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Understanding the relationship between structure and function of biological macromole-
cules is one of the key elements of rational drug design. In this context, the three-dimen-
sional structure has a pivotal role, since its knowledge is essential to understand the
physical, chemical, and biological properties of a protein [1, 2]. Until 1984 structural in-
formation at atomic resolution could only be determined by X-ray diffraction techniques
with protein single crystals [3]. The introduction of NMR spectroscopy [4] as a technique
for protein structure determination [5] has made it possible to obtain structures with
comparable accuracy also in a solution environment that is much closer to the natural
situation in a living being than the single crystals required for protein crystallography.

It has been recognized that many of the time-consuming interactive tasks carried out
by an expert during the process of spectral analysis could be done. more efficiently by
automated computational systems [6]. Over the past few years, this potential has been
realized to some degree. Today automated methods for NMR structure determination are
playing a more and more prominent role and can be expected to largely supersede the
conventional manual approaches to solving three-dimensional protein structures in solu-
tion.

The structure of this chapter is as follows: Section 2.2 introduces the various types of
conformational constraints used in NMR structure calculations. Section 2.3 is devoted to
modern structure calculation algorithms. Section 2.4 gives an account of the general prin-
ciples and the practice of automated NOESY assignment.

2.2
Conformational Constraints for NMR Structure Calculations

For use in a structure calculation, geometric conformational constraints have to be de-
rived from suitable conformation-dependent NMR parameters. These geometric con-
straints should, on the one hand, convey to the structure calculation as much as possible
of the structural information inherent in the NMR data, and, on the other hand, be sim-
ple enough to be used efficiently by the structure calculation algorithms. NMR parame-
ters with a clearly understood physical relation to a corresponding geometric parameter
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generally yield more trustworthy conformational constraints than NMR data for which
the conformation dependence was deduced merely from statistical analyses of known
structures.

2.2
Constraints from Covalent Structure

NMR data alone would not be sufficient to determine the positions of all atoms in a bio-
logical macromolecule. It has to be supplemented by information about the covalent
structure of the protein — the amino acid sequence, bond lengths, bond angles, chiral-
ities, and planar groups — and the steric repulsion between nonbonded atom pairs. De-
pending on the degrees of freedom used in the structure calculation, the covalent param-
eters are maintained by different methods: in Cartesian space, where in principle each
atom moves independently, the covalent structure has to be enforced by potentials in the
force field, whereas in torsion angle space the covalent geometry is fixed at the ideal val-
ues and there are no degrees of freedom that affect covalent structure parameters.

Depending on the structure calculation program used, special covalent bonds such as
disulfide bridges or cyclic peptide bonds have to be enforced by distance constraints. Dis-
ulfide bridges may be fixed by restraining the distance between the two sulfur atoms to
20-2.1 A and the two distances between the C° and the sulfur atoms of different resi-
dues to 3.0-3.1 A [7).

222

Usually a simple geometric force field is used for the structure calculation that retains
only the most dominant part of the nonbonded interaction, namely the steric repulsion
in the form of lower bounds for all interatomic distances between pairs of atoms sepa-
rated by three or more covalent bonds from each other. Steric lower bounds are gener-
ated internally by the structure calculation programs by assigning a repulsive core radius
to each atom type and imposing lower distance bounds given by the sum of the two cor-
responding repulsive core radii. For instance, the following repulsive core radii are used
in the program Dyana (8]: 0.95 A (1 A=0.1 nm) for amide hydrogen, 1.0 A for other hy-
drogen, 1.35 A for aromatic carbon, 1.4 A for other carbon, 1.3 A for nitrogen, 1.2 A for
oxygen, and 1.6 A for sulfur and phosphorus atoms [9]. To allow the formation of hydro-
gen bonds, potential hydrogen bond contacts are treated with lower bounds that are smal-
ler than the sum of the corresponding repulsive core radii.
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Distance Constraints from Nuclear Overhauser Effects

The principle source of experimental conformational data in an NMR structure determi-
nation is constraints on short interatomic distances between hydrogen atoms obtained
from NMR measurements of the nuclear Overhauser effect (NOE). NOEs result from
cross-relaxation mediated by the dipole-dipole interaction between spatially proximate nu-
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clear spins in a molecule undergoing Brownian motion [10] and are manifested by cross
peaks in NOESY spectra [11, 12]. NOEs connect pairs of hydrogen atoms separated by
less than about 5 A in amino acid residues that may be far away along the protein se-
quence but close together in space.

The intensity of an NOE, given by the volume V of the corresponding cross peak in a
NOESY spectrum [11, 13, 14] is related to the distance r between the two interacting
spins by

V=(f(z). ®

The averaging indicates that in molecules with inherent flexibility the distance r may
vary and thus has to be averaged appropriately. The remaining dependence of the magne-
tization transfer on the motion enters through the function f(z,), which includes effects
of global and internal motions of the molecule. Since, with the exceptions of the protein
surface and disordered segments of the polypeptide chain, globular proteins are relatively
rigid, the structure calculation is usually based on the assumption that there exists a sin-
gle rigid conformation that is compatible with all NOE data simultaneously, provided that
the NOE data are interpreted in a conservative, semi-quantitative manner [5]. More so-
phisticated treatments that take into account the fact that the result of a NOESY experi-
ment represents an average over time and space are, if used at all, usually deferred until
the structure refinement stage [15].

In principle, all hydrogen atoms of a protein form a single network of spins, coupled
by the dipole-dipole interaction. Magnetization can be transferred from one spin to an-
other not only directly but also by “spin diffusion”, that is, indirectly via other spins in
the vicinity [11, 16]. The approximation of isolated spin pairs is valid only for very short
mixing times in the NOESY experiment. However, in order to detect an observable NOE
the mixing time cannot be made arbitrarily short. In practice, a compromise has to be
made between the suppression of spin diffusion and sufficient cross-peak intensities,
usually with mixing times in the range of 40-100 ms for high-quality structures. Spin
diffusion effects can be included in the structure calculation by complete relaxation ma-
trix refinement [17-19]. Because also parameters about internal and overall motions that
are difficult to measure experimentally enter into the relaxation matrix refinement, care
has to be taken not to bias the structure determination by overinterpretation of the data.
Relaxation matrix refinement has been used mostly in situations where the conservative
and robust interpretation of NOEs as upper distance limits would not be sufficient to de-
fine the three-dimensional structure, especially in the case of nucleic acids [20-22].

The quantification of an NOE amounts to determining the volume of the correspond-
ing cross peak in the NOESY spectrum. Since the linewidths can vary appreciably for dif
ferent resonances, cross-peak volumes should in principle be determined by integration
over the peak area rather than by measuring peak heights. However, one should also
keep in mind that, according to Eq. (1), the relative error of the distance estimate is only
one sixth of the relative error of the volume determination. Furthermore, Eq. (1) involves
factors that have their origin in the complex internal dynamics of the macromolecule and
are beyond practical reach such that even a very accurate measurement of peak volumes
will not yield equally accurate conformational constraints.
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On the basis of Eq. (1), NOEs are usually treated as upper bounds on interatomic dis-
tances rather than as precise distance constraints, because the presence of internal mo-
tions and, possibly, chemical exchange may diminish the strength of an NOE [23]. In
fact, much of the robustness of the NMR structure determination method is due to the
use of upper distance bounds instead of exact distance constraints in conjunction with
the observation that internal motions and exchange effects usually reduce rather than in-
crease the NOEs [5]. For the same reason, the absence of an NOE is in general not inter-
preted as a lower bound on the distance between the two interacting spins.

