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A novel procedure for efficient computation of three-dimensional protein structures from
nuclear magnetic resonance (n.m.r.) data in solution is described, which is based on using
the program DIANA in combination with the supporting programs CALIBA, HABAS and
GLOMSA. The first part of this paper describes the new programs DTANA, CALIBA and
GLOMSA. DIANA is a new, fully vectorized implementation of the variable target function
algorithm for the computation of protein structures from n.m.r. data. Its main advantages,
when compared to previously available programs using the variable target function
algorithm, are a significant reduction of the computation time, and a novel treatment of
experimental distance constraints involving diastereotopic groups of hydrogen atoms that
were not individually assigned. CALIBA converts the measured nuclear Overhauser effects
into upper distance limits and thus prepares the input for the previously described program
HABAS and for DIANA. GLOMSA is used for obtaining individual assignments for pairs of
diastereotopic substituents by comparison of the experimental constraints with preliminary
results of the structure calculations. With its general outlay, the presently used combination
of the four programs is particularly user-friendly. In the second part of the paper, initial
results are presented on the influence of the novel DIANA treatment of diastereotopic
protons on the quality of the structures obtained, and a systematic study of the central
processing unit times needed for the same protein structure calculation on a range of

different, commonly available computers is described.

1. Introduction

The early stages in the development of the
presently widely used n.m.r.f method for the deter-
mination of three-dimensional biomacromolecular
structures in solution (for a review, see Wiithrich,
1989) made it clear that the key data measured by
n.m.r. would consist of a network of distance
constraints between spatially proximate hydrogen
atoms (Gordon & Wiithrich, 1978; Dubs et al., 1979;
Keller & Wiithrich, 1980; Wiithrich et al., 1982). Tt
immediately followed that the techniques for struc-

1 Abbreviations used: n.m.r., nuclear magnetic
resonance; BPTI, basic pancreatic trypsin inhibitor;
NOE, nuclear Overhauser enhancement; NOESY,
2-dimensional nuclear Overhauser enhancement
spectroscopy; c.p.u., central processing unit; MFLOPS,
million floating point operations per second; r.m.s.d.,
root-mean-square deviation.
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ture determination from other experimental data, in
particular X-ray diffractions, could not be adapted for
the structural analysis of the n.m.r. data, and hence
new ways had to be developed. Initially, algorithms
were used that combined metric matrix distance
geometry (Blumenthal, 1970), which had been
applied by the groups of Crippen and Kuntz for
systematic studies on protein structures (Crippen,
1977; Kuntz et al., 1976; Havel et al., 1983), with a
detailed description of the interplay of constraints
imposed by the covalent polypeptide structure and
those from the n.m.r. measurements (Braun et al.,
1981, 1983; Havel & Wiithrich, 1984, 1985).
Subsequent work included a variable target func-
tion algorithm (Braun & Go, 1985), interactive
molecular modeling using computer graphics
(Billeter et al., 1985), restrained molecular dynamics
calculations either applied directly with the n.m.r.
data (Briinger et al., 1986) or in conjunction with
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model building (Kaptein et al., 1985) or distance
geometry calculations (Clore et al., 1985), and an
ellipsoid algorithm (Billeter et al., 1987). Inspection
of the recent literature shows that the following
procedures are currently mostly employed.
(1) Embedding using a metric matrix distance
geometry program, e.g. DISGEO (Havel &
Wiithrich, 1984) or DSPACE (Hare Research,
Woodinville, WA 98072, U.S.A.), followed by simu-
lated annealing using molecular dynamics (Driscoll
et al., 1989; Lee et al., 1989). (2) Structure deter-
mination using a variable target function algorithm,
e.g. DISMAN (Braun & Go, 1985), which directly
generates acceptable structures (Kline et al., 1988;
Schultze et al., 1988; Zuiderweg et al., 1989) or can
be supplemented by a molecular mechanics energy
minimization (e.g. Billeter et al., 1990; Qian et al.,
1989; Widmer et al., 1989).

Once it had been established that n.m.r. measure-
ments could provide sufficient data for the deter-
mination of globular protein structures at atomic
resolution (Havel & Wiithrich, 1984, 1985;
Williamson et al., 1985), the main interest shifted to
the development of procedures ensuring both high
efficiency of structure calculations and minimal bias
of the results by the algorithms used. This paper
presents a further step in this development by
describing a new implementation of the variable
target function algorithm of Braun & Go6 (1985) in
the program DIANA. This program was primarily
designed to be efficient with respect to the c.p.u.
time used and, in combination with the supporting
programs CALIBA, HABAS and GLOMSA, to be
user-friendly in routine structure determinations
(Glintert et al., 1990, accompanying paper).
Furthermore, thanks to the high efficiency of the
fully vectorized program, systematic large-scale
investigations on the course of variable target func-
tion calculations could be started with DIANA (P.
Giintert, W. Braun & K. Wiithrich, unpublished
results), which should provide a basis for further
optimization of structure calculations.

With regard to improving the quality of structure
determinations by n.m.r., the treatment of distance
constraints with diastereotopic groups of protons
(Wiithrich et al., 1983) can be of crucial importance
(Giintert et al., 1989). Recent work in this regard
focused mainly on establishing individual assign-
ments for diastereotopic pairs of protons (Weber et
al., 1988; Neri et al., 1989; Nilges et al., 1990). The
program DIANA includes a novel treatment of
constraints with prochiral centers for which the
diastereotopic ligands were not individually
assigned. In calculations with BPTI, the results of
this new treatment are compared with corre-
sponding results obtained with the original pseudo-
atom concept (Wiithrich et al., 1983).

2. Methods

This section describes the 3 programs CALIBA
(“calibration of NOE intensity wversus distance
constraints”’), DIANA (“distance geometry algorithm for

L n.m.r. experiments

F

NOE intensities

CALIBA

Conversion from NOESY
cross-peak volumes to upper
limits for interatomic distances

Scalar coupling
constants

Distance constraints

HABAS
Determination of stereospecif- | o
ic assignments and generation
of dihedral angle constraints

All constraints on distances
and dihedral angles

3D protein
structures

GLOMSA
Determination of addi-
tional stereospecific as-
signments

DIANA
Calculation of three-dimen-
sional protein structures

Stereospecific
assignments

3D protein structures

i

Structure refinement

Figure 1. Schematic representation of the functions of
the programs CALIBA, DIANA and GLOMSA and the
input and output of these programs. See the text for
details.

