¥njugate gradi-
- entiterations are done until either the norm of the gradient is smaller than some
- preset value, or the maximal number of iterations at this minimization step is
- exceeded. The gradient of the target function can be calculated with a fast algo-
% rithm because the target function can be written as a sum of functions of indi-
£ vidual interatomic distances and dihedral angles (66,67). The partial derivative
z: of the function T of Eq. (14) with respect to a dihedral angle @' is given by

00y =~ o Jor= (Gt Ta) Gt 2wy 20 (1= (BT Abaar (19)
o ae /d
%  where

-

fo= 2w X [0c(dis—clo)led) (Fu ),

c=ulyv afelc
aeMg (16)
= 2 we X [0c(dls—cp)leds) (Fun )
c=uly afelc
' uehla

r and rB denote the position vectors of the atoms o and B, respectively,
&, denotes the unit vector along the rotatable bond a', 7, the start point of it,
and M, the set of all atoms for which the positions are affected by a change of
the dihedral angle a'if the N-terminal part of the protein molecule is kept fixed.
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Fig. 9. Flowchart outlining the course of a protein structure calculation with the
program DIANA using either the “direct” way (A-B(9-D-E) or redundant dihedral
angle constraints (REDAC; 69) (A-B@-[C(V-B()-...]-D-E). Typically, the number of
REDAC-cycles is | or 2.

A drawback of the straightforward implementation of the variable target
function algorithm is that for all but the most simple molecular topologies only
a small percentage of the calculations converge with small residual restraint
violations, which is a typical local minimum problem. Because of the low yield
of acceptable conformers, calculations typically have been started with a large
number of randomized starting conformers in order to obtain a group of good
solutions, and sometimes a compromise had to be made between the require-
ments of small residual violations and the available computing time (68). With
the introduction of the highly optimized program DIANA, which significantly
reduced the computation time needed for the calculation of a single conformer,
a workable situation was achieved for a-proteins (40), but for B-proteins with
more complex topology the situation remained unsatisfactory. However, with
the use of redundant dihedral angle restraints (REDAC), a greatly improved
yield of converged conformers is obtained also for B-proteins. _

In Fig. 9 the use of DIANA with redundant dihedral angle constraints ( 69) 18
outlined and placed in perspective with the “direct” variable target function
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method as proposed originally by Braun and Go (61). In the direct approach, n
start conformers with randomized dihedral angles are subjected to DIANA
minimization against the experimental NMR constraints in step B©). Experi-
ence has shown that the target function can be reduced further by repeating the
DIANA refinement with all constraints and variable weights for the van der
Waals constraints for a limited number & of well-converged solutions (m < k < n)
in step D. Among the resulting solutions, m conformers with the smallest final
target function values are selected to represent the solution structure. In prac-
tice, n is adjusted so as to obtain, typically, m = 20 acceptable conformers.

To use REDAC, one or several cycles C¥-B( are added to the calculation,
providing a partial feedback of structural information from all conformers that
were calculated up to the maximal minimization level L, in the step B¢-D. In
the step C, a particular amino acid residue is considered to have an accept-
ably well-defined conformation if the target function value owing to constraint
violations that involve atoms or dihedral angles of this residue is less than a
predefined value, and if the same condition holds for the two sequentially
neighboring residues. Redundant dihedral angle constraints are generated and
added to the input for the DIANA structure calculation in step BO for all those
residues that were found to be acceptable in at least a predefined minimal num-
ber of conformers, typically 10, by taking the two extreme dihedral angle val-
ues in the group of acceptable conformers as upper and lawer bounds.

