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Abstract Automated methods for protein structure deter-

mination by NMR have increasingly gained acceptance and

are now widely used for the automated assignment of dis-

tance restraints and the calculation of three-dimensional

structures. This review gives an overview of the techniques

for automated protein structure analysis by NMR, including

both NOE-based approaches and methods relying on other

experimental data such as residual dipolar couplings and

chemical shifts, and presents the FLYA algorithm for the

fully automated NMR structure determination of proteins

that is suitable to substitute all manual spectra analysis and

thus overcomes a major efficiency limitation of the NMR

method for protein structure determination.
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Introduction

When the NMR method for protein structure determination

in solution was introduced in the early 1980s, all analysis

of the two-dimensional (2D) spectra was done manually

with the help of large paper plots. The memoirs of pioneers

in volume 41, issue S1 of Magnetic Resonance in Chem-

istry afford a vivid picture of this period. Rulers were used

to check the frequency alignment of peaks; assignments

and other information were stored in hand-written note-

books or marked on the spectra. Only the initial and the

final step of the analysis were in the domain of computers:

the processing of the raw NMR data by Fourier transfor-

mation and the actual calculation of the 3D structure, after

initial attempts by interactive model building guided by the

NMR data had been unsuccessful. The manual spectra

analysis required many months or even years of work by an

experienced spectroscopist to solve the structure of a small

protein. Gradually the situation has changed over the years.

Tools that facilitate the interactive assignment procedures

have been introduced that make use of computer graphics

and allow to store and manage the relevant data on the

computer (Bartels et al. 1995; Delaglio et al. 1995; Eccles

et al. 1991; Goddard and Kneller 2001; Johnson and

Blevins 1994; Keller 2004; Kobayashi et al. 2007; Kraulis

1989; Neidig et al. 1995). Since the beginning of NMR

structure determination it was expected and promised that

steps of the spectra analysis can be automated. Soon

automated algorithms for peak picking and partial assign-

ment of the chemical shifts appeared, but were not widely

used in practice. On the other hand, procedures for auto-

mated NOESY assignment proved sufficiently robust to

widely replace the earlier manual approach (Herrmann

et al. 2002b; Nilges et al. 1997).

The complete automation of protein structure determi-

nation is one of the challenges of biomolecular NMR

spectroscopy that has, despite of early optimism (Pfändler

et al. 1985), proved difficult to achieve. The unavoidable

imperfections of experimental NMR spectra and the
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intrinsic ambiguity of peak assignments that results from

the limited accuracy of frequency measurements turn the

tractable problem of finding the chemical shift assignments

from ideal spectra into a formidably difficult one under

realistic conditions. A variety of automated algorithms

tackling different parts of NMR protein structure analysis

have been developed and reviewed (Altieri and Byrd 2004;

Baran et al. 2004; Gronwald and Kalbitzer 2004). How-

ever, only recently a purely computational algorithm has

been published that is capable of determining the 3D

structure of proteins on the basis of uninterpreted spectra

(López-Méndez and Güntert 2006).

Fully automated NMR structure determination is more

demanding than automating individual parts of NMR

structure analysis because the cumulative effect of imper-

fections at successive steps can easily render the overall

process unsuccessful. For example, it has been demon-

strated that reliable automated NOE assignment and

structure calculation requires around 90% completeness of

the chemical shift assignment (Herrmann et al. 2002b; Jee

and Güntert 2003), which is not straightforward to achieve

by unattended automated peak picking and automated res-

onance assignment algorithms. Present systems designed to

handle the whole process therefore generally require certain

human interventions (Gronwald and Kalbitzer 2004; Huang

et al. 2005). The interactive validation of peaks and

assignments, however, still constitutes a time-consuming

obstacle for high-throughput NMR protein structure deter-

mination. The crucial indicator for a fully automated NMR

structure determination method is the accuracy of the

resulting 3D structures when real experimental input data is

used and any human interventions at intermediate steps are

avoided. Even ‘‘small’’ manual corrections, or the use of

idealized input data, can lead to substantially altered con-

clusions, and prejudice the assessment of different methods.

This review comprises three parts. (1) An overview of

the ‘‘classical’’ approach to automated protein structure

analysis by NMR that consists of replacing manual steps in

NOESY based NMR structure determination by automated

algorithms. (2) A survey of alternative approaches that do

either not require chemical shift assignments or rely on

other data than NOEs to define the 3D structure. (3) A

presentation of the FLYA algorithm for the fully automated

NMR structure determination of proteins.

Automated spectrum analysis algorithms

The NMR structure determination of a protein conven-

tionally involves the preparation of (typically uniformly
13C/15N-labeled) soluble protein, the acquisition of a set of

2D and 3D NMR experiments, NMR data processing, peak

picking, chemical shift assignment, NOE assignment and

collection of conformational restraints, structure calcula-

tion, refinement and validation (Fig. 1). Virtually all of the

more than 5000 NMR protein structures in the Protein Data

Bank (Berman et al. 2000) have been determined by this

approach.

A variety of computational approaches have been

introduced to provide automation for specific parts of an

NMR structure determination. A recent review documents

close to 100 such algorithms and programs (Gronwald and

Kalbitzer 2004). Automated procedures are widely accep-

ted for the assignment of NOE distance restraints and the

structure calculations. The automation of the preceding

steps of peak picking and resonance assignment has also

been the subject of intensive research. Nevertheless, man-

ual or semi-automated approaches still prevail, especially

for the assignment of the side-chain chemical shifts. This

chapter gives an overview of the algorithms used for

different tasks in ‘‘classical’’ NMR protein structure

determination.

