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Abstract. Three-dimensional structures of proteins in solution can be calculated
on the basis of conformational restraints derived from NMR measurements. This
chapter gives an overview of the computational methods pertinent to NMR protein
structure analysis. The most widely used algorithms based on simulated annealing
by molecular dynamics simulation in torsion angle space and the automated
assignment of NOE distance restraints are presented, as well as non-ciassical
approaches and fully automated NMR protein structure analysis.
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Introduction

Since its introduction in the early 1980s the NMR method for determining the three-
dimensional structures of proteins has become firmly established. More than 8400
structures in the Protein Data Bank [1] as of June 2010 have been determined by NMR,
most of them for proteins smaller than 20 kDa (Figure 1). This remarkable achievement
would not have been possible without the development of sophisticated computational
methods to compute three-dimensional protein structures from NMR-derived
conformational restraints, and by increasingly automated approaches for analyzing
multidimensional NMR spectra. _

NMR structure calculations can be performed in several ways that differ
essentially by the extent to which the analysis of the spectra is automated. In a basic
structure calculation, all spectra are analyzed by the spectroscopist who also interprets
the data and provides the structure calculation program with geometric restraints in the
form of allowed inter-atomic distance ranges, ranges of allowed torsion angle values,
and possibly additional types of restraints. In this case, the software deals with the
purely geometric problem of finding a three-dimensional arrangement of the atoms that
is compatible with the primary structure of the protein, the conformational restraints
from NMR, and steric repulsion. Instead of using conformational restraints, NMR
structure calculation software can also read assigned NOESY peak lists and convert
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Figure 1. (a) Annual depositions of X-ray and NMR structures 1988-2010. (b) Size distribution of X-ray
and NMR structures in the Protein Data Bank as of June 2010. (c) Completeness of chemical shift
assignments in the Biological Magnetic Resonance Data Bank (BMRB) as of June 2010. Completeness
of the chemical shift assignments of backbone amide 'H and aliphatic 'H chemical shifts 10~30%, black
bars; 30-70%, dark gray bars; 70-90%, medium gray bars; more than 90%, light grey bars.

this information into upper bounds on distances between the corresponding pairs of
hydrogen atoms using a given or automatically derived peak volume-to-distance
relationship. A first significant degree of automation was reached by approaches that
combined the automated assignment of NOESY peaks with the structure calculation.
These algorithms start from the given chemical shift assignments and unassigned lists



340 P. Giintert / Automated Protein Structure Determination from NMR Data

of NOESY peak positions and intensities. Only recently has it become possible to
completely automate NMR spectra analysis by a fully automated algorithm that uses as
input data a set of un-interpreted, multidimensional NMR spectra. Finally, several lines
of unconventional approaches to NMR structure determination have been proposed that
do not rely on sequence-specific chemical shift assignments and/or NOESY data.

This chapter gives an overview of the principles, basic algorithms and popular
implementations of NMR structure calculation methods, including automated,
assignment-free, and chemical shift-based approaches.

1. Historical Development

With the first attempts to determine protein structures by NMR it became clear that
new computer algorithms for structure calculation would be indispensable for solving
three-dimensional protein structures, and that existing techniques from X-ray
diffraction data would be as inadequate for the task as manual model building or
interactive computer graphics.

The mathematical theory of distance geometry [2] was the first method to be used
for protein structure calculation. The basic idea of distance geometry is to formulate the
problem not in the Cartesian space of the atom positions but in the high-dimensional
space of all inter-atomic distances where it is straightforward to find configurations that
satisfy a network of distance measurements. The crucial step is then the embedding of a
solution found in distance space into Cartesian space. For the first time a computer
program was used to calculate the solution structure of a nonapeptide on the basis of
experimental NOE measurements [3], and later-on the NMR solution structure of a 35-
residue globular protein [4]. An improved version of the original embedding algorithm
was implemented in DISGEO [5], the first complete program package for NMR protein
structure calculation.

Finding molecular conformations that are in agreement with geometrical restraints
can be formulated as the minimization of a suitable “target function”. The variable
target function method in torsion angle space [6] used the method of conjugate
gradients [7] for the minimization of a multidimensional function. Recognizing that
fluctuations of the covalent bond lengths and bond angles around their equilibrium
values are small, fast, and not measurable by NMR, only the torsion angles were
retained as degrees of freedom. A fast recursive method made it possible to rapidly
calculate the gradient of the target function against torsion angles [8]. However, as a
local minimizer that takes exclusively downhill steps, conjugate gradient minimization
of a target function representing the complete network of NMR-derived restraints and
the steric repulsion in a protein was trapped virtually always in local minima far from
the correct solution. To alleviate this problem, the variable target function method
implemented in the programs DISMAN [6] and DIANA [9], went through a series of
minimizations of different target functions that gradually included restraints between
atoms further and further separated along the polypeptide chain, thereby increasing
step-by-step the complexity of the target function. This was a natural idea for helical
proteins, but less successful for B-sheet topologies that are characterized by many non-
local contacts. This convergence problem could later be cured in part by the usage of
redundant torsion angle restraints [10]. In this iterative procedure, redundant torsion
angle restraints were generated on the basis of the torsion angle values found in a
previous round of structure calculations.
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In parallel with these developments, NMR structure calculation methods based on
simulated annealing [11] driven by molecular dynamics simulation were developed. By
numerically solving Newton's equations of motion of classical mechanics trajectories
for the atoms of a protein can be obtained. In the context of protein structure
calculations, the basic advantage of molecular dynamics simulation over minimization
techniques is the presence of kinetic energy that allows the system to escape from local
minima. The efficiency of structure calculations using molecular dynamics simulation
was enhanced by replacing the full “physical” force field [12] by a simpliﬁed
"geometric" encrgy function, a modified potential for NOE restraints yvnth an
asymptotically linear slope for large violations [13-15], and simulated annealing [l.l]‘
Three different protocols for simulated annealing by molecular dynamics, each using
another way to produce the start structure for the molecular dynamics run, were
established: “Hybrid distance geometry-dynamical simulated annealing” [13] used a
start conformation obtained from metric matrix distance geometry, the second method
started from an extended polypeptide chain [14], and the third from a random array of
atoms [15]. These protocols were implemented in the molecular dynamics program X-
PLOR [16], that was written especially for biomolecular structure determination by
NMR and X-ray diffraction, and its later successors CNS [17] and Xplor-NIH [18].