Upper bounds b on the distance between two hydrogen atoms are derived from the
corresponding NOESY cross peak volumes V according to “calibration curves”, V=f(b).
Assuming a rigid molecule, the calibration curve is :

k

with a constant k that depends on the arbitrary scaling of the NOESY spectrum. The val-
ue b obtained from the equation may either be used directly as an upper distance bound,
or NOEs may be calibrated into different classes according to their volume, using the
same upper bound b for all NOEs in a given class. In this case, it is customary to set the
upper bound to 2.7 A for “strong” NOEs, 3.3 A for “medium” NOEs, and 5.0 A for
“weak” NOEs [7]. The constant & in Eq. (2) can be determined on the basis of known dis-
tances, for example the sequential distances in regular secondary structure elements or
by reference to a preliminary structure [24]. In an automatic NOESY assignment proce-
dure it is convenient to get an estimate of the calibration constants k independently of
knowledge of certain distances or preliminary structures. This can be obtained by auto-
mated structure-independent calibration or by automated structure-based calibration.
Automated structure-independent calibration [25] defines the calibration constant such
that the average of the upper distance bounds for all peaks involving a given combina-
tion of atom types attains a predetermined value that has been found to vary little among
different structures. Structure-based automated calibration [26] sets the calibration con-
stant such that an available preliminary structure does not violate more than a predeter-
mined (small) percentage of the upper distance bounds.

NOEs that involve groups of protons with degenerate chemical shifts, in particular
methyl groups, may be referred to pseudoatoms located in the center of the protons that
they represent, and the upper bound is increased by a pseudoatom correction equal to
the proton-pseudoatom distance [27, 28]. Another method that usually incurs a smaller
loss of information [29] is to treat NOEs for groups of protons with degenerate chemical
shifts as ambiguous distance constraints (see Eq. (13) below).

A related but not identical problem occurs because the standard method for obtaining
resonance assignments in proteins [5] cannot provide stereospecific assignments, i.e. in-
dividual assignments for the two diastereotopic substituents of a prochiral center, for ex-
ample in methylene groups and in the isopropyl groups of valine and leucine. In the ab-
sence of stereospecific assignments, restraints involving diastereotopic substituents can
also be referred to pseudoatoms [27] or otherwise treated such that they are invariant un-
der exchange of the two diastereotopic substituents, which inevitably results in a loss of

\

information and less well-defined structures [30]. To minimize such loss of information,
the absence of stereospecific assignments for diastereotopic groups can be treated by per-
iodic optimal swapping of the pairs of diastereotopic atoms for minimal target function
value during the simulated annealing [31]. It is also possible to determine stereospecific
assignments by various methods, including biosynthetical fractional *C-labeling of valine
and leucine isopropyl groups (32, 33], systematic analysis of the local conformation
through grid searches [30], or comparison with preliminary three-dimensional structures
24, 28]. :
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Hydrogen Bond Distance Constraints

Slow hydrogen exchange indicates that an amide proton is involved in a hydrogen bond
[34]. However, hydrogen exchange measurements cannot identify the acceptor oxygen or
nitrogen atom. Recently, NMR experiments have been developed that can unambiguously
identify hydrogen bonds by experimental observation of scalar couplings over hydrogen
bonds [35]. If the acceptor oxygen or nitrogen atom cannot be identified experimentally,
one has to rely on NOEs in the vicinity of the postulated hydrogen bond or on assump-
tions about regular secondary structure to define the acceptor. In this way, the standard
backbone-backbone hydrogen bonds in regular secondary structure can be identified with
higher reliability than hydrogen bonds with side-chains. Therefore, unless based on
cross-hydrogen bond scalar couplings, hydrogen bond constraints are either largely re-
dundant with the NOE network or involve structural assumptions and should be used
with care or not at all. They can, however, be useful during preliminary structure calcula-
tions of larger proteins when not enough NOE data are available yet. Hydrogen bonds
constraints are introduced into the structure calculation as distance constraints, typically
by confining the acceptor-hydrogen distance to the range 1.8-2.0 A and the distance be-
tween the acceptor and the atom to which the hydrogen atom is covalently bound to 2.7-
3.0 A. The second distance constraint restricts the angle of the hydrogen bond. Being
tight medium- or long-range distance constraints, their impact on the resulting structure
is considerable. In regular secondary structure elements they significantly enhance their
regularity. In fact, a-helices and, to a lesser extent, f-sheets become well defined by hy-
drogen bond constraints alone without the use of NOE constraints [36]. On the other
hand, hydrogen bond constraints may lead, if assigned mechanically without clear-cut evi-
dence, to overly regular structures in which subtle features such as a 3q-helix-like final
turn of an a-helix may be missed.
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Torsion Angle Constraints from Chemical Shifts

Chemical shifts are very sensitive probes of the molecular environment of a spin. How-
ever, in many cases their dependence on the structure is complicated and either not fully
understood or too intricate to allow the derivation of reliable conformational constraints
[37, 38]. An exception in this respect are the deviations of *C* (and, to some extent,
13CF) chemical shifts from their random coil values that are correlated with the local
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backbone conformation {39, 40): *C* chemical shifts larger than the random coil values
occur for amino acid residues in g-helical conformation, whereas deviations towards
smaller values are observed for residues in f-sheet conformation. Such information can
be included in a structure calculation by restricting the local conformation of a residue to
the a-helical or fsheet region of the Ramachandran plot, using torsion angle constraints
in the form of allowed intervals for the backbone torsion angles ¢ and y [41]. Some care
should be applied because the correlation between chemical shift deviation and structure
is not perfect. Similarly to hydrogen bond constraints, conformational constraints based
on *C* chemical shifts are therefore in general only used as auxiliary data in special situ-
ations, in particular at the beginning of a structure calculation when the NOE network is
still sparse. There have also been attempts to use "H chemical shifts as direct constraints
in structure refinement [42, 43]. This is more difficult than with *C" shifts because the
secondary structure is not the dominant determinant of 'H chemical shifts. Therefore,
'H chemical shifts are more often used indirectly to delineate secondary structure ele-
ments by the “chemical shift index” [44].
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Torsion Angle Constraints from Scalar Coupling Censtants

Vicinal scalar coupling constants, *J, between atoms separated by three covalent bonds
from each other are related to the enclosed torsion angle, 0, by Karplus relations [45].

3J(8) = Acos’ 0+ Bcosf + C. (3)

The parameters A, B and C have been determined for various types of couplings by a
best fit of the measured | values to the corresponding values calculated with Eq. (3) for
known protein structures [36]. When interpreting scalar coupling constants using Eq. (3)
one has to take into account not only the measurement error but also that there may be
averaging due to internal mobility and that both the functional form and the parameters
of the Karplus curves are approximations. In contrast to NOEs, scalar coupling constants
give information only on the local conformation of a polypeptide chain. They can never-
theless be useful to accurately define the local conformation, to obtain stereospecific as-
signments for diastereotopic protons (usually for the f-protons) [30], and to detect torsion
angles (usually ') that occur in multiple rotamer states.

Torsion angle constraints in the form of an allowed interval are used to incorporate scalar
coupling information into the structure calculation. Using Eq. (3), an allowed range for a
scalar coupling constant value in general leads to several (up to four) allowed intervals
for the enclosed torsion angle [36]. Restraining the torsion angle to a single interval that
encloses all torsion angle values compatible with the scalar coupling constant then often
results in a loss of structural information because the torsion angle constraint may encom-
pass large regions that are forbidden by the measured coupling constant. It is therefore often
advantageous to combine local data — for example all distance constraints and scalar cou-
pling constants within the molecular fragment defined by the torsion angles ¢, v, and y*
— in a systematic analysis of the local conformation and to derive torsion angle constraints
from the results of this grid search rather than from the individual NMR parameters [30].