Automated peak picking

The identification of the NMR signals in two- and higher-

dimensional spectra, often referred to as ‘‘peak picking’’,

is the first step in the analysis of NMR spectra. Guided by

the ongoing assignment process, an experienced spec-

troscopist can often identify crucial peaks with virtual

certainty and, if necessary, make an assignment on the

basis of a single, uniquely identified peak. Automated

approaches to NMR spectra analysis on the other hand

generally have to cope with a lower reliability of peak

identification than a spectroscopist who visually inspects

the spectra. In compensation, the operation of automated

methods can be enhanced by redundancy, e.g. the avail-

ability of multiple peaks for a given atom. This can be

achieved by recording a set of spectra that provide com-

plementary information for the assignment of a given atom

or group of atoms, such that the algorithm can determine

their resonance assignment from various pieces of data

without relying on the certain identification of any specific

peak (Bartels et al. 1997). A variety of algorithms for

automated peak picking have been developed, relying on

Fig. 1 Steps of a NMR protein structure determination and their

resulting data
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rule based feature recognition (Antz et al. 1995; Dancea

and Günther 2005; Garrett et al. 1991; Herrmann et al.

2002a; Huang et al. 2005; Johnson 2004; Kleywegt et al.

1990; Koradi et al. 1998; Moseley et al. 2004; Rouh

et al. 1994), neural networks (Carrara et al. 1993; Corne

et al. 1992), antiphase fine structure pattern detection

(Meier et al. 1984; Neidig et al. 1990; Pfändler et al.

1985), etc. Nevertheless, even sophisticated recognition

methods often fail for complex spectra, mainly because of

strong peak overlap, noise, and artifacts such as spurious

signals, baseline distortions, and phase distortions. A

weakness of many automated approaches is the fact that

they analyze only the data points around a local maximum

that is part of a potential peak. When interpreting spectra

manually, an experienced spectroscopist will make use

also of non-local information. In this context it is impor-

tant that multidimensional spectra typically contain

multiple peaks that have the same line shape and the same

chemical shift in one frequency domain.

The program NMRView includes a representative, often

used example of a simple and rapid automated algorithm for

locating peaks that is robust in the absence of overlap

(Johnson 2004). Peaks are considered points of local max-

ima, i.e. points that have a higher intensity than all adjacent

points. When NMRView locates peaks, it also identifies the

peak bounds, i.e. the width of the peak at the level of the

intensity threshold, estimates the peak width at half-height,

determines whether the peak is on the edge of the spectrum

or adjacent to other peaks, and calculates the center position

by interpolating the intensities of the adjacent data points.

The program AUTOPSY is an example of a sophisti-

cated algorithm for automated peak picking of multi-

dimensional protein NMR spectra with overlapping peaks

(Koradi et al. 1998). The main elements of this program

are a function for local noise level calculation, the use

of symmetry considerations, and the use of line shapes

extracted from well-separated peaks for resolving groups of

overlapping peaks. The algorithm generates lists with the

frequency positions and integrals of peaks, and a reliability

measure for the recognition of each peak.

Automated chemical shift assignment

In de novo 3D structure determinations of proteins by

NMR, the key conformational data are upper distance

limits derived from nuclear Overhauser effects (NOEs)

(Kumar et al. 1980; Macura and Ernst 1980; Neuhaus and

Williamson 1989; Solomon 1955). In order to extract dis-

tance restraints from a NOESY spectrum, its cross peaks

have to be assigned, i.e. the pairs of interacting hydrogen

atoms have to be identified. The assignment of NOESY

cross peaks requires as a prerequisite the knowledge of the

chemical shifts of the spins from which NOEs are arising.

Aside from structure determinations, chemical shift

assignments represent crucial information in protein NMR

studies on dynamics or binding, for instance in NMR-based

ligand screening in drug discovery.

There have been several attempts to automate this

chemical shift assignment step that has to precede the

collection of conformational restraints and the structure

calculation. These methods have been reviewed recently

(Altieri and Byrd 2004; Baran et al. 2004; Gronwald and

Kalbitzer 2004; Moseley and Montelione 1999), and will

not be discussed in detail here. Many automated approa-

ches target the question of assigning the backbone and Cb

chemical shifts, usually on the basis of triple resonance

experiments that delineate the protein backbone through

one- and two-bond scalar couplings, using exhaustive,

heuristic, or data base searches, Monte Carlo, or simulated

annealing methods (Andrec and Levy 2002; Atreya et al.

2000, 2002; Bailey-Kellogg et al. 2000, 2005; Bernstein

et al. 1993; Bhavesh et al. 2001; Buchler et al. 1997;

Chatterjee et al. 2002; Chen et al. 2005; Coggins and Zhou

2003; Friedrichs et al. 1994; Güntert et al. 2000; Hare and

Prestegard 1994; Kamisetty et al. 2006; Kjaer et al. 1994;

Leutner et al. 1998; Li and Sanctuary 1997a; Lin et al.

2005; Lukin et al. 1997; Masse and Keller 2005; Moseley

et al. 2001; Olson and Markley 1994; Vitek et al. 2005,

2006; Volk et al. 2008; Wang et al. 2005; Wu et al. 2006;

Xu et al. 2002, 2006; Zimmerman et al. 1997). Others

algorithms are concerned with the more demanding prob-

lem of assigning the backbone and side-chain chemical

shifts (Bartels et al. 1996, 1997; Choy et al. 1997; Croft

et al. 1997; Eghbalnia et al. 2005; Gronwald et al. 1998;

Hitchens et al. 2003; Li and Sanctuary 1997b; Masse et al.