It became clear that a method working in torsion angle space and using simulated
annealing by molecular dynamics would benefit from the advantages of both
approaches because the absence of high-frequency bond length 'c.llld bond angle
vibrations in torsion angle space would allow for longer integration time steps and/or
higher temperatures during the simulated annealing. Mazur and Abagyan [19, 20]
derived explicit formulas for Lagrange's equations of motion of a polymer, using
internal coordinates as degrees of freedom. Independently, Bae and Haug [21] and Jain
et al. [22] found improved torsion angle dynamics algorithms whose computatiqnal
effort scaled linearly with the system size, as in Cartesian space molecular dynamics,
such that the advantage of longer integration time steps in torsion angle dynamics could
be exploited for systems of any size. Both algorithms were adapted for protein structure
calculations on the basis of NMR data, the first [21] in the program X-PLOR [23], the
other [22] in the programs DYANA and CYANA [24], and in the NIH version of ?(—
PLOR {[25]. Experience with these programs confirmed that torsion angle dynamics
was the most efficient way to calculate NMR structures of biological macromolecules,
and showed that the computation time with DYANA and CYANA was apout one orfier
of magnitude shorter than with other programs [24]. Simulated anneglmg by torsion
angle dynamics became the standard method to calculate NMR protein structures. A
recent survey (Table 1 in [26]) revealed that the structure calculation programs cn'e_d
most often in the NMR protein structures deposited to the Protein Data Baqk [1] in
September 2005-2008 were CYANA [24] (1160 citations), CNS [17] (242 citations),
Xplor-NIH [18] (153 citations), ARIA (27, 28] (122 citations) , DYANA [24] (114
citations), AutoStructure [29] (103 citations), and X-PLOR [16] (75 citations).

When the basic problem of NMR protein structure calculation. was solved
satisfactorily by these programs, the interested turned towards automating the most
time-consuming part of NMR spectra analysis, namely the assignment of multi-
dimensional NOESY spectra for the collection of conformational restraints. Due t0 th@
extensive degeneracy of the chemical shifts, this task is cumbersome apd error-prone if
done manually. After semiautomatic approaches [30, 31], the feasibillty‘ of automated
NOESY cross peak assignment was afforded by the NOAH algorithm [32, 33]
implemented in the program DIANA [9]. Automated NOESY assignment became of
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practical relevance with the introduction of ambiguous distance restraints [34] that
allowed the use of NOESY cross peaks in the structure calculation even if these
particular NOESY cross peaks had multiple possible assignments [35]. Ambiguous
distance restraints became the central feature of the ARIA algorithm [27, 28, 36]. The
CANDID [37] algorithm implemented in DYANA and CYANA [38] makes use of
ambiguous distance restraints, and improves the robustness of structure calculations
with automated NOESY assignment by “network-anchoring” and ‘“constraint
combination”. Network anchoring reduces the initial ambiguity of NOESY cross peak
assignments by inducing self-consistency with the network of other assigned NOEs,
and constraint combination minimizes the impact of erroneous distance restraints on
the resulting structure. At present, the combination of the automated assignment of
NOESY cross peaks and the structure calculation with CYANA or ARIA have become
the standard approach to protein structure analysis by NMR [26]. Alternative
approaches for the automated assignment of NOESY cross peaks are implemented in
the AutoStructure [29], PASD [39], and KNOWNOE [40] algorithms, and in a
Bayesian approach [41].

The complete automation of protein structure determination is one of the
challenges of biomolecular NMR spectroscopy that has, despite early optimism [42],
proved difficult to achieve. The unavoidable imperfections of experimental NMR
spectra and the intrinsic ambiguity of peak assignments that resuits from the limited
accuracy of frequency measurements turn the tractable problem of finding the chemical
shift assignments from ideal spectra into a formidably difficult one under realistic
conditions. Many attempts have been made to automate further parts of the structure
determination process, including peak identification [42-56], and the sequence-specific
assignment of the chemical shifts [57-103]. However, fully automated NMR structure
determination was more demanding than automating individual parts of NMR structure
analysis because the cumulative effect of imperfections at successive steps could easily
render the overall process unsuccessful. Systems designed to handle the whole process
therefore generally required certain human interventions [51, 58]. Only recently, the
purely computational FLYA algorithm [104] that is capable of determining the 3D
structure of proteins on the basis of uninterpreted spectra was developed.

Nowadays, most NMR protein structure determinations make use of sophisticated
computational methods but nevertheless follow in essence the original approach that
was introduced in the early 1980s [105]. Alternative methods that circumvent the
chemical shift assignment step [106-112], or replaced the NOESY information with
residual dipolar couplings [113-117] or chemical shift data [118, 119], have been
developed. De novo protein structure determination by these approaches has not been
reported yet. It remains to be seen whether they will provide the reliability and the
structural quality of the conventional methods.

2. Structure Calculation Algorithms

This section presents the core algorithms for NMR protein structure calculation by
simulated annealing in torsion angle space, as implemented in the widely applied
programs CYANA [24] and X-PLOR/CNS [16, 17].
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2.1. Molecular Dynamics Simulation versus NMR Structure Calculation

There is a fundamental difference between a molecular dynamics simulation that has
the aim of simulating the trajectory of a molecular system as realistically as possible in
order to extract molecular quantities of interest and an NMR structure calculation that
is driven by experimental restraints. Classical molecular dynamics simulations rely on
a full “physical” force field to ensure proper stereochemistry, and are generally run at a
constant temperature, close to room temperature. Substantial amounts of computation
time are required because the physical energy function includes long-range pair
interactions that are time-consuming to evaluate, and because conformation space is
explored slowly at room temperature. When molecular dynamics algorithms are used
for NMR structure calculations; however, the objective is quite different. Here, such
algorithms simply provide a means to efficiently optimize a target function that takes
the role of the potential energy. Details of the calculation, such as the course of a
trajectory, are unimportant, as long as its end point is close to the global minimum of
the target function. Therefore, the efficiency of an NMR structure calculation can be
enhanced by simplifying the force field and/or the algorithm without significantly
altering the location of the global minimum (the correctly folded structure) but
shortening, in terms of the computation time needed, the path by which it can be
reached from the start conformation. A typical “geometric” force field used in an NMR
structure calculation therefore retains only the most important part of the non-bonded
interaction by a simple repulsive potential that replaces the Lennard-Jones and
electrostatic interactions of the full empirical energy function. This short-range
repulsive function can be calculated much faster and significantly facilitates large-scale
conformational changes that are required during the folding process by lowering energy
barriers induced by the overlap of atoms.