n.m.r. applications”’) and GLOMSA (‘“global method for
obtaining stereospecific assignments’’), which were all
written in Fortran-77. Fig. 1 affords a survey of the
functions of these programs, which are used in the order
CALIBA, DIANA and then GLOMSA. The program
CALIBA accepts the experimental NOE intensities as
input and performs the calibration of NOESY cross-
peaks, i.e. the conversion from peak volumes to upper
distance limits. It thus prepares the principal input for
the program HABAS (Giintert et al., 1989), which in turn
adds stereospecific assignments to the input for DTANA.
DIANA is used for efficient calculation of protein confor-
mations based on distance and dihedral angle constraints
that can be obtained by n.m.r. measurements (Wiithrich,
1986). It is a new, improved and vectorized implemen-
tation of the variable target function algorithm that has
first been used in the program DISMAN (Braun & Go,
1985) and subsequently in other programs (Vasquez &
Scheraga, 1988; Kohda et al., 1988). In addition to the
structure calculations, DTANA screens the experimental
distance constraints and eliminates irrelevant constraints
from the input, and it applies a novel adjustment routine
to distance constraints with pairs of diastereotopic
protons for which no individual assignments are available.
The program GLOMSA accepts as input the structures
calculated with DIANA and the conformational
constraints list produced by CALIBA. It is used to
obtain additional stereospecific assignments based on the
comparison of upper distance limit pairs or relational
constraints (Giintert et al., 1989) involving the diastereo-
topic substituents of prochiral centers with a set of pre-
liminary conformers (Kline et al., 1988). The additional
stereospecific assignments thus obtained are included in
the input for a new DIANA calculation, which in turn
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produces the structures used for further refinements, e.g.
by energy minimization (Brooks et al., 1983; Briinger et
al., 1986; Schaumann et al., 1990; Weiner & Kollman,
1981).

(a) The program CALIBA

In the present version of the program CALIBA, the
calibration of NOE intensity versus the corresponding
upper distance bound is based on either of 2 model
assumptions. The Ist assumes that the NOESY cross-
peak volume, V, is inversely proportional to the power n
of the corresponding upper distance bound b:

c

V=1 ()
where C is a constant, and the values of n are typically in
the range from 4 to 6. Clearly the value n = 6 is an upper
limit for » obtained theoretically by assuming a rigid
structure. Exponents n < 6 were found empirically to
afford improved representations of the relation between
cross-peak volumes and distances for peaks that involve
peripheral side-chain protons. The 2nd possibility uses the
uniform averaging model (Braun et al., 1981):

c (1 1
V= — <%—b—5). @)

Here, (' is a constant, and dy=19 A is the shortest
sterically allowed distance between 2  protons
(1 A=01 nm).

The input for CALIBA consists of cross-peak volumes
measured in 1 or several NOESY spectra, for example,
with the program EASY (Eccles et al., 1989). The peak
volumes from different spectra, which may have been
recorded with different experimental conditions, can be
multiplied with user-specified weighting factors. The
volumes of peaks that correspond to 2 or more protons
with degenerate chemical shifts are divided by the
number of protons they contain. If more than 1 peak
intensity corresponding to the same distance is retained
from the analysis of the spectra, only the strongest (after
the aforementioned weighting) is considered for the
conversion. For an optimal empirical calibration, the
curves (1) or (2) and the constants C or €' can be chosen
independently for different classes of interatomic
distances, e.g. intraresidual, sequential, medium-range
and long-range backbone, and long-range constraints
(Wiithrich, 1986), and for cross-peaks that do or do not
involve methyl groups. To obtain reasonable upper
bounds also for very strong or very weak cross-peaks, the
values for the upper bounds b are restricted to a limited
range b™" < b < b™*, with typical values for 5™ of 2:4 A,
and o™ of 50 A. Constraints corresponding to cross-
peaks relating resonance lines from multiple protons with
degenerate chemical shifts are referred to pseudoatoms,
and the appropriate pseudoatom corrections (Wiithrich et
al., 1983) are automatically applied. The program
produces upper distance limit files that can be read
directly by the programs HABAS (Giintert et al., 1989),
DIANA and GLOMSA.

To optimize the choice of the calibration curves at
different points during a structure calculation where one
already has a set of preliminary structures for the protein
under investigation, CALIBA has the option to produce a
doubly logarithmic plot of peak volumes versus the
average of the corresponding distances in this set of
structures. Using this plot, the calibration curves can then
be adjusted such that most of the resulting upper distance

limits are fulfilled in the given preliminary structures
without being unnecessarily loosened.

(b) The program DIAN A

The algorithm used by the program DIANA is based on
the minimization of a variable target function
T(¢y, ..., P,), where the n degrees of freedom are the
dihedral angles ¢4, ..., ¢, about single (rotatable) bonds
of the polypeptide chain. During the calculation the bond
lengths, bond angles and chiralities of the covalent struc-
ture are kept fixed at the ECEPP standard values
(Momany et al., 1975). The target function 7', with 7' > 0,
(for an explicit definition see eqn (6) below) is defined
such that T' = 0 if all experimental distance and dihedral
angle constraints are fulfilled and all non-bonded atom
pairs satisfy a check for the absence of steric overlap.
Ty, ..., 9, < T(0,,...,0,) if the conformation
(¢y, ..., ¢,) satisfies the constraints better than the
conformation (6, ..., 0,). The problem to be solved is to
find the values (¢,, ..., ¢,) that yield low values of the
target function. To reduce the danger of becoming
trapped in a local minimum with a function value much
higher than the global minimum, the target function is
varied during a structure calculation. At the outset, only
local constraints with respect to the polypeptide sequence
are considered, and in subsequent rounds of calculations,
constraints between atoms further apart with respect to
the primary structure are included in a stepwise fashion.
Consequently, in the 1st stages of a structure calculation,
the local features of the conformation will be established,
and the global fold of the protein will be obtained only
toward the end of the calculation. Similar strategies of
avoiding local minima by variation of the pseudoenergy
function during a structure calculation have been used
with restrained molecular dynamics techniques (Holak et
al., 1987; Nilges et al., 1988).

(i) The variable target function

Two different kinds of constraints are considered by the
target function, i.e. upper and lower bounds on inter-
atomic distances, and restraints on individual dihedral
angles in the form of an allowed interval (Wiithrich, 1986;
Braun, 1987). An upper or lower limit, b, on the distance
between the 2 atoms a and B is denoted by the triple
(o, ,b) or, if there is no danger of ambiguity, simply by b.
A direct constraint on the dihedral angle a that restricts
its value ¢, to an allowed interval [¢™" ¢™*], with
Pmin < pM* < MM 4 27 s denoted by (a, ¢™", ¢™). In
the definition of the variable target function we use
further the half-width, I', of the forbidden interval of
dihedral angle values:

B it i
I'=n 5 R

3)

and the signed dihedral angle constraint violation

{ 0. if (o™
A= _Amln’ If ¢a¢ [¢mm7 ¢max] and Amm S Amax; (4)
Amax7 if ¢a¢ [quin,d)maxj and Amin > Amax;
with . o o
A™" = min {|$™" — ¢,|.2n—|$™" — ¢,|},
and

A™3X — 1in {M’Smax_q’sal’gn_ld,‘max_(ﬁal}.

¢ denotes the equivalent value of ¢ in the interval [0,2n[,
which can be obtained in all instances by the addition of
an integer multiple of 27 to ¢. The sign of A will be
important only in the calculation of the gradient of the




520 P. Giintert et al.

target function; it is positive if a small increase of ¢, also
increases the violation of the angle constraints, and
negative otherwise.