)

Alternatively, scalar coupling constants can also be introduced into the structure calcu-
lation as direct constraints by adding a term of the type
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Vi=k Y (I gy (4)

to the target function of the structure calculation program [46, 47]. The sum in Eq. (4) ex-
tends over all measured couplings, k; is a weighting factor, and 3] and 3J 3¢ denote
the experimental and calculated value of the coupling constant, respectively. The latter is
obtained from the value of the corresponding torsion angle using Eq. (3).
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Orientation constraints originate from residual dipolar couplings in partially aligned mol-
ecules and provide information on angles between covalent bonds and globally defined
axes in the molecule, namely those of the magnetic susceptibility tensor [48, 49]. In con-
trast to vicinal scalar couplings or *C secondary chemical shifts that probe exclusively lo-
cal features of the conformation, residual dipolar couplings can provide information on
long-range order that is not directly accessible from other commonly used NMR parame-
ters.

Residual dipolar couplings arise because the strong internuclear dipolar couplings are
no longer completely averaged out — as is the case in a solution of isotropically oriented
molecules — if there is a small degree of molecular alignment with the static magnetic
field due to an anisotropy of the magnetic susceptibility. The degree of alignment de-
pends on the strength of the external magnetic field and results in residual dipolar cou-
plings that are proportional to the square of the magnetic field strength [50]. They are
manifested in small, field-dependent changes of the splitting normally caused by one-
bond scalar couplings between directly bound nuclei and can thus be obtained from accu-
rate measurements of 'J couplings at different magnetic field strengths [48, 49]. The
magnetic susceptibility anisotropy is relatively large in paramagnetic proteins but in gen-
eral very small for diamagnetic globular proteins. It can, however, be enhanced strongly
if the protein is brought into a liquid-crystalline environment [51, 52]. One obtains struc-
tural information on the angle @ between the covalent bond connecting the two scalar
coupled atoms and the main axis of the magnetic susceptibility tensor, which can be in-
corporated into the structure calculation by adding orientation constraints that measure
the deviation between the experimental residual dipolar coupling value and the corre-
sponding value calculated from the structure. It has been shown [53] that such orienta-
tion constraints can be used in conjunction with conventional distance and angle con-
straints during the structure calculation, and that they can improve the quality of the re-
sulting structure.
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Structure Calculation Algorithms

The calculation of the three-dimensional structure forms a cornerstone of the NMR
method for protein structure determination. Because of the complexity of the problem —
a protein typically consists of more than a thousand atoms which are restrained by a sim-
ilar number of experimentally determined constraints in conjunction with stereochemical
and steric conditions — it is in general neither feasible to do an exhaustive search of al-
lowed conformations nor to find solutions by interactive model building. In practice, the
calculation of the three-dimensional structure is therefore usually formulated as a mini-
mization problem for a target function that measures the agreement between a confor-
mation and the given set of constraints. At present, the most widely used algorithms are
based on the idea of simulated annealing [54]. These will be discussed in detail here. Ear-
lier methods have been reviewed extensively already [55-58], and most of them are rarely
used today. Special emphasis is thus given to the currently most efficient way of calculat-
ing NMR structures of biological macromolecules by torsion angle dynamics.

There is a fundamental difference between molecular simulation that has the aim of si-
mulating a molecular system as realistically as possible in order to extract molecular quan-
tities of interest and NMR structure calculation that is driven by experimental constraints.
Classical molecular dynamics approaches rely on a full empirical force field to ensure prop-
er stereochemistry and are generally run at a constant temperature close to room tempera-
ture. Substantial amounts of computation time are required because the empirical energy
function includes long-range pair interactions that are time-consuming to evaluate and be-
cause conformation space is explored slowly at room temperature. When similar algorithms
are used for NMR structure calculations, however, the objective is quite different. Here,
such algorithms simply provide a means to efficiently optimize a target function that takes
the role of the potential energy. Details of the calculation, such as the course of a trajectory,
are unimportant, as long as its end point comes close to the global minimum of the target
function. Therefore, the efficiency of NMR structure calculation can be enhanced by mod-
ifications of the force field or the algorithm that do net significantly alter the location of the
global minimum (the correctly folded structure) but shorten (in terms of computation time
needed) the way by which it can be reached from the start conformation. A typical “geo-
metric” force field used in NMR structure calculation therefore retains only the most impor-
tant part of the nonbonded interaction by a simple repulsive potential that replaces the Len-
nard-Jones and electrostatic interactions in the full empirical energy function. This short-
range repulsive function can be calculated much faster and significantly facilitates the
large-scale conformational changes required during the folding process by lowering energy
barriers induced by the overlap of atoms.
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Simulated Annealing by Molecular Dynamics Simulation in Cartesian Space

One major method for NMR structure calculation is based on numerically solving New-
ton's equation of motion in order to obtain a trajectory for the molecular system [59]. The
degrees of freedom are the Cartesian coordinates of the atoms. In contrast to “standard”
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molecular dynamics simulations [60-62] that try to simulate the behavior of a real physi-
cal system as closely as possible (and do not include constraints derived from NMR), the
purpose of a molecular dynamics calculation in an NMR structure determination is sim-
ply to search the conformation space of the protein for structures that fulfill the con-
straints, i.e. that minimize a target function which is taken as the potential energy of the
system. Therefore, simulated annealing [54, 56, 63] is performed at high temperature
using a simplified force field that treats the atoms as soft spheres without attractive or
long-range (i.e. electrostatic) nonbonded interactions and does not include explicit consid-
eration of the solvent. The distinctive feature of molecular dynamics simulation when
compared to the straightforward minimization of a target function is the presence of ki-
netic energy that allows barriers of the potential surface to be crossed, thereby greatly re-
ducing the problem of becoming trapped in local minima. Since molecular dynamics
simulation cannot generate conformations from scratch, a start structure is needed, and
this can be generated either by metric matrix distance geometry [63] or by the variable
target function method [9, 28], but — at the expense of increased computation time - it is
also possible to start from an extended structure [64] or even from a set of atoms ran-
domly distributed in space [65]. Any general molecular dynamics program, such as
Charmm [66], Amber [67], or Gromos [62], can be used for the simulated annealing of
NMR structures, provided that pseudoenergy terms for distance and torsion angle con-
straints have been incorporated. In practice, the programs best adapted and most widely
used for this purpose are Xplor [68] and its successor, CNS [69].

The classical dynamics of a system of n particles with masses m; and positions r; is
governed by Newton's equation of motion,

2.3 Structure Calculation Algorithms

dzl';
m,"ﬁ = F,‘, (5)

where the forces F; are given by the negative gradient of a potential energy function Ep,
with respect to the Cartesian coordinates: F; = ~VEpq. For simulated annealing, a sim-
plified potential energy function is used that includes terms to maintain the covalent ge-
ometry of the structure by means of harmonic bond length and bond angle potentials,
torsion angle potentials, terms to enforce the proper chiralities and planarities, a simple
repulsive potential instead of the Lennard-Jones and electrostatic nonbonded interactions,

as well as terms for distance and torsion angle constraints. For example, in the program
Xplor [68],

Epot = Z k;,(r - ro)z + Z ko(@ - 00)2 + Z k¢(1 +cos(n¢ +6))

bonds angles dihedrals
+ 3 k@0t Y kg (max(0, (sRun)’ ~ R))
dihedrals nonbonded pairs
+ Y kAl > kAL (6)

distance constraints angle constraints

ky, ko, kg, keepet, ka and k, denote the various force constants, r the actual and r, the cor-
rect bond length, respectively, 0 the actual and 6, the correct bond angle, ¢ the actual tor-
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sion angle or improper angle value, n the number of minima of the torsion angle poten-
tial, § an offset of the torsion angle and improper potentials, R, the distance where the
van der Waals potential has its minimum, R the actual distance between a nonbonded
atom pair, s a scaling factor, and A; and A, the size of the distance or torsion angle con-
straint violation. As an alternative to the square-well potential of Eq. (6), distance con-
straints are often represented by a potential with linear asymptote for large violations
[68]. To obtain a trajectory, the equations of motion are numerically integrated by advan-
cing the coordinates r; and velocities v; of the particles by a small but finite time step 4t,
for example according to the “leap-frog” integration scheme [59, 70}:

vi(t+ At/2) = vi(t — At/2) + AtF;(t)/m; + O(At})
ri(t+ At) = ri(t) + Atw(t + At/2) + O(AP) . 7)