2.2. Target Function

For simulated annealing a simplified potential energy function, the “target function”, is
used that includes a simple repulsive potential instead of the Lennard-Jones and
electrostatic non-bonded interactions, as well as terms for distance and torsion angle
restraints. In Cartesian space the target function also comprises terms to maintain the
covalent geometry of the structure by means of harmonic bond length and bond angle
potentials, torsion angle potentials, and terms to enforce the proper chiralities and
planarities. These terms are not needed in torsion angle space. For instance, in the
program X-PLOR [16],

Ep= > ky(r=ry) + D ko(0-6,)" + Y k,(1+cos(ng+5))

bonds angles dihedrals )
2 2 2 |2

+ Tk WY+ Y K [max{0, (R0 )~ R?] M

impropers nonbonded

pairs
2 2

+ deAzl + chlAa‘

distance angle
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ks, kg, kg, ki, kiepar, kg and k, denote the various force constants, r the actual and r, the
correct bond length, respectively, @ the actual and &, the correct bond angle, ¢ the
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actual torsion angle, y the improper angle and y, the correct improper angle, # the
number of minima of the torsion angle potential, & an offset of the torsion angle and
improper potentials, Ry the distance where the van der Waals potential has its
minimum, R the actual distance between a non-bonded atom pair, s a scaling factor,
and A, and A, the size of the distance or torsion angle restraint violation. As an
alternative to the square-well potential, distance restraints are often represented by a
potential with a linear asymptote for large violations [16, 120], which limits the
maximal force exerted by a violated distance constraint. In this case the violation A, of
a single distance restraint is computed as

(a’—l)z if d<l;
0 if 1<d<u;
Ay = (d—u)? if u<d<u+a 2
a(3a—2;/)+—£———)—+/(d u) if dzu+a

Here, d denotes the actual distance, / and u are the lower and upper distance bounds, y
is the slope of the asymptotic potential, and « is the violation at which the potential
switches from harmonic to asymptotic behavior.

In the program CYANA the target function [9, 24] is defined such that it is zero if .
and only if all experimental distance restraints and torsion angle restraints are fulfilled
and all non-bonded atom pairs satisfy a check for the absence of steric overlap. A
conformation that satisfies the restraints more closely than another one will lead to a
lower target function value. The CYANA target function for distance restraints and
torsion angle restraints is defined by

¢ 2 1 Ai ’ 2
V= w, Y wis(dy~by) +w, W, 1_5[7?] a7, 3)

c=udy (a.Pel, iel,

Upper and lower bounds, b,s on distances d,s between two atoms « and S, and
restraints on individual torsion angles &, in the form of allowed intervals (™", 6™]
are considered. /,, I; and I, are the sets of atom pairs () with violated upper, lower or
van der Waals distance bounds, respectively, and I, is the set of restrained torsion
angles. w,, w, w, and w, are overall weighting factors for the different types of

restraints, and w;p and w; are relative weighting factors for individual restraints.

I, =7—(0"™ —6™)/2 denotes the half-width of the forbidden range of torsion

angle values, and A, is the size of the torsion angle restraint violation. The target
function may include additional terms for restraints on vicinal scalar coupling constants,
residual dipolar couplings, and pseudocontact shifts, as well as identity and symmetry
restraints for symmetric multimers. Alternatives to the simple square potential for
violated distance restraints have also been implemented.
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Figure 2. (a) Tree structure of torsion angles for the tripeptide Val-Ser-1le. Circles represent rigid units.
Rotatable bonds are indicated by arrows that point towards the part of the structure that is rotated if the
corresponding torsion angle is changed. (b) Excerpt from the tree structure formed by the torsion angles
of a molecule, and definition of quantities required by the CY ANA torsion angle dynamics algorithm.

2.3. Torsion Angle Dynamics

Torsion angle dynamics, i.e. molecular dynamics simulation using torsion angles
instead of Cartesian coordinates as degrees of freedom [19-22], provides at present the
most efficient way to calculate NMR structures of biological macromolecules. The
only degrees of freedom are the torsion angles, i.e. rotations about single bonds, such
that the conformation of the molecule is uniquely specified by the values of all torsion
angles. The efficiency of the torsion angle dynamics algorithm [22] implemented in the
program CYANA, and, previously, in DYANA [24], is due to the fact that it requires a
computational effort that increases only linearly with the system size. In contrast, the
computation time for “naive” approaches to torsion angle dynamics rises with the third
power of the system size [20] , which renders these algorithms unsuitable for use with
macromolecules. With the fast torsion angle dynamics algorithm in CYANA the
advantages of torsion angle dynamics, especially that much longer integration time
steps can be used, are effective for molecules of all sizes. A key idea of the fast torsion
angle dynamics algorithm in CYANA [22, 24] is to exploit the fact that a chain
molecule such as a protein or nucleic acid can be represented in a natural way as a tree
structure consisting of rigid bodies or “clusters” that are connected by » rotatable bonds
(Figure 2). Each rigid body is made up of one or several mass points (atoms) with fixed
relative positions. The tree structure starts from a base, typically at the N-terminus of
the polypeptide chain, and terminates with “leaves” at the ends of the side-chains and at
the C-terminus. The only degrees of freedom are rotations about single bonds, and
parameters that define the position and orientation of the molecule in space. The
conformation of the molecule is uniquely specified by the values of all torsion angles,
6, ..., 6,

The calculation of the torsional accelerations, i.e. the second time derivatives of
the torsion angles, is the crucial point of a torsion angle dynamics algorithm. The equa-
tions of motion for a classical mechanical system with generalized coordinates are the
Lagrange equations

d(oL) oL
LN Z o k=1, 4
dz[a@kj 26, ( " @
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with the Lagrange function L = Ey;, — Ep. They lead to equations of motion of the form
M(0)6 +C(6,0)=0. (5)

In the case of # torsion angles as degrees of freedom, the » x n mass matrix M(6) and
the n-dimensional vector C(8, ) can be calculated explicitly [19, 20]. To generate a
trajectory this linear set of »# equations would have to be solved in each time step for

the torsional accelerations & , formally by
6=M(@©)"C@®,0). (6)

This requires a computational effort proportional to n’, which is prohibitively
expensive for larger systems. Therefore, in CYANA the fast recursive algorithm of
[22] is implemented to compute the torsional accelerations, which makes explicit use of

the tree structure of the molecule in order to obtain & with a computational effort that
is only proportional to n. The mathematical details and a proof of correctness of the
CYANA torsion angle dynamics algorithm are given in [22].

