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Abstract Peak lists are commonly used in NMR as input

data for various software tools such as automatic assignment

and structure calculation programs. Inconsistencies of

chemical shift referencing among different peak lists or

between peak and chemical shift lists can cause severe

problems during peak assignment. Here we present a simple

and robust tool to achieve self-consistency of the chemical

shift referencing among a set of peak lists. The Peakmatch

algorithm matches a set of peak lists to a specified reference

peak list, neither of which have to be assigned. The chemical

shift referencing offset between two peak lists is determined

by optimizing an assignment-free match score function

using either a complete grid search or downhill simplex

optimization. It is shown that peak lists from many different

types of spectra can be matched reliably as long as they

contain at least two corresponding dimensions. Using a

simulated peak list, the Peakmatch algorithm can also be

used to obtain the optimal agreement between a chemical

shift list and experimental peak lists. Combining these fea-

tures makes Peakmatch a useful tool that can be applied

routinely before automatic assignment or structure calcula-

tion in order to obtain an optimized input data set.

Keywords Automated assignment � Peak list �
Peak alignment � Spectrum referencing � CYANA

Introduction

Protein structure determination by NMR spectroscopy has

been accelerated by the development of programs that

perform some or all of the necessary steps automatically

(Baran et al. 2004; Guerry and Herrmann 2011; Güntert

2009; López-Méndez and Güntert 2006; Williamson and

Craven 2009). The majority of these programs use the

information from the NMR spectra in the form of peak lists

rather than by accessing the spectra directly. For most

applications a set of peak lists from different types of

experiments is needed. It is important to have a consis-

tently referenced data set for the resonance assignment, and

automated NOE assignment and structure calculation

require that the NOESY peak lists and the corresponding

chemical shift list(s) are in optimal agreement.

Several programs exist for correcting the referencing of

chemical shifts or optimizing the agreement between

chemical shift assignments and general chemical shift

statistics (Aeschbacher et al. 2012; Ginzinger et al. 2007;

Wang et al. 2005; Wang and Wishart 2005). Methods are

also available to adapt chemical shifts to NOESY spectra

(Herrmann et al. 2002). However, to the best of our

knowledge there is no program available that optimizes

automatically the mutual referencing of several unassigned,

multidimensional peak lists to achieve a consistently ref-

erenced data set prior to automated assignment or structure

calculation.

Materials and methods

The new Peakmatch algorithm implemented in the CYA-

NA software package (Güntert 2009; Güntert et al. 1997)

calculates the optimal chemical shift referencing offsets
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between two peak lists by maximizing a match score using

either a grid search or downhill simplex method. One peak

list is used as a reference and remains unchanged whereas

each corresponding dimension in the second, target peak

list is shifted by a constant offset. The offsets that yield the

maximal match score represent the calculation result. An

overview of the algorithm is given in Fig. 1.

Determination of corresponding dimensions

The user specifies the dimensions in the reference peak list.

The algorithm can then determine the corresponding

dimensions in the target peak list automatically based on

the expected peak match. If more than one possibility is

found, the one with the largest expected peak match is

chosen.

To calculate the expected peak match score, the program

generates expected peaks for the reference and target peak

lists based on experiment type-specific connectivity pat-

terns stored in the CYANA library and the covalent

structure of the protein (Bartels et al. 1997; Schmidt and

Güntert 2012; Schmucki et al. 2009). Through-space type

experiments are approximated by the subset of short-range

peaks, which is accurate enough for the present purpose.

Details of the generation of expected peaks have been

given elsewhere (Schmidt and Güntert 2012). The expected

peak match score is calculated using Eq. 1,

E ¼
Xn0

i¼1

Xm0

j¼1

hij ð1Þ

where n0 and m0 denote the number of expected peaks for

the reference and target experiment, respectively, and hij is

one if the two expected peaks have the same assignment in

all dimensions considered for match calculation, and zero

otherwise. The expected peak match is independent from

the experimental peak lists and thus not influenced by the

lack of peaks or the presence of artifacts.