To formulate the target function, we assume that there
are n, experimental upper limits, »n, experimental lower
limits, and n, van der Waals’ repulsion lower limits on
interatomic distances, and =, direct dihedral angle
constraints:

(d?, :‘,b:‘), 1= l, . Ny
al'9 {ab!v 'L.:l,’n,
zag)v ';')7_(::')))7 1 = l, e n:; (5)
(a1, ", 7). i=1

The target function, 7', then is:

de _bc2
r= c uzl v lgc (G)C( ch >>
o, ( ! > ) )

__ | max (0,¢),
O.(t) = {min (0,1),

with:
ifc =u;
ifc =1,v;

Here, d; denotes the distance between the 2 atoms «f and
., w.>0 are weighting factors for the 4 types of
constraints (¢c=w,l,v,a), and I, ={1,...,n} with ¢=
u,l,v are the subsets of distance constraints included in
the target function. In the present version of the program
DIANA the subsets I, cannot be chosen arbitrarily but
consist of all distance constraints between the atoms a
and B in those residues between which the sequence
numbers, R, and R;, respectively, differ by not more than
a given minimization level L :

I.= {z’e{l, Ce M)

It is usual to choose the same minimization level for all 3
kinds of distance constraints; in this case, we denote the
common minimization level simply by L.

In general, a complete structure calculation with the
program DIANA includes several minimization steps (not
to be confused with individual iterations of the conjugate
gradient minimizer), i.e. the minimization of several forms
of the variable target function that differ in the
minimization levels L. and in the weighting factors w,
(see the Appendix). An optimal strategy for selecting the
minimization steps is not known, but we found it essential
(1) to increase the minimization level gradually in a
stepwise fashion, starting with L,= 0 or 1, and (2) to use
a weighting factor w, for steric constraints that is small
with respect to the weighting factors w, and w, for
experimental distance constraints, e.g. w, = 0-2w,, except
toward the end of the calculation, where one usually
increases w, to 2 to 3 times w, in order to minimize steric
overlaps.

The target function of eqn (6) is continuously
differentiable over the entire conformation space, and is

|Ra,c—Rﬂf|SLc}, c=u,l,v. (7)

chosen such that the contribution of a single small

violation §, is given by w.? for all types of constraints
(c=wu,lv, ) Because only squared interatomic distances
and no square-roots have to be computed, the target
function can be calculated rapidly.

(ii) Comparison of the variable target functions used in
DIANA and DISMAN

In the notation used here, the target function in the
program DISMAN, 7", which corresponds to the target
function of eqn (6) used in DTANA, is defined by (Braun

& Go, 1985; Braun, 1987);

d(i‘Z_bng 2
=2 Z<®< 20 ))

+0 Y (O, b))
iely

Ra A
+4w, ;( ;IFI> <r> . (8)

The treatment of experimental upper and lower distance
constraints is the same in the 2 programs. Steric
constraints and dihedral angle constraints, however, are
treated  somewhat  differently;  because  other
normalization factors are used in DISMAN, the
contribution of a small violation, d, of a steric or dihedral
angle constraint is not simply equal to the weighting
factor multiplied with the squared violation. Rather, this
contribution is w,b!?6? for a steric constraint and
4w,(8/T;)* for a dihedral angle constraint. Furthermore,
for a dihedral angle constraint violation, the maximal
contribution to the DISMAN target function equals w,
and is independent of the width of the forbidden dihedral
angle range, whereas in DIANA it equals (w,/2)['? and is
proportional to the squared width of the forbidden region.

(iii) The tnput and output formats

There are several different input files and some
interactively entered parameters. The nomenclature in
the standard residue library follows the IUPAC rules
(IUPAC-TUB Commission on Biochemical Nomenclature,
1970), and the covalent structure is that of the ECEPP
force field (Momany et al., 1975; Némethy et al., 1983) for
the 20 proteinogenic amino acid residues. The primary
structure is entered in the amino acid sequence file, which
also identifies cis-peptide bonds. Pairs of diastereotopic
substituents for which individual assignments are
available are identified in the stereospecific assignments
input file. If this file is missing, one has to provide the
information that stereospecific assignments are available
either for all or for none of the prochiral centers. Upper
distance limits, and lower distance limits and dihedral
angle constraints are read from input files. The
minimization parameters input file contains details about
the minimization procedure. The start conformations for
the structure calculations can be generated by the
program, or read from input files.

The results output file records the interactive input,
includes information on the course of the minimization,
and lists the constraint violations exceeding given
threshold values. The overview output file includes a
complete list of the numbers, the sums, and the maximal
values of the residual constraint violations for each
calculated structure. Furthermore, a table of the
important violations in all structures with final target
function values less than a user-defined cutoff is written
whenever a structure calculation is finished. For the
DIANA user, it is important that the overview file can be
inspected during the operation of the program, whereas
the results file can usually be examined only after
completion of the current job. The dihedral angles and
Cartesian co-ordinates files of the calculated structures
can be written either at intermediate stages or at the end
of the minimization. The r.m.s.d. values file includes
pairwise global or local r.m.s.d. values between calculated
structures, and the modified upper distance limits and
modified lower distance limits files list the experimental
constraints after processing by DIANA.
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(iv) Identification of irrelevant constraints and too
restrictive constraints

A distance limit is irrelevant if (1) the corresponding
interatomic distance is independent of the conformation,
(2) there exists no conformation (¢, . .., ¢,) that violates
the given limit or (3) a lower distance limit is smaller than
the steric limit automatically imposed by DIANA.
Conditions (1) and (3) are easy to check, whereas a
complete check of condition (2) is difficult. Therefore, this
condition is checked only for all constraints on distances
that depend on a single dihedral angle, and for some
constraints relating to 2 dihedral angles. If the distance
between 2 atoms a and B, |r,—1,|, depends on 1 dihedral
angle a, the range of its values is given by:

A—B<|r,— 1< A+B, (9)
where:
4= |da|2 + Idﬁ'z _2(ea ’ da)(ea : dﬁ)
B =2./[d2— (e, d,)*][d} — (e, dj)*]
with

d,=r,—r1, and dy=r15—1,

r, and r; denote the position vectors of the atoms « and B
for an arbitrary conformation, r, is the position vector of
the start point of the rotatable bond a, and e, is a unit
vector along the rotatable bond a. In the notation of
eqn (9), an upper distance limit (a,f,b) is irrelevant if
b>A+B, and too restrictive if b<A—B. Irrelevant
constraints are removed from the input used for the
calculation. Too restrictive distance constraints that
cannot be fulfilled by any conformation will thus be
identified in the results file, but they will not be removed
from the input used for the calculation. For distances
depending on 2 dihedral angles, the relation
corresponding to eqn (9) is somewhat more complicated.