2006; Pristovšek et al. 2002; Xu et al. 1993, 1994). In most

cases, these algorithms require peak lists from a specific set

of NMR spectra as input, and produce lists of chemical

shifts of varying completeness and correctness, depending

on the quality and information content of the input data and

the capabilities of the algorithm.

One of the most general and often used chemical shift

assignment algorithms is the program GARANT (Bartels

et al. 1996, 1997). It has three principal elements. The first

is the representation of resonance assignments as an opti-

mal match between experimentally observed peaks and

peaks expected based on the amino acid sequence and the

magnetization transfer pathways in the spectra used

(Fig. 2). Any set of 2D, 3D and 4D homonuclear and

heteronuclear NMR spectra can be used. A main advantage

of the GARANT algorithm is its ability to analyze the peak

lists from all available spectra simultaneously, e.g. to

simultaneously assign the backbone and side-chain reso-

nances. The second key element is a scoring function that

evaluates the match between observed and expected peaks

in order to distinguish between correct and incorrect
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resonance assignments. The score captures the essential

features of a correct resonance assignment, i.e. the presence

of expected peaks in the spectra, the positional alignment

of peaks that originate from the same atoms and the sta-

tistical agreement of the assigned resonance frequencies

with a chemical shift data base compiled from the known

resonance assignments of many proteins. The third key

element is the optimization of the score by an evolutionary

algorithm combined with a local optimization routine.

GARANT is an important part of the FLYA algorithm for

fully automated NMR structure analysis, described below.

Automated NOE assignment

Obtaining a comprehensive set of distance restraints from a

NOESY spectrum is in practice by no means straightfor-

ward. Resonance and peak overlap turn NOE assignment

into an iterative process in which preliminary structures,

calculated from limited numbers of distance restraints,

serve to reduce the ambiguity of the cross peak assign-

ments. Additional difficulties may arise from spectral

artifacts and noise, and from the absence of expected sig-

nals because of fast relaxation. These inevitable

shortcomings of NMR data collection are the main reason

why laborious interactive procedures have dominated this

central step of NMR protein structure determination for a

long time. Automated procedures follow the same general

scheme as the interactive approach but do not require

manual intervention during the assignment/structure cal-

culation cycles. Two main obstacles have to be overcome

by an automated method starting without any prior

knowledge of the structure: First, the number of cross

peaks with unique assignment based on chemical shift

alignment alone is in general not sufficient to define the

fold of the protein (Güntert 2003). An automated method

must therefore have the capability to use also NOESY

cross peaks that cannot (yet) be assigned unambiguously.

Second, the automated program must be able to cope with

the erroneously picked or inaccurately positioned peaks

and with the incompleteness of the chemical shift assign-

ment of typical experimental data sets. An automated

procedure needs devices to substitute for the intuitive

decisions made by an experienced spectroscopist in dealing

with the imperfections of experimental NMR data.

Besides semi-automatic approaches (Duggan et al. 2001;

Güntert et al. 1993; Meadows et al. 1994), several algo-

rithms have been developed for the automated analysis of

NOESY spectra given the chemical shift assignments of

the backbone and side-chain resonances, namely NOAH

(Mumenthaler and Braun 1995; Mumenthaler et al. 1997),

ARIA (Habeck et al. 2004; Linge et al. 2003a; Nilges et al.

1997; Rieping et al. 2007), AUTOSTRUCTURE (Huang

et al. 2006), KNOWNOE (Gronwald et al. 2002), CANDID

(Herrmann et al. 2002b) and a similar algorithm imple-

mented in CYANA (Güntert 2004), PASD (Kuszewski

et al. 2004), and a Bayesian approach (Hung and

Samudrala 2006). Automated NOE assignment algorithms

generally require a high degree of completeness of the

backbone and side-chain chemical shift assignments (Jee

and Güntert 2003).

Ambiguous distance restraints (Nilges 1995) provide a

powerful concept for handling ambiguities in the initial,

chemical shift-based NOESY cross peak assignments. Prior

to the introduction of ambiguous distance restraints in the

ARIA algorithm (Nilges et al. 1997), in general only

unambiguously assigned NOEs could be used as distance

restraints in the structure calculation. Since the majority of

NOEs cannot be assigned unambiguously from chemical

shift information alone, this lack of a general way to

include ambiguous data into the structure calculation

considerably hampered the performance of early automatic

NOESY assignment algorithms. When using ambiguous

distance restraints, every NOESY cross peak is treated as

the superposition of the signals from each of its possible

assignments by applying relative weights proportional to

the inverse sixth power of the corresponding interatomic

distances. A NOESY cross peak with a unique assignment

possibility gives rise to an upper bound b on the distance

d(a,b) between two hydrogen atoms, a and b. A NOESY

cross peak with n [ 1 assignment possibilities can be

interpreted as the superposition of n degenerate signals and

interpreted as an ambiguous distance restraint, deff \ b,

with the ‘‘effective’’ or ‘‘r-6-summed’’ distance

deff ¼
Xn

k¼1

d�6
k

 !�1=6

:

Each of the distances dk = d(ak,bk) in the sum corresponds

to one assignment possibility to a pair of hydrogen atoms,

ak and bk. The effective distance deff is always shorter than

any of the individual distances dk. Thus, an ambiguous

distance restraint will be fulfilled by the correct structure

provided that the correct assignment is included among

its assignment possibilities, regardless of the possible

Fig. 2 Scheme of automated chemical shift assignment with the

program GARANT

132 Eur Biophys J (2009) 38:129–143

123



presence of other, incorrect assignment possibilities.