The empirically found higher yield of good conformers with the use of
REDAC—that does not lead to a reduction in the sampling of conformation
space (69)—can be rationalized as follows: In many regions of a protein struc-
ture, in particular in B-strands, the local conformation is determined not only
by the local conformational constraints derived from intraresidual, sequential,
and medium-range NOEs (/), but also by longer-range constraints, e.g.,
interstrand distance constraints in B-sheets. Therefore, the local constraints
alone may allow for multiple different local conformations at low target levels
in a DIANA calculation, of which some may be incompatible with the longer-
range constraints taken into account at higher minimization levels. Obviously,

~ incorrect local conformations that satisfy the experimentally available local

constraints are potential local minima, which could only be ruled out from the
beginning if the information contained in the long-range constraints were avail-
able already at low levels of the minimization. The use of REDAC achieves
this: Information contained in the complete data set is translated into (by defi-
nition intraresidual) dihedral angle constraints. Further, it makes clear why the
yield of good solutions with the direct strategy was in general higher for
a-proteins than for B-proteins, since the conformation of an a-helix its particu-
larly well-determined by sequential and medium-range constraints (7). The suc-
cess of DIANA structure calculations using REDAC primarily is owing to the
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feedback of useful structural information derived from conformers calculated yp
to the maximal level L, into a subsequent round of structure calculations
which starts with local constraints only. In this way information gathered
from the entire structure calculation is used in obtaining the final resy]y
whereas most of this information is discarded in the direct approach. ’

5.3. Molecular Dynamics Simulated Annealing

This third major method for NMR structure calculation is based on numers;-
cally solving Newton’s equation of motion in order to obtain a trajectory for
the molecular system (70,71). The degrees of freedom are the Cartesian coor-
dinates of the atoms. In contrast to “standard” molecular dynamics simulationg
that try to simulate the behavior of the real physical system as closely as pos-
sible (and do not include restraints derived from NMR), the purpose of 3
molecular dynamics calculation in a NMR structure determination is simply to
search the allowed conformation space of the protein. Therefore, the simulated
annealing (57,72) is performed at high temperature using a simplified force
field that treats the atoms as soft spheres without attractive or long-range (i.e.,
electrostatic) nonbonded interactions, and that does not include explicit con-
sideration of the solvent. An important feature of molecular dynamics when
compared to the straightforward minimization of a target function is that the
presence of kinetic energy allows to cross barriers of the potential surface,
thereby reducing the problem of becoming trapped in local minima. Since
molecular dynamics cannot generate conformations from scratch, a start struc-
ture is needed, which is generated typically either by metric matrix distance
geometry or by the variable target function method, but—at the expense of sub-
stantially increased computation time—it is possible also to start from a ran-
dom structure (73) or even from a set of atoms randomly distributed in space
(74). Any general molecular dynamics program, such as GROMOS (75), AMBER
(76), or CHARMM (77), can be used for the simulated annealing of NMR
structures, provided that pseudoenergy terms for distance and dihedral angle
restraints have been incorporated. In practice, the program best adapted and
most widely used for this purpose is XPLOR (52).

The forces, F,, acting on n particles with masses, m;, and positions, r,, in
Newton’s equation of motion,

m, d2rjd=F;, (i=1,...,n) (17)

are given by the negative gradient of the potential energy function, E, with
respect to the Cartesian coordinates, i.e., F =— V E. For simulated annealing,
a simplified potential energy function'is used that mcludes terms to maintain the
covalent geometry of the structure by means of harmonic bond length and bond
angle potentials, dihedral angle potentials, terms to enforce the proper chiralities

’,-‘ﬂ;‘»,\ Voosriitand g n
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and planarities, a simple repulsive potential instead of the Lennard-Jones and
electrostatic nonbonded interactions, as well as terms for distance and dihedral
angle restraints. For example, in the program XPLOR (52),

E= bonzds ky (r—ro)® + ngl"es ko (8 —69)% + dihezdra,s ky [1 + cos (ny + 8)]

2 2

+ impropers k¢ (¢ - 6)2 + nonbonded krepel {max[O, (-S'Rmin)2 - RZ]}Z (18)

pairs

2 kaAl + 2 kaAZ

distapce angllc
restraints restraints
In Eq. (18), kp, kg, Ky, Krepels k2> and k, denote the various force constants, r
and r, the actual and the correct bond length, respectively, 6 and 6 the actual
and correct bond angle, ¢ the actual dihedral angle or improper angle value, n
the number of minima of the dihedral angle potential, 8 an offset of the dihe-
dral angle and improper potentials, R,;, the distance where the van der Waals
potentlal has its minimum, R the actual distance between a nonbonded atom
pair, s a scaling factor, and A, and A, the size of the distance or dihedral angle
restraint violation. To obtain a trajectory, the equation of motion is numeri-