(v) Processing of distance constraints involving pairs of
diastereotopic substituents without stereospecific
resonance assignments

Because the standard sequential assignment procedure
for proteins (Wiithrich, 1986) does not assign individually
the diastereotopic substituents of prochiral groups, and
additional techniques used for this purpose (e.g. Giintert
et al., 1989; Neri et al., 1989) can provide stereospecific
assignments for only part of the prochiral centers,
programs used for structure calculations from n.m.r. data
must contain routines to process distance constraints with
pairs of diastereotopic substituents f; and fB,, («,B;,b;)
and (a,f,,b,), to a pseudoatom B, located centrally with
respect to the 2 diastereotopic substituents g, and B,, and
to add a correction to the distance limit that equals the
distance between the diastereotopic substituents and the
pseudoatom (Wiithrich et al., 1983):

bo=min (by,b,) +|rs, — gl (10)

In the program DIANA, we replaced these pseudoatom
corrections with a combination of 2 approaches, which has
the advantage that a lesser part of the information
contained in the experimental data is lost by the data
processing.

The 1st approach by DIANA uses the conventional
pseudoatom concept, but with variable corrections,
depending on the available experimental data. The upper
distance limit for the pseudoatom constraint, (a,By,b,), is
then calculated as:

b2 +b3
bQ=\/ 12 2 —|rp, —rp,l% (1)

If only 1 of the 2 constraints can be measured, say
(«,81,b;), no improvement of the original pseudoatom
correction can be attained, and by =b,+|rg —1g|. If
there are 4 constraints between the diastereotopic
substituents of 2 prochiral centers, (ay,B;,by1),
(@1,B2,b12), (22,B1,b21), (¢2,B5,b25), the corresponding
pseudoatom upper distance limit (ag,Bg,bo) is given by:

/bf1+b%2+b§1+b§2
b= [ 22

2 2
4 |ra1 raQI Irﬂl r[}QI - (12)
In the frequently encountered situation where 1 or several
of the 4 constraints are missing, redundant upper distance
limits are generated by application of the triangle
inequality, so that eqn (12) can still be applied.

In the 2nd approach used by DIANA, no pseudoatom is
introduced. The same distance limit:

b= min[max (b,,b,), min(b;,b,) +|rg, —1rg]

is applied for both diastereotopic substituents. Obviously,
the application of 2 identical limits is, in general, not
equivalent to the use of a pseudoatom, and the 2nd
approach is applied only if it yields additional
information. For example, if only 1 of the 2 diastereotopic
substituents has an experimental constraint to an outside
proton, only the pseudoatom constraint will be used. On
the other hand, if the n.m.r. experiments show that
b, ®b,, there is no advantage to the introduction of a
pseudoatom distance limit.

Table 1 lists some results obtained by processing
distance constraints with prochiral centers with DIANA,
or with the conventional pseudoatom correction method
(Wiithrich et al., 1983). The Ist example resulted from an
input of 2 nearly equal upper distance limits; DIANA
imposed the higher limit on both distances, but left the
pseudoatom distance unconstrained because the upper
bound resulting from eqn (11) would be meaningless
besides b, and b,. The 2nd example involves 2
significantly different upper bounds; DIANA imposes
constraints on both individual distances and the
pseudoatom distance constraint calculated by eqn (11). In
both cases, the resulting constraints are significantly
tighter than with the conventional pseudoatom
corrections. In contrast, in the 3rd example in Table 1,
where there is only 1 experimental upper distance limit,
the 2 methods yield nearly equivalent results. In the 4th
example, DIANA detected that the pseudoatom
constraint would be irrelevant and hence dropped it from
the input. The final example shows the result of a
treatment of constraints between 2 pairs of diastereotopic
protons. Using the triangle inequality, DIANA first
generated the smallest possible redundant constraints of
the 2 distances that were not constrained by the
experimental upper bounds. Next, it imposed the biggest
of the 4 upper bounds thus obtained on all four individual
distances, and an upper bound on the distance between
the 2 pseudoatoms was obtained from eqn (12). Overall,
Table 1 confirms that the loss of constraining information
is often smaller when the experimental input is processed
by DIANA than by the conventional pseudoatom
approach. Analogous modifications to those shown here
for upper distance constraints result for lower limit
distance constraints.

(vi) Checks for steric overlap

In molecular mechanics programs, non-bonded
interactions between atoms are usually treated by a
Lennard-Jones potential (Momany et al., 1975; Weiner &
Kollman, 1981; Brooks et al., 1983; van Gunsteren et al.,
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Table 1
Examples of results obtained by processing experimental distance constraints involving pairs of diastereotopic
substituents without individual assignments either by DIAN A or with the original pseudoatom concept

Modified upper bounds (A)

Constrained Input upper Conventional
distancest bounds (A)} DIANAS§ pseudoatom concept§
Hf\fﬁl‘HsArgl b, =49, b, =50 by = b, =50 bQ =59
HZ2-HY,,, by =37,b,=31 by =b, =37, and by = 33 bo = 41
H42E%07H£2s41 b1 =35 bQ =44 bQ =45
Hggfl‘l)* ﬁnll b1 =45 bQ =55
Hq‘yr'io’ Lyéiz by =47,by, =46 byy =by, =by =by, =65, and bQ =55 bQ = 66

t Taken from an experimental n.m.r. data set collected with BPTI.
16, and b, denote upper distance bounds from the 2 substituents of a diastereotopic pair to the same proton outside the prochiral
center. by; denotes an upper distance bound from the 1st atom of one diastereotopic pair to the first atom of another diastereotopic pair,

ete.

§ by denotes the upper limit imposed on the pseudoatom distance.

9 The numbers given result from adding the distance from the pseudoatom to the protons that it replaces to the smaller of the 2
experimental constraints with the prochiral center. For methylene groups, this correction is m = 1:0 A (Wiithrich et al., 1983; Wiithrich,

1986).

1983; Wako & Go, 1987; Schaumann et al., 1990). In a
distance geometry approach for structure determination
of proteins from n.m.r. data, only the most dominant part
of the energy function is kept, i.e. the steric repulsion
(Havel & Wiithrich, 1984; Braun & Go, 1985). In the
program DIANA, the steric repulsion between 2 atoms is
treated as a lower distance limit for the corresponding
interatomic distance, the distance bound being set equal
to the sum of the repulsive core radii of the 2 atoms. In
the present version of DIANA, the same values for the
repulsive core radii are used as by Braun & Go (1985), i.e.
095 A for amine or amide hydrogen atoms, 1-0 A for all
other hydrogen atoms, 1-35 A for aromatic carbon atoms,
140 A for all other carbon atoms, 1-30 A for nitrogen
atoms, 1-20 A for oxygen atoms and 160 A for sulfur
atoms. If the distance between 2 atoms exceeds the sum
of their repulsive core radii, no contribution to the target
function results from this atom pair.