The O(4+%) terms indicate that the errors with respect to the exact solution incurred by the
use of a finite time step At are proportional to 4t>. The time step 4t must be small enough
to sample adequately the fastest motions, i.e. of the order of 107™° 5. In general the highest
frequency motions are bond length oscillations. Therefore, the time step can be increased if
the bond lengths are constrained to their correct values by the Shake method [71]. To control
the temperature the system is loosely coupled to a heat bath [73]. For the simulated anneal-
ing of a (possibly distorted) start structure, certain measures have to be taken in order to
achieve sampling of the conformation space within reasonable time [63]. In a typical sim-
ulated annealing protocol [68], the simulated annealing is performed for a few picoseconds
at high temperature, say 2000 K, starting with a very small weight for the steric repulsion
that allows atoms to penetrate each other, and gradually increasing the strength of the steric
repulsion during the calculation. Subsequently, the system is cooled down slowly for an-
other few picoseconds and finally energy-minimized. This process is repeated for each of
the start conformers. The alternative of selecting conformers that represent the solution
structure at regular intervals from a single trajectory is used rarely because it is difficult
to judge whether the spacing between the “snapshots” is sufficient for good sampling of
conformation space. Simulated annealing by molecular dynamics requires substantially
more computation time per conformer [68] than pure minimization methods such as the
variable target function approach [9, 28, 72|, but this potential disadvantage is in general
more than compensated by a higher success rate of 40-100% of the start conformers end-
ing up in a conformation in the vicinity of the global minimum. This effect is due to the
ability of the simulated annealing algorithm to escape from local minima.

23.2
Torsion Angle Dynamics

Torsion angle dynamics, i.e. molecular dynamics simulation using torsion angles instead of
Cartesian coordinates as degrees of freedom [8, 74-82|, provides at present the most effi-
cient way to calculate NMR structures of biomacromolecules. This is in stark contrast to
a widespread but incorrect belief that dynamics in generalized coordinates is hopelessly
complicated and cannot be done efficiently. In this section the torsion angle dynamics algo-
rithm implemented in the program Dyana [8] is described in some detail. Dyana employs
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the fast torsion angle dynamics algorithm of Jain et al. (78] that requires a computational
effort proportional the system size, as is also the case for molecular dynamics simulation
in Cartesian space. “Naive” approaches to torsion angle dynamics require a computational
effort proportional to the third power of the system size (e.g. Ref. [77]), and are therefore not
suitable for macromolecules. With the fast torsion angle dynamics algorithm in Dyana, the
advantages of torsion angle dynamics, especially the much longer integration time steps
that can be used, are effective for molecules of all sizes. There is a close analogy between
molecular dynamics simulation' in Cartesian and torsion angle space [36].

The key idea of the fast torsion angle dynamics algorithm in Dyana is to exploit the
fact that a chain molecule such as a protein or nucleic acid can be represented in a natu-
ral way as a tree structure consisting of n+1 rigid bodies that are connected by n rotat-
able bonds (Fig. 2.1) [74, 83]. Each rigid body is made up of one or several mass points
(atoms) with invariable relative positions. The tree structure starts from a base, typically

®)

linear velocity v Rigid body k

(mass my, inertia tensor /)

center of mass

e % reference
torsion point ry
angle

Rigid body p(k)
Fig. 21 a Tree structure of torsion angles for the changed. b Excerpt from the tree structure formed
tripeptide Val-Ser-lle. Circles represent rigid units. by the torsion angles of a molecule, and definition

of quantities required by the Dyana fast torsion
angle dynamics algorithm.

Rotatable bonds are indicated by arrows that
point toward the part of the structure that is ro-
tated if the corresponding dihedral angle is
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at the N-terminus of the polypeptide chain, and terminates with “leaves” at the ends of
the side-chains and at the C-terminus. The degrees of freedom are n torsion angles, i.e.
rotations about single bonds. The conformation of the molecule is thus uniquely speci-
fied by the values of all torsion angles. Covalent bonds that are incompatible with a tree
structure because they would introduce closed flexible rings, for example disulfide
bridges, are treated, as in Cartesian space dynamics, by distance constraints.

The role of the potential energy is taken by the Dyana target function [8, 28] that is de-
fined such that it is zero if and only if all experimental distance constraints and torsion
angle constraints are fulfilled and all nonbonded atom pairs satisfy a check for the ab-
sence of steric overlap. A conformation that satisfies the constraints more closely than an-
other one will lead to a lower target function value. The exact definition of the Dyana tar-
get function is:

v=>Yw }° (da,;—baﬂ)%waz[l-%(%ﬂaf (sj

c=ulv (a,B)el. i€l

Upper and lower bounds, b, on distances d,z between two atoms a and b, and con-
straints on individual torsion angles 6; in the form of allowed intervals [, ] are
considered. I,, I, and I, are the sets of atom pairs (a, f) with upper, lower or van
der Waals distance bounds, respectively, and I, is the set of restrained torsion angles. w,,
w, w, and w, are weighting factors for the different types of constraints.
I'i=n— (™ —9™n)/2 denotes the half-width of the forbidden range of torsion angle
values, and 4; is the size of the torsion angle constraint violation. The torques about the
rotatable bonds, i.e. the negative gradients of the potential energy with respect to torsion
angles, are calculated by-the fast recursive algorithm of Abe et al. [83].

The angular velocity vector es and the linear velocity v of the reference point of the ri-
gid body k (Fig. 2.1b) are calculated recursively from the corresponding quantities of the
preceding rigid body p(k):

D = Wp(y + aly,

Vi = V() — (e — Tp)) A Opiiy - )

Denoting the vector from the reference point to the center of mass of the rigid body k by
Yy, its mass by my, and its inertia tensor by I, (Fig. 2.1b), the kinetic energy can be com-
puted in a linear loop over all rigid bodies

1
Eyin = EZ[mkvi + wy - oy + 2 - (a)k A kak)] . (10)
=0

The calculation of the torsional accelerations, i.e. the second time derivatives of the tor-
sion angles, is the crucial point of a torsion angle dynamics algorithm. The equations of
motion for a classical mechanical system with generalized coordinates are the Lagrange
equations
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with the Lagrange function L = Ey, — Epot [84]. They lead to equations of motion of the
form

M() +C(6,0) =0. : (12)

In the case of torsion angles as degrees of freedom, the mass matrix M(6) and the n-di-
mensional vector C(,8) can be calculated explicitly [76, 77). However, to integrate the
equations of motion, Eq. (12) would have to be solved in each time step for the torsional
accelerations §). This requires the solution of a system of n linear equations and hence
entails a2 computational effort proportional to n* that would become prohibitively expen-
sive for larger systems. Therefore, in Dyana the fast recursive algorithm of Jain et al. [78]
is implemented to compute the torsional accelerations, which makes explicit use of the
tree structure of the molecule in order to obtain § with a computational effort that is
only proportional to n. The Dyana algorithm is too involved to be explained in detail
here. Suffice it to say that the torsional accelerations can be obtained by executing a se-
ries of three linear loops over all rigid bodies similar to the one in Eq. (10) used to com-
pute the kinetic energy.

The integration scheme for the equations of motion in torsion angle dynamics is a
variant of the leap-frog algorithm used in Cartesian dynamics. In addition to the basic
scheme of Eq. (7), the temperature is controlled by weak coupling to an external bath
[73], and the length of the time step is adapted automatically based on the accuracy of en-
ergy conservation [8]. It could be shown that in practical applications with proteins, time
steps of about 100, 30 and 7 fs at low (1 K), medium (400 K) and high (10000 K) tem-
peratures, respectively, can be used in torsion angle dynamics calculations with Dyana
[8], whereas time steps in Cartesian space molecular dynamics simulation generally have
to be in the range of 2 ns. The concomitant fast exploration of conformation space pro-
vides the basis for the efficient Dyana structure calculation protocol.