Ambiguous distance restraints make it possible to interpret

NOESY cross peaks as correct conformational restraints

also if a unique assignment cannot be determined at the

outset of a structure determination. Including multiple

assignment possibilities, some but not all of which may

later turn out to be incorrect, does not result in a distorted

structure but only in a decrease of the information content

of the ambiguous distance restraints.

Combined automated NOE assignment and structure

calculation with CYANA

A widely used algorithm for the automated interpretation

of NOESY spectra is implemented in the NMR structure

calculation program CYANA (Güntert 2004; Güntert et al.

1997). This algorithm is a re-implementation of the former

CANDID algorithm (Herrmann et al. 2002b) on the basis

of a probabilistic treatment of the NOE assignment, com-

bined in an iterative process that comprises seven cycles of

automated NOE assignment and structure calculation,

followed by a final structure calculation using only

unambiguously assigned distance restraints. Between sub-

sequent cycles, information is transferred exclusively

through the intermediary 3D structures. The molecular

structure obtained in a given cycle is used to guide the

NOE assignments in the following cycle. Otherwise, the

same input data are used for all cycles, that is, the amino

acid sequence of the protein, one or several chemical shift

lists from the sequence-specific resonance assignment, and

one or several lists containing the positions and volumes of

cross peaks in 2D, 3D or 4D NOESY spectra. The input

may further include previously assigned NOE upper dis-

tance bounds or other previously assigned conformational

restraints for the structure calculation.

In each cycle, first all assignment possibilities of a peak

are generated on the basis of the chemical shift values that

match the peak position within given tolerance values, and

the quality of the fit is expressed by a Gaussian probability,

Pshifts. Second, in all but the first cycle the probability

Pstructure for agreement with the preliminary structure from

the preceding cycle, represented by a bundle of conform-

ers, is computed as the fraction of the conformers in which

the corresponding distance is shorter than the upper dis-

tance bound plus the acceptable distance restraint violation

cutoff. Assignment possibilities for which the product of

these two probabilities is below the required probability

threshold are discarded. Third, each remaining assignment

possibility is evaluated for its network anchoring, i.e. its

embedding in the network formed by the assignment pos-

sibilities of all the other peaks and the covalently restricted

short-range distances. The network anchoring probability

Pnetwork that the distance corresponding to an assignment

possibility is shorter than the upper distance bound plus the

acceptable violation is computed given the assignments of

the other peaks but independent from knowledge of the 3D

structure. Contributions to the network anchoring proba-

bility for a given, ‘‘current’’ assignment possibility result

from other peaks with the same assignment, from pairs of

peaks that connect indirectly the two atoms of the current

assignment possibility via a third atom, and from peaks that

connect an atom in the vicinity of the first atom of the

current assignment with an atom in the vicinity of the

second atom of the current assignment. Short-range dis-

tances that are constrained by the covalent geometry take,

for network anchoring, the same role as an unambiguously

assigned NOE. Individual contributions to the network

anchoring of the current assignment possibility are

expressed as probabilities, P1, P2, …, that the distance

corresponding to the current assignment possibility satisfies

the upper distance bound. The network anchoring proba-

bility is obtained from the individual probabilities as

Pnetwork = 1 - (1 - P1)(1 - P2)���, which is never smal-

ler than the highest probability of an individual network

anchoring contribution. Only assignment possibilities for

which the product of the three probabilities is above a

threshold,

Ptot ¼ Pshifts � Pstructure � Pnetwork�Pmin

are accepted (Fig. 3). Cross peaks with a single accepted

assignment yield a conventional unambiguous distance

restraint. Otherwise, an ambiguous distance restraint is

generated that embodies multiple accepted assignments.

In practice, spurious distance restraints may arise from

the misinterpretation of noise and spectral artifacts, in

particular at the outset of a structure determination, before

3D structure-based filtering of the restraint assignments can

be applied. The key technique used in CYANA to reduce

structural distortions from erroneous distance restraints

is ‘‘constraint combination’’ (Herrmann et al. 2002b).

Ambiguous distance restraints are generated with com-

bined assignments from different, in general unrelated,

cross peaks (Fig. 4). The basic property of ambiguous

distance restraints that the restraint will be fulfilled by the

correct structure whenever at least one of its assignments is

correct, regardless of the presence of additional, erroneous

assignments, then implies that such combined restraints

have a lower probability of being erroneous than the cor-

responding original restraints, provided that the fraction of

erroneous original restraints is smaller than 50%. Con-

straint combination aims at minimizing the impact of such

imperfections on the resulting structure at the expense of a

temporary loss of information. It is applied to medium- and

long-range distance restraints in the first two cycles of

combined automated NOE assignment and structure cal-

culation with CYANA.
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The distance restraints are then included in the input for

the structure calculation with simulated annealing by the

fast CYANA torsion angle dynamics algorithm (Güntert

et al. 1997). The structure calculations typically comprise

seven cycles. The second and subsequent cycles differ from

the first cycle by the use of additional selection criteria for

cross peaks and NOE assignments that are based on

assessments relative to the protein 3D structure from the

preceding cycle. The precision of the structure determina-

tion normally improves with each subsequent cycle.

Accordingly, the cutoff for acceptable distance restraint

violations in the calculation of Pstructure is tightened from

cycle to cycle. In the final cycle, an additional filtering step

ensures that all NOEs have either unique assignments to a

single pair of hydrogen atoms, or are eliminated from the

input for the structure calculation. This facilitates the

subsequent use of refinement and analysis programs that

cannot handle ambiguous distance restraints.