- cally integrated usmg a small, finite time step, 8¢, for example by advancing

the coordinates, 7;, of the particles according to (70). ¥
L+ 86) = 27 (1) — r(t — 81) + (862/m,) Fi(0) (19)
The velocities, V;, are given by
Viey= [Vit + 81) — v(t — 81))/28¢ (20)

~ The time step, &, must be small enough to still sample adequately the fastest
" motions, i.e., of the order of 1073 s. In general, the highest frequency motions are

bond length oscillations. Therefore, the time step can be increased if the bond lengths

are constrained to their correct values by the SHAKE method (78). To control the

temperature of the system, it is loosely coupled to a temperature bath (79).

For the simulated annealing of a (possibly distorted) start structure, certain
measures have to be taken in order to achieve sampling of the conformation
space within reasonable time (57). In a typical simulated annealing protocol (52),
the simulated annealing is performed for a few picoseconds at high temperature,
say T = 2000 K, starting with a very small weight for the steric repulsion that
allows atoms to penetrate each other, and gradually increasing the strength of the
steric repulsion during the calculation. Subsequently, the system is cooled down
slowly for another few picoseconds and finally energy-minimized. This process
is repeated individually for each of the start conformers. In general, simulated
annealing by molecular dynamics requires substantially more computation time
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Table 3
Computation Times for the Calculation of Groups of 10 Conformers
with the Program XPLOR on a Convex C210 Computer?

CPU time, min

Protein G?, Interleukin-ge,

Calculation 855 atoms 2362 atomg
Metrix matrix distance geometry
Substructure embedding? 16 346
Full embedding® 405 11,520
Simulated annealing
Starting from embedded structures 254 691
Starting from random structures 599 1680

2 From Briinger (52), p. 328.

b Gronenborn et al. (95).

¢Clore et al. (96).

4Embedding is performed for a substructure consisting of all C, H%, N, HN, C', C, and Cr
atoms; the remaining atoms will be added from a template structure during regularization.

¢ Embedding is performed for all atoms.

than the other methods (Table 3). This lower efficiency partially is compensated
by the high success rate of 40-100% of the start structures that is caused by the
ability of the algorithm to “escape” from local minima.

6. Structure Analysis

The result of a NMR structure calculation is a group of conformers that
represents the solution structure of the protein. This section summarizes some
of the commonly used formal measures for the analysis of a solution struc-
ture. A computer program, PROCHECK, that incorporates many different
analyses of groups of NMR conformers is available (80). Of course, in order
to obtain a biologically meaningful assessment of the structure one will also
analyze it visually with the help of a molecular graphics system and compare
it with structures of related proteins.

6.1. Residual Restraint Violations

At the end of a structure calculation, the immediate question arises whether
the structure calculation was successful, i.e., whether the algorithm was able to
find structures that fulfill the given restraints, and, if not, which are the
restraints that could not be satisfied. Therefore, an analysis of the residual
restraint violations seen in the final conformers is performed, which is usually
summarized in a table (Table 4). In addition, a list of residual restraint viola-
tions that indicates, for each violation separately, the individual conformers
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Table 4
Analysis of the Residual Restraint Violations in the 20 Conformers

of the Protein Toxin K with the Smallest DIANA Target Function Values?

—

Average value +
Quantity standard deviation Range

DIANA target function® 0.50 +0.14 A? 0.19-0.74 A2
Residual NOE di§tance restraint violations

Number >0.1 A 38+2.1 0-7

Sum 33+04A 2.0-38A

Maximum 0.15+£0.05A 0.07-0.31 A
Residual dihedral angle restraint violations

Number >5° 0

Sum 6.1 +24° 2.4-10.6°

Maximum 1.8 £0.9° 0.6-4.2°

4 From Berndt et al. (97). A total of 50 conformers were calculated with the program DIANA
using the REDAC strategy for convergence improvement but only the 20 structures with the
smallest final target function values are included in the analysis.

b The weighting factor in Eq. (14) for NOE upper distance bounds was w, = 1, for van der Waals
lower distance bounds w, =2, and for dihedral angle restraints w; = 5§ A2.

where the violation occurs, can reveal consistent violations and distinguish
them from casual violations resulting from the occurrence ofydifferent local
minima in different conformers. Consistent violations most likely point to an
inconsistency of the input data rather than to a convergence problem of the
structure calculation algorithm.