A straightforward implementation of a check for the
aforementioned steric overlaps would require the
calculation of almost all interatomic distances, and would
therefore be very inefficient. Therefore, DIANA stores all
atom pairs with reasonably small interatomic distances in
a list of potential non-bonded interactions (Verlet, 1967;
Allen & Tildesley, 1987). This list is updated only after a
notable conformation change or after several iterations
of the conjugate gradient minimization, and a fast
algorithm for this update ensures that most interatomic
distances need not be computed (Hockney & Eastwood,
1981; Braun & Go, 1985; Grest et al., 1989). In a protein
molecule with m & 1000 atoms, the list of potential non-
bonded interactions will usually contain less than 30,000
atom pairs, whereas the total number of atom pairs is of
the order of m(m—1)/2 ~500,000. The number of atom
pairs that actually give non-vanishing contributions to
the target function at the end of the minimization is again
much smaller, typically of the order of 100 for a ‘“‘good”
conformation.

In the program DIANA, the list of potential non-
bonded contacts is divided into 2 parts. The st part is
invariant during a structure calculation, i.e. it is set up
only once at the start of a calculation and will not be
affected by subsequent updates; it comprises all
intraresidual and sequential distances (Wiithrich, 1986).
Most steric lower limits that are irrelevant will be

excluded from the list, which obviously includes all
distances that are independent of the conformation. The
2nd part of the list is subject to an updating procedure
and includes interatomic distances that are not already
included in the invariant part. To create this list, the
present conformation of the protein molecule is placed
into a cubic lattice with a lattice constraint g equal to
twice the biggest repulsive core radius, i.e. ¢ = 3-2 A in the
present version of the program DIANA, and only
distances between atoms located within the same or in
neighboring cells of the lattice are added to the list
(Hockney & Eastwood, 1981; Braun & Go, 1985; Grest et
al., 1989). Thus, it is ascertained that the list contains all
non-bonded contacts that yield a non-vanishing
contribution to the target function for the conformation
present at the time the list is computed. Slight changes to
this conformation will-presumably change the list only
slightly. Therefore, the list is updated only if, since the
last update, at least 1 dihedral angle was changed by more
than a preset limit, e.g. 10°, or if this limit is not reached,
after a preset number of iterations, e.g. 50.

Special treatments are required for hydrogen bonds,
disulfide bridges, and possibly other non-standard
covalent links, because these bonds are not represented by
the tree structure of rotatable bonds (Abe et al., 1984),
since the latter does not allow for flexible, closed rings. As
a consequence, the steric lower limits for acceptor—donor
distances in potential hydrogen bonds, and the distances
between C? and 8] in disulfide Cys,—Cys; are reduced by
10 A, and the steric lower limits between the cysteine
sulfur atoms are decreased by 2-0 A relative to the sum of
the corresponding repulsive core radii. The bond lengths
and angles of hydrogen bonds and disulfide bridges are
fixed by explicit upper and lower distance limits
(Williamson et al., 1985). The proline rings are rigid
structures in the ECEPP force field (Momany et al., 1975;
Némethy et al., 1983) in the sense that there are no
internal degrees of freedom within them. In contrast, in
the program DIANA, one can allow for flexibility in such
rings by “cutting’’ one of the covalent bonds. In the case
of proline, this creates 4 new rotatable bonds. The ring is
then closed only by explicit distance constraints, and the
necesary elimination or decrease of some steric lower
distance limits is done automatically. In the input for
DIANA, a flexible proline residue is entered wia an
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additional entry in the residue library, where the new
rotatable bonds have to be defined and the closure of the
ring is inherent only in the connectivity list, but not in the
tree structure of the rotatable bonds.

(vii) The minimization procedure

The gradient of the target function defined by eqn (6)
can be calculated with a fast algorithm because the target
function can be written as a sum of functions of individual
interatomic distances and individual dihedral angles
(Noguti & Go, 1983; Abe et al., 1984). The partial
derivative of the function 7' of eqn (4) with respect to a
dihedral angle @’ is given by:

or =—(€,;,€y A I,)
64’.1'_ ava a
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afeMgq,

na A 2
+2w, Y (1— (F) >A,.5,,i,,,. (13)
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74 and I are the position vectors of the atoms of and f;,
respectively, e, denotes the unit vector along the
rotatable bond o',r, the start point of it, and M, the set
of all atoms for which the positions are affected by a
change of the dihedral angle o' if the N-terminal part of
the protein molecule is kept fixed.

The minimization algorithm used in the program
DIANA is the well-known method of conjugate gradients
(Powell, 1977). At each minimization step, conjugate
gradient iterations are done until either the norm of the
gradient vector is smaller than some preset value, or the
maximal number of iterations at this step (as given in the
minimization parameters input file) is exceeded. Because
the minimization routine assumes a continuously
differential target function, problems may arise if an
update of the list of potential non-bonded contacts (see
above) results in a discontinuous change of the target
function. Therefore, the conjugate gradient minimization
is automatically restarted after premature termination
due to a jump in the target function.

(viii) Optimization of structure calculations with DIAN A

In order to achieve a high level of efficiency of the
target function and gradient evaluation, the calculation is
divided up into several parts, and each part is executed
only if it is necessary. At the outset of a structure
calculation, the static list of potential non-bonded
contacts is set up, irrelevant constraints are eliminated,
and the distance limits with prochiral centers are
processed. Then, at the start of each minimization step, a
list of all currently used distance constraints according to
the subsets I, I, I, and I, is prepared, where the list of
non-static potential non-bonded contacts is subject to the
aforementioned updating procedure. The parts of the
calculation that have to be excluded once for each
combined computation of the target function and its
gradient are the generation of the Cartesian atomic co-
ordinates from given dihedral angles, the identification of
violated constraints, and the evaluation of some terms
that are present in both eqns (6) and (13), and will
therefore be needed for the evaluation of the target
function and the gradient. Here, the time-limiting step is
the computation of the interatomic distances
corresponding to all distance constraints in the list, of
which the great majority are steric constraints.

The program DIANA has been optimized for the

vectorization capabilities of the CRAY X-MP, and it has
been implemented on other UNIX machines and on VAX
computers (see Table 2). Since standard Fortran-77 has
been used as far as possible, the additional
implementation of DIANA on other computers will be
straightforward.

(¢) The program GLOMSA

The input for the program GLOMSA includes a group
of m 3-dimensional protein structures, and the list of
conformational constraints from which these structures
were calculated by DIANA. In a typical situation
analyzed by GLOMSA, an atom o outside the prochiral
center considered has 2 upper distance limits («,f8,,b,) and
(., B5,b,) to the diastereotopic substituents f; and f,. We
denote with d,, (k=1,2; Il=1,...,m) the distance
between the atoms o and f, in the lth conformation. Then
the program GLOMSA computes the sum of the residual
violation of the 2 upper distance limits in the m
conformations, V, for either of the 2 possible stereospecific
assignments / and R (/, is the assignment used arbitrarily
in the input, R is the reversed one).