A CYANA structure calculation with automated NOE

assignment can be completed in less than one hour for a

10–15 kDa protein, provided that the structure calculations

can be performed in parallel, for instance on a Linux

cluster system.

Non-classical approaches

Also non-classical approaches that do not rely on sequence-

specific resonance assignments and methods using residual

dipolar couplings or chemical shifts in conjunction with

molecular modeling to determine the backbone structure

without the need for side-chain assignments have been

proposed.

Assignment-free methods

It is a truth almost universally acknowledged, that a

spectroscopist in possession of a good spectrum, must be in

want of sequence-specific resonance assignments. How-

ever, the chemical shift assignment by itself has no

Fig. 3 Three conditions that must be fulfilled by a valid assignment

of a NOESY cross peak to two protons A and B in the CYANA

automated NOESY assignment algorithm: a agreement between the

proton chemical shifts xA and xB and the peak position (x1,x2)

within a tolerance of Dx. b Spatial proximity in a (preliminary)

structure. c Network anchoring. The NOE between protons A and B

must be part of a network of other NOEs or covalently restricted

distances that connect the protons A and B indirectly through other

protons

Fig. 4 Schematic illustration of the effect of constraint combination

in the case of two distance restraints, a correct one connecting atoms

A and B, and a wrong one between atoms C and D. A structure

calculation that uses these two restraints as individual restraints that

have to be satisfied simultaneously will, instead of finding the correct

structure (shown, schematically, in the first panel), result in a

distorted conformation (second panel), whereas a combined restraint

that will be fulfilled already if one of the two distances is sufficiently

short leads to an almost undistorted solution (third panel). The

formation of a combined restraint from the assignments of two peaks

is shown in the right panel
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biological relevance. It is required only as an intermediate

step in the interpretation of the NMR spectra. Conse-

quently, attempts have been made to devise a strategy for

NMR protein structure determination that circumvents the

chemical shift assignment step. Assignment-free NMR

structure calculation methods exploit the fact that NOESY

spectra provide distance information even in the absence of

chemical shift assignments. This proton-proton distance

information is used to calculate a spatial proton distribu-

tion. Since there is no association with the covalent

structure at this point, the protons of the protein are treated

as a cloud of unconnected particles. Provided that the

emerging proton distribution is sufficiently clear, a model

can then be built into the proton density in a manner

analogous to X-ray crystallography where a structural

model is placed into the electron density.

This general idea was first tested with simulated NOEs

between backbone amide protons of lysozyme (Malliavin

et al. 1992), and independently with synthetic NOE data for

BPTI (Oshiro and Kuntz 1993). A more thorough treatment

using simulated 4D NOESY data for two small proteins

with 32 and 58 residues (Kraulis 1994) yielded average 3D

real-space 1H spin structures with less than 2 Å RMSD

from the previously known structures, and sequence-

specific assignments for more than 95% of the spins.

Nevertheless, the algorithm has not become a routine tool

for NMR structure determination, presumably because the

requirements on the quality of the input data are still for-

midable from the experimental point of view, and because

the algorithm had no facilities to deal with overlap among
1H-X chemical shift pairs. In another approach it was

proposed to fit structure and chemical shift data directly to

NMR spectra rather than peak lists by simultaneously

optimizing four variables per atom, three Cartesian coor-

dinates and the chemical shift value (Atkinson and Saudek

1997). The determination of protein structures by NMR

without chemical shift assignment is not restricted to

NOESY spectra, but can incorporate data from ‘‘through-

bond’’ experiments in the form of distances between

unassigned and unconnected atoms (Atkinson and Saudek

2002). For instance, a 15N–1H HSQC peak yields a distance

equal to the N–H bond length between the two corre-

sponding atoms, and the HNCA spectrum yields, for each

N–H pair, four distances to the two adjacent Ca atoms.

The most recent approach to NMR structure determi-

nation without chemical shift assignment is the CLOUDS

protocol (Grishaev and Llinás 2002a, b) that demonstrated

the feasibility of assignment-free structure determination

using experimental rather than simulated data. A gas of

unassigned, unconnected hydrogen atoms is condensed into

a structured proton distribution (cloud) via a molecular

dynamics simulated annealing scheme in which the inter-

nuclear distances and van der Waals repulsive terms are the

only active restraints. Proton densities are generated by

combining a large number of such clouds, each computed

from a different trajectory. The primary structure is

threaded through the unassigned proton density by a

Bayesian approach, for which the probabilities of sequen-

tial connectivity hypotheses are inferred from likelihoods

of HN–HN, HN–Ha, and Ha–Ha interatomic distances as

well as 1H NMR chemical shifts, both derived from public

databases. Side chains are placed by a similar procedure.

As for all NMR spectrum analysis, resonance overlap

presents a major difficulty also in applying assignment-free

strategies. At present, a de novo protein structure deter-

mination by the assignment-free approach has not been

reported yet, and it remains to be seen whether the

assignment-free approach will be able to provide the reli-

ability and the structural quality of the conventional

method.

Residual dipolar couplings-based methods

Methods using residual dipolar couplings to determine the

backbone structure without the need for side-chain

assignments have been developed (Prestegard et al. 2005).