The potential energy landscape of a protein is complex and studded with many local
minima, even in the presence of experimental constraints in a simplified target function
of the type of Eq. (8). Because the temperature, i.e. kinetic energy, determines the maxi-
mal height of energy barriers that can be overcome in a molecular dynamics simulation,
the temperature schedule is important for the success and efficiency of a simulated an-
nealing calculation. Consequently, elaborated protocols have been devised for structure
calculations using molecular dynamics in Cartesian space [63, 68]. In addition to the tem-
perature, other parameters such as force constants and repulsive core radii are varied in
these schedules, which may involve several stages of heating and cooling. The faster ex-
ploration of conformation space with torsion angle dynamics allows for much simpler
schedules. The standard simulated annealing protocol used by the program Dyana [8]
will serve as an example here.

The structure calculation is started from a conformation with all torsion angles treated
as independent uniformly distributed random variables and consists of five stages:
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Stage 1. Short minimization to reduce high energy interactions that could otherwise
disturb the torsion angle dynamics algorithm: 100 conjugate gradient minimization steps
are performed, including only distance constraints between atoms up to 3 residues apart
along the sequence, followed by a further 100 minimization steps including all con-
straints. For efficiency, until step 4 below, all hydrogen atoms are excluded from the
check for steric overlap, and the repulsive core radii of heavy atoms with covalently
bound hydrogens are increased by 0.15 A with respect to their standard values. The
weights in the target function of Eq. (8) are set to 1 for user-defined upper and lower dis-
tance bounds, to 0.5 for steric lower distance bounds, and to 5 A” for torsion angle con-
straints.

Stage 2. Torsion angle dynamics calculation at constant high temperature: One fifth of
all N torsion angle dynamics steps are performed at a constant high reference tempera-
ture of, typically, 10,000 K. The time step is initialized to 2 fs.

Stage 3. Torsion angle dynamics calculation with slow cooling close to zero tempera-
ture: The remaining 4N/5 torsion angle dynamics steps are performed during which the
reference value for the temperature approaches zero according to a fourth-power law.

Stage 4. Incorporation of all hydrogen atoms into the check for steric overlap: After re-
setting the repulsive core radii to their standard values and increasing the weighting fac-
tor for steric constraints to 2.0, 100 conjugate gradient minimization steps are per-
formed, followed by 200 torsion angle dynamics steps at zero reference temperature.

Stage 5. A final minimization consisting of 1000 conjugate gradient steps.

Throughout the torsion angle dynamics calculation the list of van der Waals lower dis-
tance bounds is updated every 50 steps using a cutoff of 4.2 A for the interatomic dis-
tance. '

With the Dyana torsion angle dynamics algorithm it is possible to efficiently calculate
protein structures on the basis of NMR data. Even for a system as complex as a protein
the program Dyana can execute several thousand torsion angle dynamics steps within
minutes of computation time. Computation times are of the order of one minute for
NMR:size proteins on generally available computers. Furthermore, since an NMR struc-
ture calculation always involves the computation of a group of conformers, it is highly ef
ficient to run calculations of multiple conformers in parallel. Nearly ideal speedup, i.e. a
reduction of the computation time by a factor close to the number of processors used,
can be achieved with Dyana [8].

24
Automated NOESY Assignment

241
The NOESY Assignment Problem

In de novo three-dimensional structure determinations of proteins in solution by NMR
spectroscopy, the key conformational data are upper distance limits derived from nuclear
Overhauser effects (NOEs) [11, 14]. In order to extract distance constraints from a
NOESY spectrum, its cross peaks have to be assigned, i.e. the pairs of hydrogen atoms
that give rise to cross peaks have to be identified. The basis for the NOESY assignment
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are previously determined 'H chemical shift values that result from sequence-specific res-
onance assignment. However, because the accuracy with which NOESY cross peak posi-
tions and chemical shift values can be measured experimentally is limited, it is in gener-
al not possible to unambiguously assign all NOESY cross peaks on the basis of the
known chemical shift values alone. It can be shown [25] that the number of NOESY
cross peaks that can be assigned unambiguously from knowledge of the 'H chemical
shifts decreases exponentially with increasing uncertainty of the chemical shift or peak
position information and drops below 10% of the total number of cross peaks for typical
protein data sets. Obtaining a comprehensive set of distance constraints from a NOESY
spectrum is thus by no means straightforward but becomes an iterative process in which
preliminary structures, calculated from limited numbers of distance constraints, serve to
reduce the ambiguity of cross peak assignments. In addition to this problem of reso-
nance and peak overlap, considerable difficulties may arise from spectral artifacts and
noise, and from the absence of expected signals because of fast relaxation. These inevita-
ble shortcomings of NMR data collection are the main reason that until recently labor-
ious interactive procedures have dominated three-dimensional protein structure determi-
nations.

242
Semi-Automatic Methods

Semi-automated approaches to NOESY assignment [85-87] use the chemical shifts and a
model or preliminary structure to provide the user with the list of possible assignments
for each cross peak. The user decides interactively about the assignment and/or tempo-
rary removal of individual NOESY cross peaks, possibly taking into account supplemen-
tary information such as line shapes or secondary structure data, and performs a struc-
ture calculation with the resulting (usually incomplete) input. In practice, several cycles
of NOESY assignment and structure calculation are required to obtain a high-quality
structure.

243
Ceneral Principles of Automatic NOESY Assignment

Automated procedures follow the same géneral scheme but do not require manual inter-
vention during the assignment/structure calculation cycles (Fig. 2.2). Two main obstacles
have to be overcome by an automated approach starting without any prior knowledge of
the structure: First, because the number of cross peaks with unique assignment based on
chemical shifts is, as pointed out before, in general not sufficient to define the fold of
the protein, the automated method must make use also of those NOESY cross peaks that
cannot yet be assigned unambiguously. Second, the automated program must be able to
deal with the amount of erroneously picked or inaccurately positioned peaks and with
the incompleteness of the chemical shift assignment that is present in typical experimen-
tal data sets. An automated procedure needs devices to substitute the intuitive decisions
made by an experienced spectroscopist in dealing with the imperfections of experimental
NMR data.
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Fig. 22 General scheme of automated combined NOESY as-
Protein sequence signment and structure calculation.
Chemical shift list
Positions and volumes
of NOESY cross peaks

NOESY assignments
30 structures

244
Requirements on input Data

Current automated NOESY assignment procedures do not attempt to correct or extend
the sequence-specific resonance assignments and cannot normally make up for lack of
chemical shift assignments. It is therefore important that the input chemical shift list in-
cludes nearly complete sequence-specific resonance assignments. Two requirements that
the input data should meet in order to be a sufficient basis for a safe and successful auto-
mated de novo NMR structure determination of a globular protein emerged from test cal-
culations and experience gained in de novo structure determinations with the automated
NOESY assignment method Candid (see Sect. 2.4.6 below). Other automated NOESY as-
signment algorithms with fewer built-in safeguards against erroneous input data might
call for more stringent requirements:

Requirement 1. Completeness of assignment: The input chemical shift list must contain
more than 90% of the nonlabile and backbone amide 'H chemical shifts. If three-dimen-
sional or four-dimensional heteronuclear-resolved ['H,"H]-NOESY spectra are used, more
than 90% of the >N and/or >C chemical shifts must also be available.