The integration scheme for the equations of motion in torsion angle dynamics is a
variant of the “leap-frog” algorithm [121] used in Cartesian space molecular dynamics.
To obtain a trajectory, the equations of motion are numerically integrated by advancing
the i =1,...,n (generalized) coordinates ¢; and velocities ¢, that describe the system

by a small but finite time step Ar:

G+ A2)=q,(t— At/ 2)+ At (1) + O(Ar)

7
q,(t+ ML) = q, (1) + At G, (t + At/ 2)+ O(Ar) 7
The degrees of freedom, g;, are the Cartesian coordinates of the atoms in conventional
molecular dynamics simulation, or the torsion angles in CYANA. The O(A?) terms
indicate that the errors with respect to the exact solution incurred by the use of a finite
time step Ar are proportional to A#. The time step At must be small enough to sample
adequately the fastest motions. Since the fastest motions in conventional molecular
dynamics simulation are oscillations of bond lengths and bond angles, which are
“frozen” in torsion angle space, longer time steps can be used for torsion angle
dynamics than for molecular dynamics in Cartesian space [24]. The temperature is
controlled by weak coupling to an external bath [122] and the length of the time step is
adapted automatically based on the accuracy of energy conservation [24]. It has been
shown that in practical applications with proteins time steps of about 100, 30 and 7 5 at
low (1 K), medium (400 K) and high (10000 K) temperatures, respectively, can be used
in torsion angle dynamics calculations with CYANA [24], whereas time steps in
Cartesian space molecular dynamics simulation generally have to be in the range of 2
ns. The concomitant fast exploration of conformation space provides the basis for the
efficient CYANA structure calculation protocol.
With the CYANA torsion angle dynamics algorithm it is possible to efficiently
calculate protein structures on the basis of NMR data. Even for a system as complex as
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a protein, the program CYANA can execute thousands of torsion angle dynamics steps
within minutes of computation time.

Furthermore, since an NMR structure calculation always involves the computation
of a group of conformers, it is highly efficient and straightforward with CYANA to run
calculations of multiple conformers in parallel. Nearly ideal speedup, i.e., an overall
computation time almost inversely proportional to the number of processors, can be
achieved with CYANA [24].

2.4. Simulated Annealing

Simulated annealing is a minimization method for systems with a temperature
parameter that controis the height of energy barriers that can be crossed, and that is
decreased during the course of the calculation according to a “temperature schedule”.
In algorithms based on molecular dynamics simulation, the temperature is proportional
to the kinetic energy. The potential energy landscape of a protein is complex and
studded with many local minima, even in the presence of experimental restraints and
when using a simplified target function. Because the temperature, i.e. kinetic energy,
determines the maximal height of energy barriers that can be overcome in a molecular
dynamics trajectory, the temperature schedule is important for the success rate and
efficiency of a simulated annealing calculation. Elaborated protocols have been devised
for structure calculations using molecular dynamics in Cartesian space [13, 16]. In
addition to the temperature, other parameters such as force constants and repulsive core
radii are varied in these schedules that may involve several stages of heating and
cooling. The fast exploration of conformation space with torsion angle dynamics
allows for simpler schedules.

The standard simulated annealing protocol in the program CYANA includes N
torsion angle dynamics time steps. It starts from a conformation with all torsion angles
treated as independent, uniformly distributed random variables and consists of six
stages:

(1) Initial minimization by 100 steps of conjugate gradient minimization to reduce
high energy interactions that might otherwise disturb the torsion angle dynamics
algorithm. Hydrogen atoms are excluded from the steric repulsion. The repulsive core
radii of the heavy atoms are decreased from their standard values by 0.2 A if no
hydrogen atom is bound to them or by 0.05 A if hydrogen atoms are bound to them.

(2) First simulated annealing stage comprising one third of all time steps and using
the same repulsive core radii as in stage (1).

(3) Second simulated annealing stage comprising one third of all time steps and
heavy atom radii restored to their standard values.

(4) Third simulated annealing stage comprising one third of all time steps and
hydrogen atom radii restored to their standard values.

(5) Low temperature phase comprising 200 time steps with increased weight for
steric repulsion.

{6) Final minimization by up to 1000 steps of conjugate gradient minimization.

The temperature is kept at an initial high value during the first 20% of the time
steps of the annealing schedule, then decreased to 5% of the initial high temperature
according to a fourth power law by the end of stage (2), further decreased to (almost)
zero temperature according to a fourth power law during stages (3) and (4).
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3. Automated NOE Assignment

Obtaining a comprehensive set of distance restraints from a NOESY spectrum is in
practice by no means straightforward. Resonance and peak overlap turn NOE
assignment into an iterative process in which preliminary structures, calculated from
limited numbers of distance restraints, serve to reduce the ambiguity of the cross peak
assignments. Additional difficulties may arise from spectral artifacts and noise, and
from the absence of expected signals because of fast relaxation. These inevitable
shortcomings of NMR data collection are the main reason why laborious interactive
procedures have dominated this central step of NMR protein structure determination
for a long time. Automated procedures follow the same general scheme as the
interactive approach but do not require manual intervention during the
assignment/structure calculation cycles. Two main obstacles have to be overcome by an
automated method starting without any prior knowledge of the structure: First, the
number of cross peaks with unique assignment based on chemical shift alignment alone
is in general not sufficient to define the fold of the protein [123]. An automated method
must therefore have the capability to use also NOESY cross peaks that cannot (yet) be
assigned unambiguously. Second, the automated program must be able to cope with the
erroneously picked or inaccurately positioned peaks and with the incompleteness of the
chemical shift assignment of typical experimental data sets. An automated procedure
needs devices to substitute for the intuitive decisions made by an experienced
spectroscopist in dealing with the imperfections of experimental NMR data.

Besides semi-automatic approaches [30, 31, 124], several algorithms have been
developed for the automated analysis of NOESY spectra given the chemical shift
assignments of the backbone and side chain resonances, namely NOAH [32, 33], ARIA
[27, 28, 36, 125], AUTOSTRUCTURE [29], KNOWNOE [40], CANDID [37] and a
similar algorithm implemented in CYANA [126], PASD [39], and a Bayesian approach
[41]. Automated NOE assignment algorithms generally require a high degree of
completeness of the backbone and side chain chemical shift assignments [127].

3.1. Ambiguity of Chemical Shift Based NOESY Assignment

In de novo three-dimensional structure determinations of proteins in solution by NMR
spectroscopy, the key conformational data are upper distance limits derived from
nuclear Overhauser effects (NOEs) [34-37]. In order to extract distance constraints
from a NOESY spectrum, its cross peaks have to be assigned, i.e. the pairs of
interacting hydrogen atoms have to be identified. The NOESY assignment is based on
previously determined chemical shift values that result from the chemical shift
assignment.