Match score

For a reference peak list with i = 1,…,n peaks at positions

xð1Þik and a target peak list with j = 1,…,m peaks at posi-

tions xð2Þjk in the k = 1,…,d corresponding dimensions, we

define the match score S as a function of the offsets

d1,…,dd :

Fig. 1 Flowchart of the

Peakmatch algorithm
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The contribution of an individual peak pair to the match

score is given by a Gaussian function of the normalized

distance between the two peaks. The chemical shift toler-

ances Dk represent the accuracy of the peak positions. They

should be set by the user such that the positions of any two

peaks assigned to the same atom differ by less than the

chemical shift tolerance in the given dimension. The

default values are 0.03 ppm for 1H and 0.4 ppm for 13C

and 15N dimensions. The dimensionless scaling factor r
determines the significance of a deviation. By default,

r = 1. Deviations of peak positions smaller than rDk yield

score contributions close to one, whereas those from

deviations much larger than rDk are negligible. The overall

match S between two peak lists is calculated as a sum over

all n peaks in the reference peak list. For each reference

peak i, the q = E/n0 largest contributions from peaks in the

target peak list are included in the match score calculation,

as indicated by the prime in Eq. 2. The parameter q repre-

sents the expected average number of peaks in the target

peak list with the same assignment as a given reference

peak in the corresponding dimensions. This results in larger

q values when optimizing for instance 15N-resolved

[1H,1H]-NOESY against [15N,1H]-HSQC (q & 13) com-

pared to HNCA against [15N,1H]-HSQC (q = 2), or two

peak lists from the same experiment type (q = 1).

Assignments for the input peak lists are not required.

The match score function of Eq. 2 approximately counts

the number of peaks in the two peak lists whose position

matches within the ranges rDk, and does so with minimal

influence from other, non-matching peaks. The match score

S is normalized by the expected peak match E of Eq. 1. It

thus has the value 1 for two ideally matched peak lists that

contain exactly the expected peaks. In general, the match

score shows one narrow optimum when using two or more

corresponding dimensions (Fig. 2a) and gets broader as

well as smoother with increasing r (Fig. 2b, c).

Optimization procedures

Grid search

The grid search evaluates the match score function at every

point of a grid and takes as result the offset values d1,…,dd

that yield the maximum score value. With an appropriate

grid size and spacing, this procedure guarantees the identi-

fication of the global maximum, which is in general the

correct offset. In order to save computation time, the grid

search procedure performs several steps at different grid

sizes and spacings (Fig. 1, left side). The first grid covers the

largest offset range, which should be chosen larger than the

expected offset to ensure that the region of the global max-

imum is found. To this end, the user specifies a dimension-

less parameter c to define a rectangular grid of size

[-cDk, cDk] and spacing Dk in the corresponding dimensions

k = 1,…,d. Two subsequent grid searches are performed

using smaller grids of sizes [-Dk, Dk] and [-Dk/4, Dk/4] with

smaller spacings of Dk/4 and Dk/20, respectively, centered at

the optimum found in the preceding search. This procedure

allows finding the correct offset at high precision without

having to search a large grid with very small spacing

between the grid points. Nevertheless, depending on the size

of the initial grid, calculation times can be significant.

Downhill simplex optimization algorithm

To further reduce the computation time, a downhill simplex

minimization algorithm (Nelder and Mead 1965) can be used

to find the optimal offsets d1,…,dd between two peak lists.

This algorithm makes use of a simplex of d ? 1 points in

Fig. 2 Match score function for two corresponding dimensions and different r values (see Eq. 2). The [15N,1H]-HSQC reference peak list and

the CBCACONH target peak list are from the manually edited ENTH data set
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d dimensions, e.g. a triangle in 2 dimensions, or a tetrahedron

in 3 dimensions, that should be initialized such that it

encloses the optimum. For two corresponding dimensions

the algorithm uses triangular start simplexes with the vertices

(cD1, cD2), (-cD1, -cD2), and (-cD1, cD2), where Dk rep-

resents the chemical shift tolerance for dimension k, and c is a

random number from a normal distribution with zero mean

and user-defined standard deviation r(s). Analogous choices

are made for start simplexes in more than two corresponding

dimensions. The program performs a specified number of

optimization runs with different start simplexes of randomly

varying size. The same random number is used for all ver-

tices, i.e. the start simplexes vary only in size but not in shape

or position. Beginning with the start simplex, the algorithm

then performs a number of optimization steps that move

vertices of the simplex to a new position. The optimization

ends when either all vertices have the same function value

within a specified tolerance or 10,000 optimization steps

have been performed.