In the first approach (Delaglio et al. 2000) the Protein Data

Bank is searched for fragments of seven contiguous amino

acid residues that fit the measured residual dipolar cou-

plings. From consensus values of the torsion angles for the

non-terminal residues of these fragments, an initial struc-

ture is built from overlapping fragments by ‘‘molecular

fragment replacement’’ (MFR). Errors in the MFR-derived

backbone torsion angles accumulate when building the

initial model because the long-range information contained

in the residual dipolar couplings is not yet used. However,

this global orientational information can be reintroduced

when using these rough models as starting structures in a

subsequent refinement procedure based on a simple itera-

tive gradient approach that adjusts //w to minimize the

difference between measured and best-fitted dipolar cou-

plings and between measured chemical shifts and those

predicted by the model. It was demonstrated that the 3D

structure of large protein backbone segments, and in

favorable cases an entire small protein, can be calculated

exclusively from dipolar couplings and chemical shifts

(Delaglio et al. 2000). This and similar approaches (Rohl

and Baker 2002) require assignments of the backbone

chemical shifts as input.

In a further step, automated algorithms were developed

that simultaneously perform the assignment and the

determination of low resolution backbone structures on the

basis of unassigned chemical shifts and residual dipolar

couplings (Jung et al. 2004; Meiler and Baker 2003). The

latter method relies on the de novo protein structure pre-

diction algorithm ROSETTA (Simons et al. 1997) and a
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Monte Carlo search for chemical shift assignments that

produce the best fit of the experimental NMR data to a

candidate 3D structure.

Chemical shift-based structure determination

Chemical shifts are the NMR parameter than can be mea-

sured most easily and accurately, and they are highly

sensitive to their local environment. They are widely used

to monitor conformational changes or ligand binding, and

can yield information about specific features of protein

conformations, notably dihedral angles (Cornilescu et al.

1999) and secondary structure (Wishart and Sykes 1994).

However, the complex relationship between chemical

shifts and 3D structure has impeded their direct use for

tertiary structure determination. Recently, however, two

approaches to 3D protein structure determination have

been developed that use exclusively chemical shifts as

experimental input data (Cavalli et al. 2007; Shen et al.

2008). Both methods do not rely on the quantum

mechanical calculation of chemical shifts from first prin-

ciples but exploit the availability of an ever growing data

base of 3D protein structures (Berman et al. 2000) and

corresponding chemical shifts (Seavey et al. 1991) to col-

lect molecular fragment conformations from known protein

structures that match the experimentally determined sec-

ondary chemical shifts of the protein under study. A

secondary chemical shift is the deviation of a chemical

shift from the residue-type dependent random coil chemi-

cal shift value of the corresponding atom. This separates

the conformation dependence of the chemical shift from its

residue-type dependence, which is a prerequisite for the

sequence independent identification of molecular frag-

ments with similar conformation. The molecular fragment

conformations are found by extending the data base search

method of the program TALOS (Cornilescu et al. 1999) to

contiguous segments of several residues (Cavalli et al.

2007; Shen and Bax 2007). The fragment conformations

are then assembled into a 3D structure of the entire protein

using molecular modeling approaches.

The CHESHIRE algorithm was the first program to

generate near-atomic resolution structures from chemical

shifts (Cavalli et al. 2007). It first uses the 1Ha, 15N, 13Ca

and 13Cb secondary chemical shifts to predict the second-

ary structure of the protein and the backbone torsion

angles, followed by the identification of three- and nine-

residue segments on the basis of the secondary chemical

shifts, the predicted secondary structure and the predicted

backbone dihedral angles. Low resolution structures in

which the side chains are represented by a single Cb atom

are calculated by a Monte Carlo algorithm using the

CHARMM force field (Brooks et al. 1983) complemented

with terms for secondary structure packing and cooperative

hydrogen bonding. The previously determined three- and

nine-residue fragments guide Monte Carlo moves. All atom

conformers are generated. Finally, the 500 best scoring all

atom conformers are refined by a Monte Carlo protocol

during which an additional energy term is active that

describes the correlation between experimental and pre-

dicted chemical shifts. The CHESHIRE algorithm yielded

the structures of 11 proteins of 46–123 residues with an

accuracy of 2 Å or better for the backbone RMSD.

The CS-ROSETTA method is based on the same con-

cept (Shen et al. 2008). It combines the well established

ROSETTA structure prediction program (Bradley et al.

2005) with a recently enhanced empirical relation between

structure and chemical shifts (Shen and Bax 2007), which

allows selection of database fragments that better match the

structure of the unknown protein. Generating new protein

structures by CS-ROSETTA involves two separate stages.

First, polypeptide fragments are selected from a protein

structural database, based on the combined use of 13Ca,
13Cb, 13C0, 15N, 1Ha and 1HN chemical shifts and the amino

acid sequence pattern. In the second stage, these fragments

are used for de novo structure generation, using the stan-

dard ROSETTA Monte Carlo assembly and relaxation

methods. The method was calibrated using 16 proteins of

known structure, and then successfully tested for nine

proteins with 65–147 residues under study in a structural

genomics project. For these, the CS-ROSETTA algorithm

yielded full-atom models with 0.6–2.1 Å RMSD for the

backbone atoms relative to the independently determined

NMR structures.

Both methods require as experimental input the chemi-

cal shift assignments for the backbone and 13Cb atoms.

These shifts are generally available at an early stage of the

traditional NMR structure determination process, before

the collection and analysis of structural restraints. Side-

chain chemical shift assignments beyond Cb, which are

considerably harder to obtain than those for the backbone,

are not necessary.

It must be noted that in contrast to the NOE-based

conventional approach for which a well established theory

exists that relates each piece of NMR data (the NOESY

peak volume) to a corresponding conformational restraint,

chemical shift-based structure determination is an empiri-

cal approach that exploits other, previously determined

protein structures for solving the current structure of

interest by assuming that the entire sequence of the protein

can be covered by overlapping fragments that have a

similar conformation in the current protein as correspond-

ing stretches in already existing structures. There are

no experimentally derived long-range conformational

restraints. This implies that the correct tertiary structure

has to be found—or may be missed—by the underlying

molecular modeling algorithm. In practice, convergence
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rapidly decreases with increasing protein size, and the CS-

ROSETTA approach starts to fail for proteins larger than

130 residues (Shen et al. 2008). Convergence is also

adversely affected by the presence of long, disordered

loops.