Because of the limited accuracy of chemical shift values and peak positions many
NOESY cross peaks cannot be attributed to a single unique spin pair but have an
ambiguous NOE assignment comprising multiple spin pairs. A simple mathematical
model of the NOESY assignment process by chemical shift matching gives insight into
this problem [33]. It assumes a protein with » hydrogen atoms, for which complete and
correct chemical shift assignments are available, and N cross peaks picked in a 2D
NOESY spectrum with an accuracy of the peak position of A, i.e. the position of the
picked peak differs from the resonance frequency of the underlying signal by no more
than Aw in both spectral dimensions. Under the simplifying assumption of a uniform
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distribution of the proton chemical shifts over a range AQ, the chemical shift of a given
proton falls within an interval of half-width Aw about a given peak position with
probability p =2Aw/AQ . Peaks with unique chemical shift-based assignments have in

both spectral dimensions exactly 1 out of all # proton shifts inside the tolerance range
Aw from the peak position. Their expected number,

N(l) _ N(l*p)l"‘z ~ Ne—2np _ Ne—4nAro/AQ , (8)

decreases exponentially with increasing size of the protein (#) and increasing chemical
shift tolerance range (Aw). For a typical small protein with 100 amino acid residues, #
= 500 proton chemical shifts, and N = 2000 NOESY cross peaks within a range of AQ
= 10 ppm, one expects that only about 2% of the NOEs can be assigned unambiguously
based solely on chemical shift information with an accuracy of Aw = 0.02 ppm, which
is an insufficient number to calculate a preliminary three-dimensional structure. For
peak lists obtained from 3D “C- or *N-resolved NOESY spectra, the ambiguity in one
of the proton dimensions can usually be resolved by reference to the hetero-spin, so
that the expected number of unambiguously assignable NOEs becomes

- -2
N(l) ~ Ne ™ = Ne _"L\(I)/A(). (9)

With regard to assignment ambiguity, 3D NOESY spectra are thus equivalent to
homonuclear NOESY spectra from a protein of half the size or with twice the accuracy
in the determination of the chemical shifts and peak positions.

3.2. Ambiguous Distance Restraints

Ambiguous distance restraints [35] provide a powerful concept for handling
ambiguities in the initial, chemical shift-based NOESY cross peak assignments. Prior
to the introduction of ambiguous distance restraints in the ARIA algorithm [36], in
general only unambiguously assigned NOEs could be used as distance restraints in the
structure calculation. Since the majority of NOEs cannot be assigned unambiguously
from chemical shift information alone, this lack of a general way to include ambiguous
data into the structure calculation considerably hampered the performance of early
automatic NOESY assignment algorithms. When using ambiguous distance restraints,
every NOESY cross peak is treated as the superposition of the signals from each of its
possible assignments by applying relative weights proportional to the inverse sixth
power of the corresponding interatomic distances. A NOESY cross peak with a unique
assignment possibility gives rise to an upper bound b on the distance d(a,f) between
two hydrogen atoms, az and . A NOESY cross peak with # > 1 assignment possibilities
can be interpreted as the superposition of » degenerate signals and interpreted as an
ambiguous distance restraint, degr < b, with the “effective” or “)®_summed” distance

-1/6
g {Zd;ﬁ] : (10)
k=1
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Figure 3. Three conditions that must be fulfilled by a valid assignment of a NOESY cross peak to two
protons A and B in the CYANA automated NOESY assignment algorithm: (a) Agreement between the
proton chemical shifts @, and oy and the peak position (@), @) within a tolerance of Aw. (b) Spatial
proximity in a (preliminary) structure. (¢) Network-anchoring. The NOE between protons A and B must
be part of a network of other NOEs or covalently restricted distances that connect the protons A and B
indirectly through other protons.

Each of the distances d, = d(a;,) in the sum corresponds to one assignment possibility
to a pair of hydrogen atoms, ¢ and f. The effective distance dey is always shorter than
any of the individual distances d;. Thus, an ambiguous distance restraint will be
fulfilled by the correct structure provided that the correct assignment is included among
its assignment possibilities, regardless of the possible presence of other, incorrect
assignment possibilities. Ambiguous distance restraints make it possible to interpret
NOESY cross peaks as correct conformational restraints also if a unique assignment
cannot be determined at the outset of a structure determination. Including muitiple
assignment possibilities, some but not all of which may later turn out to be incorrect,
does not result in a distorted structure but only in a decrease of the information content
of the ambiguous distance restraints.

3.3. Combined Automated NOE Assignment and Structure Calculation with CYANA

A widely used algorithm for the automated interpretation of NOESY spectra is
implemented in the NMR structure calculation program CYANA [24, 126]. This
algorithm is a re-implementation of the former CANDID algorithm [37] on the basis of
a probabilistic treatment of the NOE assignment, combined in an iterative process that
comprises seven cycles of automated NOE assignment and structure calculation,
followed by a final structure calculation using only unambiguously assigned distance
restraints. Between subsequent cycles, information is transferred exclusively through
the intermediary 3D structures. The molecular structure obtained in a given cycle is
used to guide the NOE assignments in the following cycle. Otherwise, the same input
data are used for all cycles, that is, the amino acid sequence of the protein, one or
several chemical shift lists from the sequence-specific resonance assignment, and one
or several lists containing the positions and volumes of cross peaks in 2D, 3D or 4D
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NOESY spectra. The input may further include previously assigned NOE upper
distance bounds or other previously assigned conformational restraints for the structure
calculation.

In each cycle, first all assignment possibilities of a peak are generated on the basis
of the chemical shift values that match the peak position within given tolerance values,
and the quality of the fit is expressed by a Gaussian probability, Py Second, in all
but the first cycle the probability Pgywewre for agreement with the preliminary structure
from the preceding cycle, represented by a bundle of conformers, is computed as the
fraction of the conformers in which the corresponding distance is shorter than the upper
distance bound plus the acceptable distance restraint violation cutoff. Third, each
assignment possibility is evaluated for its network anchoring (see below), which is
quantified by the probability Pewok. Only assignment possibilities for which the
product of the three probabilities is above a threshold,

Plol = Pshiﬁs : Pslruclurc . Pnclwork 2 Pmin: (l 1)

are accepted (Figure 3). Cross peaks with a single accepted assignment yield a
conventional unambiguous distance restraint. Otherwise, an ambiguous distance
restraint is generated that embodies multiple accepted assignments.