V= [Od;;—by)(dy,;—b1)+O(dy;—by)(dy,;—b,)]

DMz L=

VR = [®(d1,z—b2)(d1,x—bz) +®(d2,1-b1)(d2,1_b1)]1

T
-

(14)

and the minimum value, v, that the larger of the
violations of the 2 constraints b, and b, has in any of the
conformations:

R [9(.dl,l_bl)(dl,l_b1)f ®(d2,l_b2)(d2,l_62)] (15)

[®(d1,1_b2)(dl,l_b2)’ ®(d2,l_bl)(d2,l_bl)]'

In eqns (14) and (15) as well as in eqn (17) below, ®
denotes the Heaviside function that equals 1 if the
argument is positive, and vanishes otherwise. The
program GLOMSA further calculates the average of the
differences Ad, = d; ;—d,; in the m structures:

R 1 m
Ad =~
d - l; Ad, (16)

and the signed maximal number of conformations where
Ad, has the same sign:

_ $
Nag = —(m—s)

n,4 is constructed such that |n,,| = m/2, and that its sign is
positive if d; ; is bigger than d,; in the majority of the
conformations, and negative otherwise. The sign of n,, is
not necessarily the same as the sign of Ad.

To identify stereospecific assignments, GLOMSA
correlates the signs Ad and n,; with the sign of Ab=
b, —b,. Matching signs confirm that the stereospecific
assignment / assumed in the input is correct, and opposite
signs indicate the stereospecific assignments R. In order to
exclude cases where the available data do_not clearly
distinguish between the 2 possibilities, |Ab|, |Ad| and |n,,l
are further required to exceed user-defined threshold
values for an unambiguous stereospecific assignment by
the program GLOMSA. If a relation of the type d, > d, or
d, <d, was unambiguously established by the

§>m(2;

zmm o= l; O(Ad). (17)
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experiments, this relation is accepted without imposing
the threshold condition on |Ab|.

If there are several pairs of upper distance constraints
from different hydrogen atoms to the same prochiral
center, the above procedure is repeated independently for
each distance constraint pair. The user then manually
combines the individual stereospecific assignments
obtained, since potential inconsistencies could be hidden
in the output resulting from an automated combination of

the individual stereospecific assignments. On the basis of ’

the quantities defined in eqns (14) and (15), another
method for obtaining stereospecific assignments is
conceivable, where an unambiguous assignment I would
be assumed if ' = 0 and v® > 0. However, it turns out
that such a criterion would be very restrictive and would
usually not yield a significant number of stereospecific
assignments. Therefore, GLOMSA calculates V and v only
as informative output.

Examples of the results obtained with the program
GLOMSA in an application with experimental n.m.r. data
are given elsewhere (Giintert et al., 1990).

3. Results and Discussion

(a) Computing time for a protein structure
calculation with DIAN A

The computation speed of the program DIANA
on ten different computers (Table 2) was measured
for the calculation of one structure of BPTI using
the data set WIST, which was derived from the
regularized crystal structure of BPTI (Marquardt et

Table 2
Central processing unit times required by the
program DIANA for the calculation of one BPTI

structure
Computer type c.p.u. time (min)} Factor}
Cray X-MP/28§ 0-82 (3-2) 1-0 (3-9)
VAX 8650 20 25
VAX 6000-420 18 22
SUN 386i 111 136
SUN 3/2607 44 (188) 54 (229)
SUN 4/390 14 17
SUN 4/60 18 22
Silicon Graphics Personal 13 16
IRIS 4D/25
Convex Cl 18 22
CDC Cyber 855 12 15

One completely folded conformation of the protein BPTI was
calculated starting from random dihedral angles. The same
starting structure and the same constraints were used on all
computers. The same code, which was optimized for the Cray
X-MP, and single precision floating point arithmetics were used
on all machines (see the text for further details).

tc.pu. times were measured using the library routines
SECOND on the Cray X-MP and the CDC Cyber, ETIME on the
other UNIX computers SUN, Silicon Graphics Personal IRIS,
and Convex, and LIB§STAT TIMER on the VAX machines.

1 Ratio between the c.p.u. times required on the given machine
and on the Cray X-MP using vectorization.

§ The numbers in parentheses were obtained when vectoriza-
tion was deliberately inhibited. In either case only 1 ¢.p.u. was
used.

9 The numbers in parentheses were obtained when the floating
point coprocessor MC 68881 was used instead of the floating point
accelerator.

al., 1983) so as to mimic an experimental n.m.r.
input (Giintert et al., 1989). The same random start
conformation was used on all computers. A total
number of 5900 target function evaluations was
allowed, and updates of the list of potential non-
bonded contacts were made when a dihedral angle
was changed by more than 10° since the previous
update, or after 50 iterations without update.

A clear-cut result from the measurements of the
total c.p.u. time used is that the program DIANA
runs by more than one order of magnitude faster on
the Cray X-MP than on any of the other computers
included in the test (Table 2). Even when the
vectorization was completely inhibited, which
increased the c.p.u. time by a factor of 3-9, the Cray
X-MP remained the fastest machine. Following the
Cray X-MP, there is a group of computers with
similar  performances, ie. the VAX 8650,
VAX 6000-420, SUN 4, Silicon Graphics Personal
IRIS, Convex C1 and CDC Cyber 855, which used 12
to 20 minutes of c.p.u. time. Finally, the smaller
machines SUN 3 and SUN 386i required again
significantly more computer time to solve the test
problem. It should be pointed out that the same
code has been used on all machines, which is opti-
mized with regard to the vectorization capabilities
of the Cray X-MP.

(b) Comparison of the structures calculated with
different computers

Even though exactly the same input of conforma-
tional constraints and identical starting conforma-
tions have been supplied to the program on each
computer, the final conformation obtained at the
end of the minimization was in general different on
the different computers (only the SUN 4/60 and the
SUN 4/390 produced exactly identical structures).
Repeating the calculation on the same computer
yielded identical results. On all computers, the
target function value of the starting conformation
was the same, and the target function values
gradually started to diverge with increasing minimi-
zation level, with final target function values
ranging from 1-28 to 3-81 A% These are small target
function values when compared to “bad” structures
obtained from different starting conformations,
which often end up in high local minima with target
function values above 100 A2 The average of the
pairwise r.m.s.d. values (McLachlan, 1979) between
11 structures obtained from the same starting
conformation on different computers, or on the
same computer with different compiler settings (the
result of the CDC Cyber was for technical reasons
not used in this comparison) are 0-59 and 0-84 A for
all backbone atoms and all heavy atoms, respect-
ively, the maximal values being 0-98 and 1-41 A. If
only the residues 3 to 55 were taken into account
(i.e. the loose chain ends are discarded), the average
of the pairwise r.m.s.d. values were 0-47 and 0-78 A
for the backbone and heavy atoms, respectively,
with maximal values of 072 and 1:30 A. These
r.m.s.d. values are comparable to those between the
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four conformations obtained with the program
DISMAN (Braun & Go, 1985) starting from widely
different initial structures, as described previously
(Giintert et al., 1989). Overall, the implication is
that the structures obtained with the same starting
conformation when using the different computers
are distributed within the bounds of the conforma-
tion space defined by the experimental constraints.