6.2. Atomic Root-Mean-Square Deviations and Displacements

The standard measure used to quantify differences between 3D structures is
the root-mean-square deviation (RMSD) for a given set of corresponding atoms
(81). For two sets of n atoms each, 7, ..., 7, and q}, ..., g, with 7, = 3,4,= 0,
the RMSD is defined by

2 -

| ri—RgA"? (21)

RMSD = 0 [1/n <

R denotes a rotation matrix, and SO(3) the rotation group. The optimal
superposition according to Eq. (21) is used also for the simultaneous display of
several conformers on a molecular graphics system. In practice, RMSD values
usually are calculated for the backbone atoms N, C%, and C' or for all heavy
(i.e., nonhydrogen) atoms of those residues for which the conformation is
well-defined, excluding, for instance, chain termini and loops that are unstruc-
tured in solution. For a group of m conformers, either the average of the m RMSD
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Flg 10. Plot vs the amino acid sequence of the global backbone displacements,
ng,b relative to the mean NMR structure of hirudin(1-51) for the 20 conformers of
the solution structure (99; filled squares), and for hirudin in the X-ray crystal structure
of the hirudin-thrombin complex (/00; open squares).

values between the individual conformers and their mean structure or the aver-
age of the m(m — 1)/2 pairwise RMSD values among the indiwidual conformers
are reported. The latter, pairwise RMSD is about 1.4 times larger than the corre-
sponding RMSD to the mean structure. To define the mean structure, the con-
formers are superimposed according to Eq. (21) onto the first conformer, and
the arithmetic mean of the corresponding Cartesian coordinates is taken.

It cannot be overemphasized that a small RMSD value per se is not indicative of
a high-quality structure: It neither gives any information about the consistency of
the experimental data nor does it correspond necessarily to the conformation space
that is really allowed by the conformational restraints because the sampling of
conformation space by the structure calculation algorithm may have been biased,
i.e., there exist structures that would be in agreement with the data but significantly
different from those resulting from the structure calculation. This may be a result
of the limited statistics—typically, only about 20 conformers are analyzed—or of
an inherent deficiency of the structure calculation algorithm (58).

Displacements (82) are a generalization of the RMSD values, since the set of
atoms used for the superposition of the conformers, My, differs from the set of
atoms for which the RMSD of the positions actually is calculated, Myysp. For
example, for the evaluatlon of the backbone displacement of a given residue i after
global superposition, D, M, consists of the backbone atoms N, C%, and C' of
the residues used for global superposition, and Mgysp of the backbone atoms N,
C“ and C' of residue i. To evaluate local backbone displacements for a residue i,
D, Mg, consists of the backbone atoms N, C%, and C' of the residues i — 1, i, and
i + 1, and Mpysp consists of the backbone atoms of residue i. Displacements are
conveniently displayed in a plot vs the amino acid sequence of the protein (Fig. 10).

&
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Fig. 11. Values of the dihedral angles ¢, y, and %' for hirudin(1-51) observed in the 20
conformers that represent the solution structure (99; dots enclosed by bars) and for hirudin
in the X-ray crystal structure of the hirudin—thrombin complex (/00; black squares).

6.3. Dihedral Angle Distributions

To analyze the conformation of the polypeptide chain on a local level, plots
of the distributions of the individual values of the dihedral angles ¢, v, and y!

~. vs the amino acid sequence of the protein (Fig. 11) and Ramachandran plots

are convenient. They allow, for example, the identification of secondary struc-
ture elements, the classification of tight turns, and an assessment of the local
precision of the structure determination.

To obtain the average value, ¢, and the standard deviation, o, from the dihedral
angle values, ¢, ..., ¢, of the individual confornners, one has to take into
account the periodicity of the dihedral angles, for example, by using
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¢ =arg PIPEN
k
and

o = [2 log|l/n %e"%]“z 22)

The values defined by Egs. (22) have a clear meaning only when the dihedra]
angle is well-defined. For example, the common situation that there are twq
groups of conformers, each with a well-defined value of the dihedral angle, byt
with a large difference between the two groups, cannot be distinguished from
the situation of a truly disordered dihedral angle by means of Egs. (22).