Requirement 2. Self-consistency: The peak lists must be faithful representations of the
NOESY spectra, and the chemical shift positions of the NOESY cross peaks must be cor-
rectly calibrated to fit the chemical shift lists within the chemical shift tolerances. The
range of allowed chemical shift variations (“tolerances”) for 'H should not exceed 0.02
ppm when working with homonuclear ['H,'H]-NOESY spectra, or 0.03 ppm when work-

)
ing with heteronuclear-resolved three-dimensional or four-dimensional NOESY spectra,
and the tolerances for the >N and/or *C shifts should not exceed 0.6 ppm.

The requirement on the completeness of the chemical shift list is very important. A
missing (or wrong) entry in the chemical shift list will make it impossible for the algo-
rithm to correctly assign any of the NOEs of the corresponding atom. Therefore, the
more NOESY cross peaks are expected for a certain atom, the more important it is to
know its chemical shift. Special care should be taken to assign as extensively as possible
the chemical shifts of the backbone and the hydrophobic core side-chains, whereas le-
niency is more tolerable for chemical shifts of flexible hydrophilic side-chains. The sec-
ond requirement ensures that assignments already present in the input NOESY peak list
can be reproduced by Candid. Typically, this includes many intra-residual and sequential
NOEs that have been assigned in the preceding sequence-specific assignment and have
been used to generate the chemical shift list(s) that are adapted to the NOESY spectra
used for structure determination. Chemical shift tolerances should be chosen as small as
possible but such that the second requirement is always fulfilled.

2.4 Automated NOESY Assignment
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Overview of Algorithms

In a first approach to automated NOESY assignment, the programs Diana [28] and Dya-
na [8] were supplemented with the automated NOESY assignment routine Noah [25, 88].
In Noah, the multiple assignment problem is treated by temporarily ignoring cross peaks
with too many (typically, more than two) assignment possibilities and instead generating
independent distance constraints for all assignment possibilities of the remaining cross
peaks, where one takes into account that part of these distance constraints may be incor-
rect. Noah requires high accuracy of the chemical shifts and peak positions in the input.
It makes use of the fact that only a set of correct assignments can form a self-consistent
network, and convergence towards the correct structure has been achieved for several
proteins [25].

Another automated NOESY assignment procedure, Aria [89, 90], has been interfaced
with the programs Xplor [68] and CNS [69], and a similar approach has been implemen-
ted by Savarin et al. [91]. Aria introduced the important concept of ambiguous distance
constraints [92] for handling of ambiguities in the initial, chemical shift-based NOESY
cross-peak assignments. When ambiguous distance constraints are used, each individual
NOESY cross peak is treated as the superposition of the signals from each of its multiple
assignments, using relative weights proportional to the inverse sixth power of the corre-
sponding interatomic distance in a preliminary model of the molecular structure. A
NOESY cross peak with a unique assignment possibility gives rise to an upper bound b
on the distance dys between two hydrogen atoms, a and f. A NOESY cross peak with
n>1 assignment possibilities can be seen as the superposition of n degenerate signals
and interpreted as an ambiguous distance constraint, d < b, with

d= (id;k‘;f)iw. (13)

k=1
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Each of the distances d,4, in the sum corresponds to one assignment possibility, (a, ).
Because the “r°-summed distance” d is always shorter than any of the individual dis-
tances dyp,, an ambiguous distance constraint is never falsified by including incorrect as-
signment possibilities, as long as the correct assignment is present. However, having
more assignment possibilities decreases the information content of an ambiguous dis-
tance constraint and makes it more difficult for the structure calculation algorithm to
converge to the correct structure.

It is therefore important to eliminate as far as possible incorrect assignment possibili-
ties before the start of the structure calculation. To this end, the assignment possibilities
are weighted by their generalized volume contributions, and only those with a suffi-
ciently high contribution enter the ambiguous distance constraints used for the structure
calculation. If the three-dimensional structure is known, the normalized relative contribu-
tion of the kth individual assignment possibility to the total volume of the cross peak can
be estimated by (d,zg, /d)~¢ [89]. In this way, information from cross peaks with an arbi-
trary number of assignment possibilities can be used for the structure calculation, and
although inclusion of erroneous assignments for a given cross peak results in a loss of
information, it will not lead to inconsistencies as long as one or several correct assign-
ments are among the initial assignments.

Both of these automated methods are quite efficient for improving and completing the
NOESY assignment once a correct preliminary polypeptide fold is available, for example,
based on a limited set of interactively assigned NOEs. On the other hand, unless a fair
number of long-range assignments is provided by the user, obtaining a correct initial fold
at the outset of a de novo structure determination often proves to be difficult because the
structure-based filters used in both of these procedures for the elimination of erroneous
cross peak assignments are then not operational. Aria has been used in the NMR struc-
ture determinations of various proteins [90].

A third approach that uses rules for assignments similar to the ones used by an expert
to generate an initial protein fold has been implemented in the program AutoStructure,
and applied to protein structure determination [6, 93].

The latest approach to automated NOESY assignment is the Candid algorithm [26],
which will be explained in detail in the following sections.
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The Candid Algorithm

Candid [26] combines features from Noah and Aria, such as the use of three-dimensional
structure-based filters and ambiguous distance constraints, with the new concepts of net-
work-anchoring and constraint combination that further enable an efficient and reliable
search for the correct fold in the initial cycle of de novo NMR structure determinations. A
flowchart of the Candid algorithm is given in Fig. 2.3.

The automated Candid method proceeds in iterative cycles, each consisting of exhaus-
tive, in part ambiguous, NOE assignment followed by a structure calculation with the
Dyana torsion angle dynamics algorithm. Between subsequent cycles, information is
transferred exclusively through the intermediary three-dimensional structures, in that the
protein molecular structure obtained in a given cycle is used to guide further NOE as-
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Fig. 23 Flowchart of NMR structure determination using the Candid method for automated
NOE cross peak assignment.
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signments in the following cycle. Otherwise, the same input data are used for all cycles,
that is, the amino acid sequence of the protein, one or several chemical shift lists from
the sequence-specific resonance assignment, and one or several lists containing the posi-
tions and volumes of cross peaks in 2D, 3D or 4D NOESY spectra. The input may
further include previously assigned NOE upper distance constraints or other previously
assigned conformational constraints. These will then not be changed by Candid, but used
for the Dyana structure calculation.

A Candid cycle starts by generating for each NOESY cross peak an initial assignment
list, i.e., hydrogen atom pairs are identified that could, from the fit of chemical shifts
within the user-defined tolerance range, contribute to the peak. Subsequently, for each
cross peak these initial assignments are weighted with respect to several criteria {listed in
Fig. 2.3), and initial assignments with low overall scores are then discarded. In the first
cycle, network anchoring has a dominant impact, since structure-based criteria cannot be
applied yet. For each cross peak, the retained assignments are interpreted in the form of
an upper distance limit derived from the cross peak volume. Thereby, a conventional dis-
tance constraint is obtained for cross peaks with a single retained assignment, and other-
wise an ambiguous distance constraint is generated that embodies several assignments.
All cross peaks with a poor score are temporarily discarded. In order to reduce deleter-
ious effects on the resulting structure from erroneous distance constraints that may pass
this filtering step, long-range distance constraints are incorporated into “combined dis-
tance constraints” (Fig. 2.3). The distance constraints are then included in the input for
the structure calculation with the Dyana torsion angle dynamics algorithm.

The structure calculations typically comprise seven Candid cycles. The second and sub-
sequent Candid cycles differ from the first cycle in the use of additional selection criteria
for cross peaks and NOE assignments that are based on assessments relative to the pro-
tein three-dimensional structure from the preceding cycle. Since the precision of the
structure determination normally improves with each subsequent cycle, the criteria for
accepting assignments and distance constraints are tightened in more advanced cycles of
the Candid calculation. The output from a Candid cycle includes a listing of NOESY
cross peak assignments, a list of comments about individual assignment decisions that
can help to recognize potential artifacts in the input data, and a three-dimensional pro-
tein structure in the form of a bundle of conformers.