This result can be rationalized from the following.
Because the experimental data restrict distances
and dihedral angles to allowed ranges rather than to
unique values (Wiithrich, 1986), one cannot expect
the target function to have a well-defined global
minimum. Instead there is an allowed region in
conformation space where the target function has
low values throughout, so that conformation
changes within this region alter the target function
only slightly. Therefore, although the aforemen-
tioned allowed region of the conformation space is
defined by the experimental constraints (note,
however, that the boundaries of this allowed region
are not sharp, since they are in practice also
influenced by the somewhat arbitrary selection of a
set of “good” structures from among those calcu-
lated with distance geometry from the same input
with different starting conformations), the exact
conformation attained within this allowed region is
heavily influenced by, for example, round-off errors.
Overall, it is thus not really a surprise that the
rm.s.d. values between the structures obtained
from different computers and an identical starting
conformation are similar to those between struc-
tures obtained from widely different starting confor-
mations when using the same computer.

(c) Influence of different treatments of distance
constraints with pairs of diastereotopic substituents

In order to assess the influence of different treat-
ments of distance constraints with pairs of dia-

stereotopic substituents on the convergence of the
variable target function algorithm and on the
quality of the structures obtained, DIANA calcula-
tions were carried out using experimental n.m.r.
data for BPTI. Four input data sets that differed
only in the treatment of the distance constraints
with pairs of diastereotopic substituents were
compared (Table 3). Datasets I and II include all
stereospecific assignments present in the experi-
mental n.m.r. data set (L. Orbons, P. Giintert & K.
Wiithrich, unpublished results), whereas datasets
IIT and IV include no stereospecific assignments.
Upper distance limits involving pairs of diastereo-
topic substituents without individual n.m.r. assign-
ments were treated by the method implemented in
the program DIANA for datasets I and III, or by
the conventional pseudoatom method (Wiithrich et
al., 1983) for datasets IT and IV. Note that the
different numbers of upper distance limits in data-
sets I to IV (Table 3) are a direct consequence of the
different treatments of the NOE distance
constraints with prochiral centers. The lower limit
distance constraints and dihedral angle constraints
were identical in datasets I to IV.

For each of the four datasets, 150 structure calcu-
lations were started with random start conforma-
tions. The final minimization level was L= 58, and
the maximal number of target function evaluations
per conformation was 9900. The calculations were
done on a Cray X-MP computer, and the total c.p.u.
time required was 18:6 hours. (Note that the time
used per structure calculation is longer than in
Table 2, because more target function evaluations
were performed.)

A statistical analysis of the residual constraint
violations in the 20 conformations with smallest
final target function values in each of the groups I
to IV is afforded by Table 4. Overall, the structure
groups I to IV have similar quality in terms of the
target function values and the sums of distance

Table 3
Characterization of the four BPTI data sets used to investigate the influence of different treatments of distance
constraints with pairs of diastereotopic substituents

Datasets

Quantity 1 II IT1 v
Stereospecifically assigned prochiral centerst 42 42 0 0
Individually assigned NH, groups of Asnt 3 3 0 0
Treatment of diastereotopic pairs without DIANA Conventional DIANA Conventional

individual assignments} pseudoatom pseudoatom

concept concept

Upper distance limits 866 781 924 637
Lower distance limits§ 31 31 31 31
Dihedral angle restraints 140 140 140 140

t The total number of prochiral centers is 87. 14 B-methylene groups were stereospecifically assigned using the program HABAS, and
all other stereospecific assignments (25 for methylene groups, and 3 for isopropyl groups) were obtained with GLOMSA. In addition,
individual assignments for 3 NH, groups of asparagine were established from the intraresidual NOEs to C’H,.

1 DIANA refers to the novel treatment of diastereotopic pairs without individual assignments as explained in the text. Conventional
pseudoatom concept refers to the method of Wiithrich et al. (1983).

§ Exactly the same experimental lower distance limits for disulfide bridges and experimentally established hydrogen bonds
(Williamson et al., 1985) were included in the datasets I to IV.

9 Exactly the same dihedral angle restraints were included in the datasets I to IV. They were derived from a combined analysis of 3J
scalar coupling constants and short-range distance constraints using the program HABAS (Giintert ef al., 1989).
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Figure 2. Stereo views of the 10 BPTI conformations with smallest target function values in each of the groups I to IV
(Table 4). (a) Backbone of the whole protein (residues 1 to 58). (b) Heavy atoms of the f-sheet (residues 18 to 35).

constraint violations, but nonetheless clearly
improved convergence of the -calculations was
obtained for the datasets with stereospecific assign-
ments (I and IT). Thus, using a less constraining
dataset does not generally yield lower final target
function values, even though the global minimum of
the target function cannot be higher than for a
“better” data set. This observation probably results
because the folding pathway is also less determined
in the absence of stereospecific assignments.

The different precision of the structure deter-
minations with datasets I to IV is visualized with
the aid of stereoviews of superpositions of the ten
conformations with smallest final target function
values in each group (Fig. 2). These images were
produced with the program CONFOR (Billeter et
al., 1985). For the backbone of the whole protein
(Fig. 2(a)) as well as for the all heavy-atom presen-
tation of the p-sheet (Fig. 2(b)) more precisely
defined structures were obtained in groups I and 11,
which include stereospecific assignments, than in TIT
and IV. The fact that the structures from group IV
are clearly less well determined than the structures

from group IIT demonstrates the advantage of the
novel DIANA processing of distance constraints
with pairs of diastereotopic substituents that were
not individually assigned.

For a more quantitative assessment of the
observations in Figure 2, we calculated r.m.s.d.
values (McLachlan, 1979) among the conformations
of each group (Table 5). In a first comparison we
included the 20 conformations with smallest final
target function values in each of the four structure
groups I to IV (Table 3). Because conformations
with higher target function values tend to exhibit
higher r.m.s.d. values, we made a second compari-
son using only the conformations with final target
function values less than 5 A% In this second com-
parison, possible effects from the poorer conver-
gence found for groups III and IV, which use no
stereospecific assignments, are eliminated. There are
17, 19, 10 and 6 such conformations in structure
groups I, II, IIT and IV, respectively. In both
comparisons, the average pairwise r.m.s.d. values
given in Table 5 show a clear tendency to increase
from the structure groups with stereospecific assign-
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ments (I and II) to those without stereospecific
assignments. A smaller increase of the r.m.s.d. is
obtained also when going from a structure group
calculated using the novel DIANA processing of
distance constraints with pairs of diastereotopic
substituents to the corresponding group calculated
with conventional pseudoatom concept (Wiithrich et
al., 1983). Very similar results were obtained with
the best 20 conformations from each group, or only
those with final target function values less than 5 A2
(Table 5).