6.4. Hydrogen Bonds

Another important feature of protein structures are hydrogen bonds. They
can be identified readily in the structure, for example, by the criterion that the
hydrogen-acceptor distance must be shorter than 2.4 A and that the angle
between the hydrogen, the atom to which the hydrogen is covalently bound,
and the acceptor must be smaller than 35° (82). The second condition ensures
that the hydrogen bond roughly is linear.

7. Structure Refinement

There exist many possibilities for the refinement of NMR structures of pro-
teins. The following brief overview can mention only a few often used refine-
ment methods.

Fig. 12. (opposite) llustration of the use of a 3D protein structure to resolve
amiguities in the NOESY crosspeak assignment. The program ASNO (83) is used in
conjunction with the program package XEASY (98, 100) for interactive spectral analy-
sis. (A) Contour plot of a spectral region containing two crosspeaks in the NOESY
spectrum of toxin K (97) are displayed by XEASY together with the corresponding
assignment matrices. In each matrix the rows and columns are identified with the type
of hydrogen atom and the sequence position of the amino acid residue, the hatched
squares denote chemical shift-based assignments, and black squares denote assignments
corresponding to distances shorter than 5 A in the structure that were determined by
ASNO. The figure shows that ASNO yielded unique assignments for both peaks,
whereas the chemical shift information alone lead to six- and eightfold degenerate
assignments, respectively. (B) View of the toxin K conformer with the lowest final

DIANA target function value (97). All backbone atoms N, C%, and C', the backbone -

amide protons of residues 10, 38, and 50, and all side chain heavy atoms of the residues
Cys 14 and Tyr 21 have been drawn. All possible chemical shift-based assignments of
the upper NOESY crosspeak in (A) are identified by dashed lines, and the averages of
the corresponding distances in the 20 final DIANA conformers are indicated. The
arrow points to the distance corresponding to the unique assignment by ASNO.
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Fig. 12

7.1. Resolving Assignment Ambiguities

The most obvious, straightforward, and effective refinement of a NMR struc-

tur.e'ls to make use of preliminary 3D structures as a reference to resolve ambi-
- guities in NOE assignments that are otherwise based on the chemical shifts

avallablf; from the sequence-specific resonance assignments. In general, this
Process is repeated iteratively in several rounds of NOESY crosspeak assign-
men'ts and structure calculations. It can be automated readily (83; Fig. 12).
Typlcally, the number of unambiguously assigned NOESY crosspeaks, and
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Fig. 13. View of the polypeptide backbone of the 10 best DIANA conformers of
toxin K at four stages of structure refinement using the program ASNO (83; Fig. 12).
(A) Structure calculated on the basis of 322 NOE upper distance bounds assigned
from chemical shift information only. (B) Structure calculated from an input of 657
NOE upper distance bounds assigned using ASNO with the structure from (A). (C)
Structure calculated from an input of 747 relevant NOE upper distance bounds
assigned using ASNO with the structure from (B). (D) “Final” structure calculated
from 809 NOE upper distance bounds (97).

hence the number of distance restraints, can be increased at least twofold over
the situation when only assignments based on the chemical shifts are included.
The most pronounced improvement is a result of the increased number of
long-range distance restraints (Fig. 13).

7.2. Restrained Energy Minimization

The structure calculation algorithms for NMR structures usually use a simpli-
fied force field that contains only the most dominant parts of the conformational
energy. Therefore, the resulting structures may be unfavorable with respect to 2

Calculating Protein Structures 187

full, “physical” energy function (63,75,84) that includes, in addition to the terms
used by the distance geometry structure calculation algorithms of Section 5.,
also a Lennard-Jones potential and electrostatic interactions for nonbonded
atom pairs, and possibly other terms. The conformational energy of a distance
geometry structure can be reduced significantly by restrained energy minimi-
zation, i.e., by locating a local minimum of the conformational energy function
in the near vicinity of the distance geometry structure (82). Visually, restrained
energy minimization results in only small changes of the conformation.