The FLYA algorithm

Fully automated structure determination of proteins in

solution (FLYA) yields, without human intervention, 3D

protein structures starting from a set of multidimensional

NMR spectra (López-Méndez and Güntert 2006). As in the

classical manual approach, structures are determined by a

set of experimental NOE distance restraints without refer-

ence to already existing structures or empirical molecular

modeling information. In addition to the 3D structure of the

protein, FLYA yields backbone and side-chain chemical

shift assignments, and cross peak assignments for all spectra.

The FLYA algorithm (Fig. 5) uses as input data only the

protein sequence and multidimensional NMR spectra. Any

combination of commonly used heteronuclear and homo-

nuclear 2D, 3D and 4D NMR spectra can be used as input for

the FLYA algorithm, provided that it affords sufficient

information for the assignment of the backbone and side-

chain chemical shifts and for the collection of conforma-

tional restraints. Peaks are identified in the multidimensional

NMR spectra using the automated peak picking algorithm of

NMRView (Johnson 2004), or AUTOPSY (Koradi et al.

1998). Peak integrals for NOESY cross peaks are deter-

mined simultaneously. Since no manual corrections are

applied, the resulting raw peak lists may contain, in addition

to the entries representing true signals, a significant number

of artifacts (see Figs. 2, 4 of López-Méndez and Güntert

2006). The following steps of the fully automated structure

determination algorithm can tolerate the presence of such

artifacts, as long as the majority of the true peaks have been

identified.

Based on the peak positions and, in the case of NOESY

spectra, peak volumes peak lists are prepared by CYANA

(Güntert 2003; Güntert et al. 1997). Depending on the

spectra, the preparation may include unfolding aliased

signals, systematic correction of chemical shift referencing,

and removal of peaks near the diagonal or water lines. The

peak lists resulting from this step remain invariable

throughout the rest of the procedure. An ensemble of initial

chemical shift assignments is obtained by multiple runs of

a modified version of the GARANT algorithm (Bartels

et al. 1996, 1997) with different seed values for the random

number generator (Malmodin et al. 2003). The original

GARANT algorithm was modified for new spectrum

types and for the treatment of NOESY spectra when 3D

structures are available. In analogy to NMR structure

calculation in which not a single structure but an ensemble

of conformers is calculated using identical input data but

different randomized start conformers, the initial chemical

shift assignment produces an ensemble rather than a single

chemical shift value for each 1H, 13C and 15N nucleus. The

peak position tolerance is typically set to 0.03 ppm for

the 1H dimensions and to 0.4 ppm for the 13C and 15N

dimensions. These initial chemical shift assignments are

consolidated by CYANA into a single consensus chemical

shift list. The most highly populated chemical shift value in

the ensemble is computed for each 1H, 13C and 15N spin

and selected as the consensus chemical shift value that

will be used for the subsequent automated assignment

of NOESY peaks. The consensus chemical shift for a

given nucleus is the value x that maximizes the function

Fig. 5 Flowchart of the fully automated structure determination

algorithm FLYA
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lðxÞ ¼
P

j exp �ðx� xjÞ2=2Dx2
� �

; where the sum runs

over all chemical shift values xj for the given nucleus

in the ensemble of initial chemical shift assignments, and

Dx denotes the aforementioned chemical shift tolerance.

NOESY cross peaks are assigned automatically (Herrmann

et al. 2002b) on the basis of the consensus chemical shift

assignments and the same peak lists and chemical

shift tolerance values used already for the chemical shift

assignment. The automated NOE assignment algorithm of

the program CYANA is used. The overall probability for

the correctness of possible NOE assignments is calculated

as the product of three probabilities that reflect the agree-

ment between the chemical shift values and the peak

position, the consistency with a preliminary 3D structure

(Güntert et al. 1993), and network anchoring (Herrmann

et al. 2002b), i.e. the extent of embedding in the network

formed by other NOEs. Restraints with multiple possible

assignments are represented by ambiguous distance

restraints (Nilges 1995). Seven cycles of combined auto-

mated NOE assignment and structure calculation by

simulated annealing in torsion angle space and a final

structure calculation using only unambiguously assigned

distance restraints are performed. Constraint combination

(Herrmann et al. 2002b) is applied in the first two cycles to

all NOE distance restraints spanning at least three residues

in order to minimize distortions of the structures by erro-

neous distance restraints that may result from spurious

entries in the peak lists and/or incorrect chemical shift

assignments.

A complete FLYA calculation comprises three stages. In

the first stage, the chemical shifts and protein structures are

generated de novo (stage I). In the next stages (stages II and

III), the structures generated by the preceding stage are used

as additional input for the determination of chemical shift

assignments. Stages II and III are particularly important for

aromatics residues and other resonances whose assignment

rely on through-space NOESY information. At the end of

the third stage, the 20 final CYANA conformers with the

lowest target function values are subjected to restrained

energy minimizations in explicit solvent against the

AMBER force field (Cornell et al. 1995) using the program

OPALp (Koradi et al. 2000; Luginbühl et al. 1996).

The complete procedure is driven by the NMR structure

calculation program CYANA, which is also used for par-

allelization of all time-consuming steps. The performance of

the FLYA algorithm can be monitored at different steps of

the procedure by quality measures that can be computed

without referring to external reference assignments or

structures (López-Méndez and Güntert 2006).