As was shown previously (Giintert et al., 1989;
Nilges et al., 1990) the precision of the distance
geometry structures can be significantly improved
when stereospecific assignments are available. This
observation is confirmed by the data in Table 5,
which were obtained using experimental input data
rather than test situations derived from known
structures. The results obtained encourage con-
tinuation of studies on experimental methods, e.g.
biosynthetically directed fractional '3C labeling
(Senn et al., 1989; Neri et al., 1989), for obtaining

stereospecific assignments prior to the structure
calculation. When the novel processing of upper
distance constraints with pairs of diastereotopic
substituents implemented in DIANA is compared to
the more conservative pseudoatom concept
(Wiithrich et al., 1983), only a slight improvement of
the calculated structures can be registered (Table 5
and Fig. 2, compare I and II, or IIT and IV). From
a practice-oriented viewpoint, it is perhaps a more
important advantage of the DIANA processing that
it is fully d4utomated, and integrated into the struc-
ture calculations. It is thus less laborious than
obtaining a maximum number of stereospecific
assignments. Therefore, the combined use of the
automated HABAS routine (Giintert et al., 1989),
which can provide a limited number of stereospecific
assignments (see the footnote to Table 3), and the
DIANA processing of the distance constraints
might become a viable alternative. This idea
receives support from the observation that the
advantages of the DIANA processing relative to the
conventional pseudoatom treatment (Wiithrich et
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Table 4
Statistics of the final target function values and residual constraint violations of the 20 BPTI structures with
smallest final target function values in each of the four structure groups calculated from datasets I to IV

Average value + standard deviationt

Quantity 1 II 111 v
Target function value (A%)} 29+13 26+13 4-8+25 60131
Upper distance limits:

Violations > 0-2 A 80+42 70+34 116+ 69 112460

Sum of violations (A) 81+24 71420 94+32 83135

Maximal violation (A) 0511016 0481017 071+ 026 078 +0-32
Lower distance limits:

Violations > 0-2 A 09410 04106 06107 0-8+09

Sum of violations (A) 07103 0-5+02 07+£02 06+0-3

Maximal violation (A) 0244012 0-174+0-06 0221008 0-19+ 010
Steric constraints:

Violations > 0-2 A 10+1-3 155+1-3 37+31 52437

Sum of violations (A) 36110 38112 52+18 6:3+25

Maximal violation (A) 0281019 0274011 0-39+0-20 043+016
Dihedral angle restraints:

Violations > 5° 12+1-2 1'11+15 16+11 27418

Sum of violations (°) 27+13 29+15 40+13 50+24

Maximal violation (°) 69126 73142 92+44 14314107

The data sets I, to IV are defined in Table 3. A total of 150 structures were calculated with each of the datasets I to IV, and the 20
structures with smallest final target function value were included in this analysis.

1 Of the individual values for the 20 conformations of each structure group.

1 The weighting factors for experimental upper and lower limit distance constraints were w, = w, = 1, the weighting factor for steric
lower distance limits was w, = 2, and the weighting factor for dihedral angle restraints was w, = 5 A? for the final minimization step.

Table 5
Average values and empirical standard deviations of the pairwise r.m.s.d. within the BPT1 structure groups
calculated from datasets I to 1V to monitor the influence of stereospecific assignments

r.m.s.d. within structure group (A)

Atom set I 11 11T v

A. The 20 conformations with smallest final target function

Backbone 1-58 1-12+0-22 1-15+0-19 1-29+0-22 1-52+0-24
Backbone 3-55F 0-89+0-16 093+0-15 1:09+0-18 1:324+0-20
Backbone 18-35 (f-sheet) 0544016 0571016 079+ 0-28 075+ 024
Backbone 48-55 (a-helix) 0274010 0-26 +0-09 0324010 0361011
Heavy atoms 1-58 1-80+ 018 1-87+0-19 2:10+0-23 2:24 4022
Heavy atoms 3-55 172+ 017 1-80+0-19 2:04 +0-24 2:16 +0-22
Heavy atoms 18-35 (B-sheet) 11101016 1112+ 014 146 +0-29 1-41+0-28
Heavy atoms 48-55 (a-helix) 1-28+0-32 1194029 1444033 1-:39+0-32
B. Conformations with final target function value <50 A%

Backbone 1-58 1110+ 0-23 1116 +0-19 11141015 1-4340-27
Backbone 3-55 0-86+0-16 0944016 0971015 127 +0-26
Backbone 18-35 (f-sheet) 0-55+0-16 0-56+0-16 064 +0-23 0-76 +0-28
Backbone 48-55 (a-helix) 0274010 0-26 +0-09 029+ 0-08 0-38 +£0-09
Heavy atoms 1-58 179+ 018 1-88+0-19 196 +0-18 2-18 +0-24
Heavy atoms 3-55 1-724+0-17 181 +£0-20 1:93+0-20 2-13+0-23
Heavy atoms 18-35 (f-sheet) 1-110+0:16 1-111+014 1-33+0-25 1-:39+0-28
Heavy atoms 48-55 («-helix) 1-30+0-31 1-174+0-26 1-36 +£0-27 1:59+0-40

The data sets I to IV that were used to calculate the structure groups I to IV are described in Table 3 (see the text for further details).
+ Residues 3 to 55 are chosen in order to exclude the less well determined terminal parts of the polypeptide chain.

1 We obtained 17, 19, 10 and 6 conformations with final target function values less than 5 A? from datasets 1, II, IIT and IV,
respectively.
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al., 1983) are most clear-cut when no stereospecific
assignments are available (III and IV in Table 5
and Fig. 2).

Appendix

Choice of Parameters for Protein Structure
Determinations with DIANA

Table Al affords a complete list of the minimiza-
tion levels, the weighting factors for steric
constraints and the iteration limits used for the
protein structure calculations described in Results
and Discussion, sections (a) and (b). The choice of
these parameters is typical for structure calcula-
tions with proteins of the size of BPTI, and agrees

Table Al
Minimization steps used for a structure calculation
of BPTI
Minimization =~ Weight of steric ~ Maximal number
Step level, Lt constraints, w,} of iterations§
1 0 0-2 300
2 1 02 500
3 2 02 300
4 3 02 200
5 4 0-2 100
6 5 0-2 100
7 6 02 100
8 7 02 100
9 9 02 200
10 10 0-2 100
11 11 0-2 100
12 12 02 100
13 13 0-2 200
14 15 0-2 100
15 17 02 100
16 18 02 100
17 19 02 100
18 21 02 300
19 22 0-2 100
20 23 0-2 100
21 24 0-2 300
22 25 02 100
23 26 0-2 200
24 27 02 100
25 30 0-2 100
26 31 02 100
27 32 02 100
28 36 0-2 100
29 38 0-2 100
30 39 0-2 100
31 45 02 100
32 50 02 100
33 54 0-2 100
34 56 02 100
35 58 02 100
36 58 0-6 300
37 58 2:0 500

BPTI consists of a polypeptide chain with 58 residues.

t For each minimization step, the same minimization levels
were used for the 3 kinds of distance constraints, L = L,= L,=
L,.

1 Throughout the structure calculation, the weighting factors
for experimental distance constraints were w,=w;=1, and the
weighting factor for dihedral angle restraints was w,=5 A2,

§ The numbers of iterations are usually chosen based on the
number of upper distance limits on the given level that were not
already included at the preceding level.

with the general recommendations given in the
main text following equation (7).
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