3.4. Network-anchoring

Each assignment possibility is evaluated for its network anchoring, i.e., its embedding
in the network formed by the assignment possibilities of all the other peaks and the
covalently restricted short-range distances. The network anchoring probability Pework
that the distance corresponding to an assignment possibility is shorter than the upper
distance bound plus the acceptable violation is computed given the assignments of the
other peaks but independent from knowledge of the three-dimensional structure.
Contributions to the network anchoring probability for a given, “current” assignment
possibility resuit from other peaks with the same assignment, from pairs of peaks that
connect indirectly the two atoms of the current assignment possibility via a third atom,
and from peaks that connect an atom in the vicinity of the first atom of the current
assignment with an atom in the vicinity of the second atom of the current assignment.
Short-range distances that are constrained by the covalent geometry take, for network
anchoring, the same role as an unambiguously assigned NOE. Individual contributions
to the network anchoring of the current assignment possibility are expressed as
probabilities, Py, P,, ..., that the distance corresponding to the current assignment
possibility satisfies the upper distance bound. The network anchoring probability is
obtained from the individual probabilities as Pyowork = 1 — (1 — P)(1 — P,)~, which is
never smaller than the highest probability of an individual network anchoring
contribution.

3.5. Constraint Combination

In practice, spurious distance restraints may arise from the misinterpretation of noise
and spectral artifacts, in particular at the outset of a structure determination, before 3D
structure-based filtering of the restraint assignments can be applied. The key technique
used in CYANA to reduce structural distortions from erroneous distance restraints is
“constraint combination” [37]. Ambiguous distance restraints are generated with
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Figure 4. Schematic illustration of the effect of constraint combination in the case of two distance
restraints; a correct one connecting atoms A and B, and an incorrect one between atoms C and D. A
structure calculation that uses these two restraints as individual restraints that have to be satisfied
simultaneously will, instead of finding the correct structure (shown, schematically, in the first panel),
result in a distorted conformation (second panel), whereas a combined restraint that will be fulfilled
already if one of the two distances is sufficiently short leads to an almost undistorted solution (third
panel). The formation of a combined restraint from the assignments of two peaks is shown in the right
panel.

combined assignments from different, in general unrelated, cross peaks (Figure 4). The
basic property of ambiguous distance restraints that the restraint will be fulfilled by the
correct structure whenever at least one of its assignments is correct, regardless of the
presence of additional, erroneous assignments, then implies that such combined
restraints have a lower probability of being erroneous than the corresponding original

restraints, provided that the fraction of erroneous original restraints is smaller than 50%.

Constraint combination aims at minimizing the impact of such imperfections on the
resulting structure at the expense of a temporary loss of information. It is applied to
medium- and long-range distance restraints in the first two cycles of combined
automated NOE assignment and structure calculation with CYANA.

3.6. Structure Calculation Cycles

The distance restraints are then included in the input for the structure calculation with
simulated annealing by the fast CYANA torsion angle dynamics algorithm [24]. The
structure calculations typically comprise seven cycles. The second and subsequent
cycles differ from the first cycle by the use of additional selection criteria for cross
peaks and NOE assignments that are based on assessments relative to the protein 3D
structure from the preceding cycle. The precision of the structure determination
normally improves with each subsequent cycle. Accordingly, the cutoff for acceptable
distance restraint violations in the calculation of Pyucue 1S tightened from cycle to
cycle. In the final cycle, an additional filtering step ensures that all NOEs have either
unique assignments to a single pair of hydrogen atoms, or are eliminated from the input
for the structure calculation. This facilitates the subsequent use of refinement and
analysis programs that cannot handle ambiguous distance restraints.

]
1
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A CYANA structure calculation with automated NOE assignment can be
completed in less than one hour for a 10-15 kDa protein, provided that the structure
calculations can be performed in parallel, for instance on a Linux cluster system.

4. Non-classical Approaches

Non-classical approaches that do not rely on sequence-specific resonance assignments
and methods using residual dipolar couplings or chemical shifts in conjunction with
molecular modeling to determine the backbone structure without the need for side-
chain assignments have also been proposed.

4.1. Assignment-free Methods

Much of the NMR measurement time and the spectra analysis effort are devoted to
finding sequence-specific resonance assignments. However, the chemical shift
assignment by itself has no biological relevance. It is required only as an intermediate
step in the interpretation of the NMR spectra. Consequently, strategies for NMR
protein structure determination were sought that circumvented the chemical shift
assignment step. Assignment-free NMR structure calculation methods exploit the fact
that NOESY spectra provide distance information even in the absence of chemical shift
assignments. This proton-proton distance information is used to calculate a spatial
proton distribution. Since there is no association with the covalent structure at this
point, the protons of the protein are treated as a cloud of unconnected particles.
Provided that the emerging proton distribution is sufficiently clear, a model can then be
built into the proton density in a manner analogous to X-ray crystallography where a
structural model is placed into the electron density.

This general idea was first tested with simulated data [106-110]. The most recent
approach to NMR structure determination without chemical shift assignment is the
CLOUDS protocol [111, 112] that demonstrated the feasibility of assignment-free
structure determination using experimental rather than simulated data. A gas of
unassigned, unconnected hydrogen atoms is condensed into a structured proton
distribution (cloud) via a molecular dynamics simulated annealing scheme in which the
inter-nuclear distances and van der Waals repulsive terms are the only active restraints.
Proton densities are generated by combining a large number of such clouds, each
computed from a different trajectory. The primary structure is threaded through the
unassigned proton density by a Bayesian approach, for which the probabilities of
sequential connectivity hypotheses are inferred from likelihoods of H-HN, HY-H®, and
H“H" interatomic distances as well as '"H NMR chemical shifts, both derived from
public databases. Side chains are placed by a similar procedure. As with all NMR
spectral analyses, resonance overlap presents a major difficulty in applying assignment-
free strategies. To our knowledge, a de novo protein structure determination by the
assignment-free approach has not been reported yet.

4.2. Residual Dipolar Couplings Based Methods

Methods using residual dipolar couplings to determine the backbone structure without
the need for side-chain assignments have been developed [113]. In a first approach
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[114] the Protein Data Bank was searched for fragments of seven contiguous amino
acid residues that fitted the measured residual dipolar couplings. From consensus
values of the torsion angles for the non-terminal residues of these fragments, an initial
structure was built from overlapping fragments by “molecular fragment replacement”
(MFR). Errors in the MFR-derived backbone torsion angles accumulate when building
the initial model because the long-range information contained in the residual dipolar
couplings is not yet used. However, this global orientational information can be
reintroduced when using these rough models as starting structures in a subsequent
refinement procedure based on a simple iterative gradient approach that adjusts the
values of the backbone torsion angles ¢ and y to minimize the difference between
measured and best-fitted dipolar couplings, and between measured chemical shifts and
those predicted by the model. It was demonstrated that the 3D structure of large protein
backbone segments, and in favorable cases an entire small protein, could be calculated
exclusively from dipolar couplings and chemical shifts [114]. This and similar
approaches [115] require assignments of the backbone chemical shifts as input.