In the final Candid cycle, an additional filtering step ensures that all NOEs have either
unique assignments to a single pair of hydrogen atoms or are eliminated from the input
for the structure calculation. This allows for the direct use of the Candid NOE assign-
ments in subsequent refinement and analysis programs that do not handle ambiguous
distance constraints, and in this paper enables direct comparisons of the Candid results
with the corresponding data obtained by conventional interactive procedures.

The core of the current version of Candid is implemented in standard Fortran-77 and
has been built upon the data structures and into the framework of the user interface of
the program Dyana. The standard schedule and parameters for a complete automated
structure determination with Candid and Dyana are specified in a script written in the in-
terpreted command language Inclan that gives the user high flexibility in the way auto-
mated structure determination is performed without the need to modify the compiled
core part of Candid [26].

2.4 Automated NOESY Assignment
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Network-Anchoring of NOE Assignments

Network-anchoring exploits the observation that the correctly assigned constraints form a
self-consistent subset in any network of distance constraints that is sufficiently dense for
the determination of a protein three-dimensional structure. Network-anchoring thus eval-
uates the self-consistency of NOE assignments independently of knowledge of the three-
dimensional protein structure, and in this way compensates for the absence of three-
dimensional structural information at the outset of a de novo structure determination
(Fig. 2.4). The requirement that each NOE assignment must be embedded in the net-
work of all other assignments makes network-anchoring a sensitive approach for detect-
ing erroneous, “lonely” constraints that might artificially constrain unstructured parts of
the protein. Such constraints would not otherwise lead to systematic constraint violations
during the structure calculation, and could therefore not be eliminated by three-dimen-
sional structure-based peak filters.

The network-anchoring score Ny for a given initial assignment of a NOESY cross peak
to an atom pair (a,f) is calculated by searching all atoms y in the same or in the neigh-
boring residues of either a or f that are connected simultaneously to both atoms a and S.
The connection may either be an initial assignment of another peak (in the same or in
another peak list) or the fact that the covalent structure implies that the corresponding
distance must be short enough to give rise to an observable NOE. Each such indirect
path contributes to the total network-anchoring score for the assignment (a,f) an
amount given by the product of the generalized volume contributions of its two parts,
(a—7) and (y = f). Nos has an intuitive meaning as the number of indirect connections
between the atoms @ and f§ through a third atom y, weighted by their respective general-
ized volume contributions.

The calculation of the network-anchoring score is recursive in the sense that its calcula-
tion for a given peak requires the knowledge of the generalized volume contributions

Chemical shift Network- Consistency with
Anchoring preliminary structure
_,u...‘ «-...:':::’:
Atom A

. Atom B

|01 — wal < Awyoy
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Fig. 2.4 Three conditions that must be fulfilled
by valid NOESY cross peak assignments in Can-
did: a Agreement between chemical shifts and the

peak position, b network-anchoring, and c spatial
proximity in a (preliminary) structure.
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from other peaks, which in turn involve the corresponding network-anchored assignment
contributions. Therefore, the calculation of these quantities is iterated three times, or un-
til convergence. Note that the peaks from all peak lists contribute simultaneously to net-
work-anchored assignment.

248
Constraint-Combination

In the practice of NMR structure determination with biological macromolecules, spu-
rious distance constraints in the input may arise from misinterpretation of stochastic
noise, and similar. This situation is particularly critical at the outset of a structure deter-
mination, before the availability of a preliminary structure for three-dimensional struc-
ture-based screening of constraint assignments. Constraint-combination aims at minimiz-
ing the impact of such imperfections on the resulting structure at the expense of a tem-
porary loss of information. Constraint combination is applied in the first two Candid cy-
cles. It consists of generating distance constraints with combined assignments from dif-
ferent, in general unrelated, cross peaks (Fig. 2.5). The basic property of ambiguous dis-
tance constraints that the constraint will be fulfilled by the correct structure whenever at
least one of its assignments is correct, regardless of the presence of additional, erroneous
assignments, then implies that such combined constraints have a lower probability of
being erronecus than the corresponding original constraints, provided that the fraction of
erroneous original constraints is smaller than 50%.

Candid provides two modes of constraint combination (further combination modes can
be envisaged readily): “2— 1" combination of all assignments of two long-range peaks
each into a single constraint, and “4 —4” pair wise combination of the assignments of

Correct Indlividual
structwre constraints
(unknown) A-8 (comect)
D C-D {(wrong)
D
C
C
A 8
A 8
(a) b)
Fig. 2.5 Schematic illustration of the effect of be satisfied simultaneously will, instead of finding
constraint combination in the case of two dis- the correct structure (a), result in a distorted con-
tance constraints, a correct one connecting atoms formation (b), whereas a combined constraint,
A and B, and a wrong one between atoms C and that will be fulfilled already if one of the two dis-
D. A structure calculation that uses these two tances is sufficiently short, leads to an almost un-

constraints as individual constraints that have to distorted solution (c).

four long-range peaks into four constraints. Let A, B, C, D denote the sets of assign-
ments of four peaks. Then, 2 — 1 combination replaces two constraints with assignment
sets A and B, respectively, by a single ambiguous constraint with assignment set AUB
(the union of sets A and B). 4 — 4 pairwise combination replaces four constraints with
assignments A, B, C, D by four combined ambiguous constraints with assignment sets
AUB, AUC, AUD, and BUC, respectively. In both cases constraint combination is ap-
plied only to the long-range peaks, i.e. the peaks with all assignments to pairs of atoms
separated by at least 5 residues’in the sequence, because in case of error their effect on
the global fold of a protein is much stronger than that of erroneous short- and medium-
range constraints. The number of long-range constraints is halved by 2 —» 1 combination
but stays constant upon 4 — 4 pair-wise combination. The latter approach therefore pre-
serves more of the original structural information, and can furthermore take into account
the fact that certain peaks and their assignments are more reliable than others, because
the peaks with assignment sets A, B, C, D are used 3, 2, 2, 1 times, respectively, to form
combined constraints. To this end, the long-range peaks are sorted according to their to-
tal residue-wise network-anchoring and 4 — 4 combination is performed by selecting the
assignments A, B, C, D from the first, second, third, and fourth quarter of the sorted list.

To estimate quantitatively the effect of constraint combination on the expected number
of erroneous distance constraints in the case of 2— 1 combination, assume an original
data set containing N long-range peaks and a uniform probability p <1 that a long-range
peak would lead to an erroneous constraint. By 2 — 1 constraint combination, these are
replaced by N/2 constraints that are erroneous with probability p® In the case of 4 —4
combination, assume that the same N long-range peaks can be classified into four
equally large classes with probabilities ap, p, p, (2 — a)p, respectively, that they would
lead to erroneous constraints. The overall probability for an input constraint to be erro-
neous is again p. The parameter a(0 < a < 1) expresses how much “safer” the peaks in
the first class are compared to those in the two middle classes and in the fourth “unsafe”
class. After 4 —4 combination, there are still N long-range constraints but with an over-
all error probability of (a+ (1 —a?)/4)p?, which is smaller than the probability p? ob-
tained by simple 2 — 1 combination provided that the classification into more and less
safe classes was successful (a<1). For instance, 4 —4 combination will transform an in-
put data set of 900 correct and 100 erroneous long-range cross peaks (i.e., N=1000,
p=0.1) that can be split into four classes with a=0.5 into a new set of approximately 993
correct and 7 erroneous combined constraints. Alternatively, 2 — 1 combination will yield
under these conditions approximately 495 correct and 5 erroneous combined constraints.
In general, 4 +4 combination is thus preferable over 2 — 1 combination in the first two
Candid cycles.