Structure calculations with the FLYA algorithm yielded

3D structures of three 12–16 kDa proteins that coincided

closely with the conventionally determined structures

(Fig. 6). Deviations were below 0.95 Å for the backbone

atom positions, excluding the flexible chain termini, and

96–97% of all backbone and side-chain chemical shifts in

the structured regions were assigned to the correct residues.

The purely computational FLYA method is thus suitable to

substitute all manual spectra analysis and overcomes a

major efficiency limitation of the NMR method for protein

structure determination.

Fig. 6 Structures obtained by fully automated structure determina-

tion with the FLYA algorithm (blue) superimposed on the

corresponding NMR structures determined by conventional methods

(red). a ENTH domain At3g16270(9–135) from Arabidopsis thaliana
(López-Méndez et al. 2004). b Rhodanese homology domain

At4g01050(175–295) from Arabidopsis thaliana (Pantoja-Uceda

et al. 2005). c Src homology domain 2 (SH2) from the human feline

sarcoma oncogene Fes (Scott et al. 2005)
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Various extensions of the basic FLYA algorithm can be

envisaged. It is straightforward to further improve the

results by interactive improvements of the peak lists, cor-

rections of erroneous chemical shift assignments, and

additional conformational restraints for torsion angles,

hydrogen bonds, residual dipolar couplings, etc. For large

or difficult proteins semiautomatic approaches are possible

in which parts of the assignments are provided or con-

firmed by the user. NMR data processing could be

incorporated in FLYA in order to start the procedure from

the raw time-domain data from the NMR spectrometer.

Alternative peak picking algorithms can be used. Improved

performance can in principle be expected from recently

developed ‘‘projected’’ NMR experiments (Atreya and

Szyperski 2005; Freeman and Kupče 2003) that can yield

data corresponding to that from higher-dimensional spectra

combined with high-accuracy frequency information,

thereby resulting in reduced assignment ambiguity. The

currently static peak lists may be replaced by dynamic peak

lists that will be updated continuously on the basis of

intermediate results (Herrmann et al. 2002a) during a

FLYA calculation. An optimized resonance assignment

algorithm can reduce the computation time and make more

sophisticated use of intermediate 3D structures. Additional

refinement techniques can improve the structures with

respect to common quality measures (Linge et al. 2003b;

Nederveen et al. 2005). The number of input spectra can be

reduced for well-behaved proteins.

The latter idea is of particular interest because a con-

siderable amount of NMR measurement time was

necessary to record the 13–14 input 3D spectra that were

used as input for the aforementioned FLYA structure

determinations. The influence of reduced sets of experi-

mental spectra on the quality of NMR structures obtained

with FLYA was investigated for the 12 kDa Src homology

domain 2 from the human feline sarcoma oncogene Fes

(Fes SH2) (Scott et al. 2006). FLYA calculations were

performed for 5 reduced data sets selected from the com-

plete set of 13 3D spectra of the earlier conventional

structure determination (Scott et al. 2005). The reduced

data sets utilized only CBCA(CO)NH and CBCANH for

the backbone assignments and either all, some or none of

the five original side-chain assignment spectra. In four of

the five cases tested, the 3D structures deviated by less than

1.3 Å backbone RMSD from the conventionally deter-

mined Fes SH2 reference structure, showing that the FLYA

algorithm is remarkably stable and accurate when used

with reduced sets of input spectra.

Stereo-array isotope labeling (SAIL) (Kainosho et al.

2006) has been combined with the fully automated NMR

structure determination algorithm FLYA (Takeda et al.

2007). SAIL provides a complete stereo and regiospecific

pattern of stable isotopes, which yields much sharper

resonance lines and reduced signal overlap without loss of

information. Automated signal identification can be

achieved with higher reliability for the fewer, sharper and

more intense peaks of SAIL proteins. The danger of making

erroneous assignments decreases with the number of nuclei

and peaks to assign, and less spin diffusion allows NOEs to

be interpreted more quantitatively. As a result of the superior

quality of the SAIL NMR spectra, reliable fully automated

analysis of the NMR spectra and structure calculation are

possible using fewer input spectra than with conventional

uniformly 13C/15N-labeled proteins. FLYA calculations

with SAIL ubiquitin using a single ‘‘through-bond’’ 3D

spectrum in addition to the 13C-edited and 15N-edited NO-

ESY spectra for the restraint collection yielded structures

with an accuracy of 0.83–1.15 Å for the backbone RMSD to

the conventionally determined solution structure (Ikeya

et al. 2008), showing the feasibility of fully automated NMR

structure analysis from a minimal set of spectra.

Conclusions

Fully automated NMR structure determination of proteins

up to 140 amino acid residues is possible now, provided

that good quality input spectra are available. Purely com-

putational methods for NMR structure analysis can cope

with the amount of overlap and artifacts present in typical

experimental NMR spectra. Their combination with opti-

mal stable isotope labeling can enable automated NMR

structure determination of proteins with a molecular weight

above 20 kDa, for which the large number of chemical

shifts and peaks renders the traditional manual analysis

method particularly cumbersome and error-prone. For the

future, we expect fully automated NMR protein structure

determination to replace most manual and semi-automatic

approaches and to produce structures of the same quality as

by manual spectrum analysis.
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López-Méndez B, Pantoja-Uceda D, Tomizawa T, Koshiba S, Kigawa

T, Shirouzu M et al (2004) Letter to the Editor: NMR assignment

of the hypothetical ENTH-VHS domain At3g16270 from

Arabidopsis thaliana. J Biomol NMR 29:205–206
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