In a further step, automated algorithms were developed that simultancously
perform the assignment and the determination of low resolution backbone structures on
the basis of unassigned chemical shifts and residual dipolar couplings [116, 117]. The
latter method relies on the de novo protein structure prediction algorithm ROSETTA
[128] and a Monte Carlo search for chemical shift assignments that produce the best fit
of the experimental NMR data to a candidate 3D structure.

4.3. Chemical Shift Based Structure Determination

The chemical shift is the NMR parameter than can be measured most easily and
accurately. Because the chemical shifts are highly sensitive to their local environment
they are widely used to monitor conformational changes or ligand binding, and they
can yield information about specific features of protein conformations, notably dihedral
angles [129] and secondary structure [130]. However, the complex relationship
between chemical shifts and the 3D structure of a biomacromolecule has impeded their
direct use for tertiary structure determination. Recently, however, two approaches to
3D protein structure determination were developed that used exclusively chemical
shifts as experimental input data [118, 119]. Both methods did not rely on the quantum
mechanical calculation of chemical shifts from first principles but exploited the
availability of an ever growing data base of 3D protein structures [1] and corresponding
chemical shifts [131] to extract from known protein structures molecular fragment
conformations that match the experimentally determined secondary chemical shifts of
the protein under study. A secondary chemical shift is the deviation of a chemical shift
from the residue type dependent random coil chemical shift value of the corresponding
atom. This separates the conformation dependence of the chemical shift from its
residue-type dependence, which is a prerequisite for the sequence independent
identification of molecular fragments with similar conformation. The molecular
fragment conformations are found by extending the data base search method of the
program TALOS [129] to contiguous segments of several residues [118, 132]. The
fragment conformations are then assembled into a 3D structure of the entire protein
using molecular modeling approaches.

The CHESHIRE algorithm was the first program to generate near-atomic
resolution structures from chemical shifts [118]. This algorithm first uses the 'He, PN,
B and PCP secondary chemical shifts to predict the secondary structure of the protein
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and the backbone torsion angles, followed by the identification of three- and nine-
residue segments on the basis of the secondary chemical shifts, the predicted secondary
structure and the predicted backbone dihedral angles. Low resolution structures in
which the side chains are represented by a single CP atom are calculated by a Monte
Carlo algorithm using the CHARMM force field [12] complemented with terms for
secondary structure packing and cooperative hydrogen bonding. The previously
determined three- and nine-residue fragments guide Monte Carlo moves. All atom
conformers are generated. Finally, the 500 best scoring all atom conformers are refined
by a Monte Carlo protocol during which an additional energy term is active that
describes the correlation between experimental and predicted chemical shifts. The
CHESHIRE algorithm yielded the structures of 11 proteins of 46-123 residues with an
accuracy of 2 A or better for the backbone RMSD.

The CS-ROSETTA method is based on the same concept [119]. It combines the
ROSETTA structure prediction program [133] with a recently enhanced empirical
relation between structure and chemical shifts [132], which allows the selection of
database fragments that better match the structure of the unknown protein. Generating
new protein structures by CS-ROSETTA involves two separate stages. First,
polypeptide fragments are selected from a protein structural database, based on the
combined use of *C?, '3CB, Be, N, '"H® and 'H" chemical shifts and the amino acid
sequence pattern. [n the second stage, these fragments are used for de novo structure
generation, using the standard ROSETTA Monte Carlo assembly and relaxation
methods. The method was calibrated using 16 proteins of known structure, and then
successfully tested for nine proteins with 65-147 residues under study in a structural
genomics project. For these, the CS-ROSETTA algorithm yielded full-atom models
with 0.6-2.1 A RMSD for the backbone atoms relative to the independently determined
NMR structures.

Both methods require as experimental input the chemical shift assignments for the
backbone and "*C" atoms. These shifts are generally available at an early stage of the
traditional NMR structure determination process, before the collection and analysis of
structural restraints. Side chain chemical shift assignments beyond CP, which are
considerably harder to obtain than backbone assignments, are not necessary.

In contrast to the NOE-based conventional approach for which a well established
theory exists that relates each piece of NMR data (the NOESY peak volume) to a
corresponding conformational restraint, chemical shift-based structure determination is
an empirical approach in which it is assumed that the entire sequence of the protein can
be covered by overlapping fragments with a similar conformation in already existing
structures. There are no experimentally derived long-range conformational restraints.
This implies that the correct tertiary structure has to be found — or may be missed — by
the underlying molecular modeling algorithm. In practice, convergence decreases with
increasing protein size, and is adversely affected by the presence of long, disordered
loops [119]. The CS-ROSETTA approach works for proteins up to about 130 residues.

S. Fully Automated Structure Analysis
Fully automated NMR structure determination is more demanding than automating

?ndividual parts of NMR structure analysis because the cumulative effect of
imperfections at successive steps can easily render the overall process unsuccessful.
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Figure 5. Flowchart of the fully automated structure determination algorithm FLYA.

For example, it has been demonstrated that reliable automated NOE assignment and
structure calculation requires around 90% completeness of the chemical shift
assignment [37, 127], which is not straightforward to achieve by unattended automated
peak picking and automated resonance assignments. Present systems designed to
handle the whole process therefore generally require certain human interventions [51,
58]. The interactive validation of peaks and assignments, however, still constitutes a
time-consuming obstacle for high-throughput NMR protein structure determination.
The crucial indicator for a fully automated NMR structure determination method is the
accuracy of the resulting 3D structures when real experimental input data is used and
any human interventions at intermediate steps are avoided. Even “small” manual
corrections, or the use of idealized input data, can lead to substantially altered
conclusions, and prejudice the assessment of different methods.

Fully automated structure determination of proteins in solution (FLYA) yields,
without human intervention, 3D protein structures starting from a set of
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multidimensional NMR spectra [104]. As in the classical manual approach, structures
are determined by a set of experimental NOE distance restraints without reference to
already existing structures or empirical molecular modeling information. In addition to
the 3D structure of the protein, FLYA yields backbone and side-chain chemical shift
assignments, and cross peak assignments for all spectra.

The FLYA algorithm (Figure 5) uses as input data only the protein sequence and
multidimensional NMR spectra. Any combination of commonly used hetero- and
homonuclear two-, three- and four-dimensional NMR spectra can be used as input for
the FLYA algorithm, provided that it affords sufficient information for the assignment
of the backbone and side-chain chemical shifts and for the collection of conformational
restraints. Peaks are identified in the multidimensional NMR spectra using the
automated peak picking algorithm of NMRView [44], or AUTOPSY [43]. Peak
integrals for NOESY cross peaks are determined simultaneously. Since no manual
corrections are applied, the resulting raw peak lists may contain, in addition to the
entries representing true signals, a significant number of artifacts (see Figs. 2 and 4 of
[104]). The following steps of the fully automated structure determination algorithm
can tolerate the presence of such artifacts, as long as the majority of the true peaks have
been identified.