The upper distance bound b for a combined constraint is formed from the two upper
distance bounds b; and b, of the original constraints either as the r° sum,
b= (by® + b;%)™"/%, or as the maximum, b = max (by, b,). The first choice minimizes the
loss of information if two already correct constraints are combined, whereas the second
choice avoids the introduction of too small an upper bound if a correct and an erroneous
constraint are combined.
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Has it worked?

On the basis of experience gained in de novo structure determinations with Candid so far,
a set of four criteria for the evaluation of proper performance of combined automated
NOESY assignment and structure calculation independent of the availability of an interac-
tively determined reference structure was proposed [26]. These guidelines apply to Can-
did calculations using input data that fulfills the requirements for the input data pre-
sented in Sect. 2.4.4 above and are designed to ensure that the resulting structure has
the correct fold if all four criteria are met simultaneously. They do not, however, automa-
tically guarantee a high-quality structure. The four output-based criteria for “safe” Candid
runs are:

Criterion 1. Target function: The average final target function value of the structures
from the first Candid cycle should be below 250 A%, and the final target function value of
the structure from the last Candid cycle should be below 10 A%

Criterion. 2. RMSD radius: The average backbone RMSD to the mean coordinates (ex-
cuding unstructured parts of the polypeptide chain) should be below 3 A for the struc-
ture from Candid cycle 1.

Criterion 3. RMSD drift: The backbone RMSD between the mean structures of the first
and last Candid cydes (excluding unstructured parts of the polypeptide chain) should be
smaller than 3 A and should not exceed by more than 25% the average RMSD to the
mean coordinates of cycle 1.

Criterion. 4. Eliminated peaks: More than 80% of the NOESY peaks should have been
assigned by Candid, and less than 20% of the NOESY cross peaks with exclusively long-
range assignments (spanning 5 or more residues) should have been eliminated by the
peak filters of Candid.

These criteria again emphasize the crucial importance of getting good results from the
first Candid cycle. For reliable automated NMR structure determination, the bundle of
conformers obtained after cycle 1 should be reasonably compatible with the input data
(criterion 1) and show a defined fold of the protein (criterion 2). Structural changes be-
tween the first and subsequent Candid cycles should occur essentially within the confor-
mation space determined by the bundle of conformers obtained after cycle 1, with the
implicit assumption that this conformation space contains the correct fold of the protein
(criterion 3). The output criteria for target function and RMSD values might need to be
slightly relaxed for proteins with more than 150 amino acid residues and tightened for
small proteins of less than 80 residues.

If the output of a structure calculation based on automated NOESY assignment with
Candid does not fulfill these guidelines, the structure might in many cases still be essen-
tially correct, but it should not be accepted without further validation. Within the frame-
work of Candid, the correct approach is to improve the quality of the input chemical
shift and peak lists and to perform another Candid run until the criteria are met. Usual-
ly, this can be achieved efficiently because the output from an unsuccessful Candid run,
even though the structure should not be trusted per se, clearly points out problems in the
input, e.g., peaks that cannot be assigned and might therefore be artifacts or indications
of erroneous or missing sequence-specific assignments. Candid provides for each peak

\

informational output that greatly facilitates this task: the list of its chemical shift-based
assignment possibilities, the assignment(s) finally chosen, and the reasons why an as-
signment is chosen or not, or why a peak is not used at all. Of course, even when the cri-
teria are already met, a still higher precision and local accuracy of the structure might be
achieved by further improving the input.

In principle, a de novo protein structure determination requires one round of 7 Candid
cycles. This is realistic for projects where an essentially complete chemical shift list is
available and much effort was rhade to prepare a complete high-quality input of NOESY
peak lists. In practice, it turned out to be more efficient to start a first round of Candid
analysis without excessive work for the preparation of the input peak list, using an
slightly incomplete list of “safely identifiable” NOESY cross peaks, and then to use the re-
sult of the first round of Candid assignment and structure determination as additional in-
formation from which to prepare an improved, more complete NOESY peak list as input
for a second round of 7 Candid cycles.

The Candid method has been evaluated in test calculations [26] and in various de novo
structure determinations, including, for instance, three mutants of the human prion pro-
tein [94], the calreticulin P-domain [95] the pheromone-binding protein from Bombyx
mori [96] (Fig. 2.6), and the class I human ubiquitin-conjugating enzyme 2b [97]. These
structure determinations have confirmed that the new methods of network-anchored as-
signment and constraint combination enable reliable, truly automated NOESY assign-
ment and structure calculation without prior knowledge about NOESY assignments or
the three-dimensional structure. All NOESY assignments and the corresponding distance
constraints for these de novo structure determinations were made by Candid, confining
interactive work to the stage of the preparation of the input chemical shift and peak lists.

2.4 Automated NOESY Assignment

Cycle ¢

Fig. 26 Structures of the pheromone binding automated NOESY assignment with Candid and
protein (form A) from the silk moth Bombyx mori structure calculation with Dyana.
[96] obtained in six iterative cycles of combined
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If used sensibly, automated NOESY assignment with Candid has no disadvantage over
the conventional interactive approach but is a lot faster and more objective. Network-an-
chored assignment and constraint combination render the automated Candid method
stable also in the presence of the imperfections typical of experimental NMR data sets.
Simple criteria basis on the output of Candid allow one to assess the reliability of the re-
sulting structure without cumbersome recourse to independent interactive verification of
the NOESY assignments. Candid is a generally applicable, reliable method for automated
NOESY assignment. With Candid, the evaluation of NOESY spectra is no longer the

time-limiting step in protein structure determination by NMR.
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3
Achieving Better Sensitivity, Less Noise and Fewer Artifacts

in NMR Spectra

DeTLEF MOskAU and OLIVER ZERBE

3.1
{ntroduction

Both structure determination of large biomolecules by multidimensional NMR and
screening techniques require high sensitivity and artifact-free spectra in order to be per-
formed reliably at the lowest possible concentrations. Moreover, automated data analysis
software still has not solved the problem of distinguishing artifacts from genuine signals
satisfactorily. Hence, the best way to circumvent associated problems is to have as few ar-
tifacts or noise as possible. Substantial progress has been made in the last decade in the
development of spectrometer hardware and probehead design. Improvements of the
hardware have aimed at increasing the signal-to-noise ratio (S/N) and resolution while re-
ducing the amount of spurious, unwanted signals.

In principle, unwanted signals may be due to artifacts or to noise. The main source of

“real’ noise is Brownian motion of electrons in the receiver coil. In “white noise”, fre-
quency components are statistically distributed. In contrast, artifacts are “wrong” signals
occurring at well-defined frequencies. Instabilities in hardware may lead to noise and/or
artifacts. Improvements in S/N will help to distinguish genuine peaks from noise [1].
Although it is sometimes possible to remove noise peaks by symmetrization routines
[2, 3] or when the peak can be recognized as false because either the F1 or F2 frequency
is impossible [e.g. in the INADEQUATE experiment, where v(F1)=va(F2)+vg(F2)], data-
sets with insufficient S/N are mostly useless.

The term noise in one-dimensional NMR spectra is related to any noise source in the
receiver path which determines the sensitivity or signal-to-noise ratio in the spectrum. In
multidimensional NMR spectra, a random modulation of intensities of signals will lead
to a continuous band of frequencies translating into t; noise bands in the indirect dimen-
sion. Although, strictly speaking, t; noise is not real noise but rather an artifact, it be-
haves similarly (no well-defined frequencies of signals), and we will hence use the com-
mon term t; noise. Another property of (white) noise it that is occurs statistically distrib-
uted in frequency and phase and therefore will not add up coherently. Instabilities in any
of the system components (either electronics, magnet system or probehead) will lead to
elevated noise levels or additional artifacts. Hence, any measure that results in less dis-
turbance of the system will improve the overall performance by reducing noise and/or ar-
tifacts. The total noise in the receiver path is a sum of thermal noise, mainly stemming
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