7.3. Molecular Dynamics Simulation

An unrestrained or restrained molecular dynamics simulation under physi-
ological conditions using the full physical force field and explicit water to rep-
resent the solvent can often give new insights into a protein structure, in
particular for the generally disordered protein surface (85,86). Such “realistic”
molecular dynamics simulations that try to represent the molecular system as
faithfully as possible are different fundamentally from simulated annealing,
where artificial conditions, such as high temperature, are chosen in order to
enhance the sampling of conformation space. A limiting factor in molecular
dynamics simulations are the relatively short simulation times of up to
approximately 1 ns that are feasible with present computers, because many
motions in proteins occur on longer time scales. ¥
7.4. Time- or Ensemble-Averaged Conformational Restraints

The commonly used structure calculation algorithms try to find rigid con-
formations that fulfill all distance and dihedral angle restraints simultaneously,
and the effects of internal mobility of the polypeptide chain are taken into
account implicitly by the interpretation of the NOE data as conservative upper
distance bounds instead of exact distance constraints (/). In reality, the NOEs
and scalar coupling constants measured by NMR constitute an average over
time and space. Methods have been proposed to include distance and dihedral
angle restraints as time-averaged rather than instantaneous restraints into a
molecular dynamics simulation (/6,/7,87). In another approach, a molecular
dynamics simulation is performed simultaneously for an ensemble of conform-
ers, such that the restraints are not required to be fulfilled by each individual
conformer but only by the ensemble as a whole (88).

7.5. Relaxation Matrix Refinement

Both spin diffusion and the internal mobility of proteins influence the
NOE intensities from which distance restraints are derived for the structure
calculation. Complete relaxation matrix refinement (22—24,26) can, in prin-
ciple, take these factors into account and thus allow to make a more quantita-
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tive use of the NOE data as with the initial rate approximation (20) and the
semi-quantitative calibration of distance restraints (/). However, there is the
danger of overinterpretation of the data because many of the parameters entering
the relaxation matrix in practice can not be derived from experiments. In par-
ticular, many assumptions about internal and overall motions of the protein
enter the relaxation matrix (/3). Two different methods of complete relaxation
matrix refinement are in use: Either the relaxation matrix treatment is used to
derive a “more precise” set of distance restraints, which is then used in a con-
ventional structure calculation (22,89), or the 3D structure may be refined
directly with respect to the observed NOE intensities (23,24,90). The second
approach conceptually is more attractive but also much more time-consuming,
In analogy to the practice in X-ray crystallography, R-factors can be defined on
the basis of the relaxation matrix that measure the agreement between the
NOESY spectrum and the 3D structure (9/-93).
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6

studies of Protein—Ligand Interactions by NMR

pavid J. Craik and Jacqueline A. Wilce

1. Introduction

NMR spectroscopy is recognized widely as an invaluable tool for the struc-
tural characterization of biological macromolecules with molecular weights of
less than approx 25 kDa. The quality of structures obtainable using NMR spec-
troscopic methods is comparable with those derived from X-ray crystallography
but, in addition, NMR offers the possibility of obtaining quantitative information
onmolecular flexibility. A particularly important aspect of the dynamics of mac-
romolecules is that of ligand binding. Such binding can be accompanied by con-
formational changes in either the ligand, the macromolecule, or both and, in many
cases, such dynamic changes are crucial to the functionjng of the macromolecu-
lar system. This chapter is concerned with the use of NMR to define the nature of
specific protein—ligand interactions. Although the focus is on interactions of
ligands with proteins, rather than with other biological macromolecules, such
as DNA or membranes, many of the techniques applicable to studies of pro-
tein—ligand interactions generally are applicable also to other macromolecular
interactions. The topic of protein—ligand interactions has also been addressed
from a number of different viewpoints in several other recent reviews (/7).

1.1. Importance of Protein—Ligand Interactions

Protein—ligand interactions are integral to a wide range of biological pro-
cesses, including hormone, neurotransmitter or drug binding, antigen recogni-
tion, and enzyme-substrate interactions. Fundamental to each of these
interactions is the recognition by a ligand of a unique binding surface where it
binds in a defined way to carry out its function. Through an understanding of
these specific interactions it may be possible to design or discover analogous
ligands with altered binding properties and therefore to intervene in the bio-
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