Based on the peak positions and, in the case of NOESY spectra, peak volumes,
peak lists are prepared by CYANA [24, 123]. Depending on the spectra, the
preparation may include unfolding aliased signals, systematic correction of chemical
shift referencing, and removal of peaks near the diagonal or water lines. The peak lists
resulting from this step remain invariable throughout the rest of the procedure. An
ensemble of initial chemical shift assignments is obtained by multiple runs of a
modified version of the GARANT algorithm [96, 97] with different seed values for the
random number generator [134]. The original GARANT algorithms was modified for
new spectrum types and for the treatment of NOESY spectra when 3D structures are
available. In analogy to NMR structure calculation in which not a single structure but
an ensemble of conformers is calculated using identical input data but different
randomized start conformers, the initial chemical shift assignment produces an
ensemble rather than a single chemical shift value for each 'H, C and "*N nucleus.
The peak position tolerance is typically set to 0.03 ppm for the 'H dimensions and to
0.4 ppm for the °C and "N dimensions. These initial chemical shift assignments are
consolidated by CYANA into a single consensus chemical shift list. The most highly
populated chemical shift value in the ensemble is computed for each 'H, *C and "*N
spin and selected as the consensus chemical shift value that will be used for the
subsequent automated assignment of NOESY peaks. The consensus chemical shift for
a given nucleus is the value o that maximizes the function

ﬂ(w)=Z,exp(—(w—w,)2 /280%), (12)

where the sum runs over all chemical shift values @; for the given nucleus in the
ensemble of initial chemical shift assignments, and Aw denotes the aforementioned
chemical shift tolerance. NOESY cross peaks are assigned automatically [37] on the
basis of the consensus chemical shift assignments and the same peak lists and chemical
shift tolerance values used already for obtaining the chemical shift assignments. The
automated NOE assignment algorithm of the program CYANA is used. The overall
probability for the correctness of possible NOE assignments is calculated as the
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Figure 6. Structures obtained by fully automated structure determination with the FLYA algorithm
(blue) superimposed on the corresponding NMR structures determined by conventional methods (red).
(a) ENTH domain At3gl6270(9-135) from Arabidopsis thaliana [143]. (b) Rhodanese homology
domain Atdg01050 (175-295) from Arabidopsis thaliana [144]. (c) Src homology domain 2 (SH2) from
the human feline sarcoma oncogene Fes [139].

product of three probabilities that reflect the agreement between the chemical shift
values and the peak positions, the consistency with a preliminary 3D structure [30], and
network-anchoring [37], i.e. the extent of embedding in the network formed by other
NOEs. Restraints with multiple possible assignments are represented by ambiguous
distance restraints [35]. Seven cycles of combined automated NOE assignment and
structure calculation by simulated annealing in torsion angle space and a final structure
calculation using only unambiguously assigned distance restraints are performed.
Constraint combination [37] is applied in the first two cycles to all NOE distance
restraints spanning at least three residues in order to minimize distortions of the
structures by erroneous distance restraints that may result from spurious entries in the
peak lists and/or incorrect chemical shift assignments.

A complete FLYA calculation comprises three stages. In the first stage, the
chemical shifts and protein structures are generated de novo (stage I). In the next stages
(stages II and III), the structures generated by the preceding stage are used as additional
input for the determination of chemical shift assignments. Stages Il and III are
particularly important for aromatics residues and other resonances whose assignment
rely on through-space NOESY information. At the end of the third stage, the 20 final
CYANA conformers with the lowest target function values are subjected to restrained
energy minimization in explicit solvent against the AMBER force field [135] using the
program OPALp [136, 137]. The complete procedure is driven by the NMR structure
calculation program CYANA, which is also used for parallelization of all time-
consuming steps. The performance of the FLYA algorithm can be monitored at
different steps of the procedure by quality measures that can be computed without
referring to external reference assignments or structures [104].

Structure calculations with the FLYA algorithm yielded 3D structures of three 12—
16 kDa proteins that coincided closely with the conventionally determined structures
(Figure 6). Deviations were below 0.95 A for the backbone atom positions, excluding
the flexible chain termini, and 96-97% of all backbone and side-chain chemical shifts
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in the structured regions were assigned to the correct residues. The purely
computational FLY A method is thus suitable to substitute all manual spectra analysis
and overcomes a major efficiency limitation of the NMR method for protein structure
determination.

The number of input spectra can be reduced for well-behaved proteins. This is of
particular interest because a considerable amount of NMR measurement time was
necessary to record the 13-14 input 3D spectra that were used as input for the
aforementioned FLYA structure determinations. The influence of reduced sets of
experimental spectra on the quality of NMR structures obtained with FLYA was
investigated for the 12 kDa Src homology domain 2 from the human feline sarcoma
oncogene Fes (Fes SH2) [138]. FLYA calculations were performed for five reduced
data sets selected from the complete set of 13 3D spectra of the earlier conventional
structure determination [139]. The reduced data sets utilized only CBCA(CO)NH and
CBCANH for the backbone assignments and either all, some or none of the five
original side-chain assignment spectra. In four of the five cases tested, the 3D
structures deviated by less than 1.3 A backbone RMSD from the conventionally
determined Fes SH2 reference structure. The FLYA algorithm can thus also be used
with reduced sets of input spectra.

A further improvement resulted in conjunction with stereo-array isotope labeling
(SAIL) [140, 141]. SAIL provides a complete stereo- and regiospecific pattern of stable
isotopes, which yields much sharper resonance lines and reduced signal overlap
without loss of information. Automated signal identification can be achieved with
higher reliability for the fewer, sharper and more intense peaks of SAIL proteins. The
danger of making erroneous assignments decreases with the number of nuclei and
peaks to assign, and less spin diffusion allows NOEs to be interpreted more
quantitatively. As a result of the superior quality of the SAIL NMR spectra, reliable
fully automated analysis of the NMR spectra and structure calculation are possible
using fewer input spectra than with conventional uniformly >C/"N- labeled proteins.
FLYA calculations with SAIL ubiquitin using a single “through-bond” 3D spectrum in
addition to the “C-edited and ""N-edited NOESY spectra for the restraint collection
yielded structures with an accuracy of 0.82-1.15 A for the backbone RMSD to the
conventionally determined solution structure [142], showing the feasibility of fully
automated NMR structure analysis from a minimal set of spectra.
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