The downhill simplex optimization procedure requires a

general slope towards the maximum of the function in order

to reach the optimum. The match score function of Eq. 2 has

in general a very narrow maximum when optimizing two or

more corresponding dimensions and choosing the default

scaling factor r = 1. To increase the probability for reaching

the global maximum, the optimization is divided into three

steps. The first step is performed with r = 10 and r(s) = 40.

The smoothed match score results in a high percentage of

runs that reach the global optimum and large start simplexes

increase the range of potential offsets which are covered.

However, the optimum may be slightly shifted at high r
values. Therefore, two further local optimization runs with

smaller r values are added to determine the offsets with high

precision. The second optimization with r = 5 and

r(s) = 10 is started from the optimum found in the first

optimization. The final optimization is performed with

r = r(s) = 1. The same number of runs with different ran-

dom start simplexes is applied in the three optimization steps.

Algorithm input and output

The input to the Peakmatch algorithm consists of a refer-

ence peak list and one or more target peak lists in the

format of the program XEASY (Bartels et al. 1995), the

general CYANA library with the magnetization transfer

pathway definitions for the corresponding NMR spectra

(Schmidt and Güntert 2012; Schmucki et al. 2009), and the

protein sequence. Parameters that can be set by the user

include the chemical shift tolerances Dk (default 0.03 ppm

for 1H and 0.4 ppm for 13C and 15N dimensions), the

scaling factor r for peak matching (default r ¼ 1), the

choice of optimization strategy (default: downhill simplex),

the initial grid size parameter c for the grid search (default

c = 30), the standard deviation rðsÞ for generating start

simplexes (default rðsÞ ¼ 40), and the dimensions of the

reference peak list for which corresponding dimensions in

the target peak list(s) should be searched. In general, the

default values can be used.

The algorithm outputs a summary table with the calcu-

lated optimal offsets, the initial match score and the match

score after optimization for each pair of peak lists (Fig. 3a),

plots overlaying the peaks from the reference and target

peak list in the corresponding dimensions (Fig. 3b), and the

shifted target peak lists.

Test data sets

The algorithm was evaluated with experimental data sets of

five different proteins, i.e. the 140-residue ENTH-VHS

domain At3g16270(9–135) from Arabidopsis thaliana

(ENTH) (López-Méndez et al. 2004), the 134-residue

rhodanese homology domain At4g01050(175–295) from

Arabidopsis thaliana (RHO) (Pantoja-Uceda et al. 2004,

2005), the 114-residue Src homology domain 2 from the

human feline sarcoma oncogene Fes (SH2) (Scott et al.

2004, 2005), ubiquitin (Ikeya et al. 2009), and the DsbA.

Stereo-array isotope labeling (SAIL) was used for ubiquitin

and DsbA (Kainosho and Güntert 2009; Kainosho et al.

2006). Each data set includes typical backbone experiments

for resonance assignment as well as through-space exper-

iments, i.e. [15N,1H]-HSQC, [13C,1H]-HSQC, HNCO,

HN(CA)CO, CBCANH, CBCA(CO)NH, HCCH-COSY,

HCCH-TOCSY (in the case of RHO only for the aromatic

region), (H)CCH-TOCSY (only for DsbA and ENTH),

H(CCCO)NH, 15N-resolved NOESY, and 13C-resolved

NOESY spectra. The peak lists of all five data sets were

generated automatically using automatic peak-picking

algorithms of the programs NMRView (Johnson 2004) and

AZARA (http://www.ccpn.ac.uk/azara) without manual

corrections (Ikeya et al. 2009; López-Méndez and Güntert

2006). In addition, peak lists for ENTH, RHO, and SH2

were also available from manual, or manually curated peak

picking. Details about the peak lists are given in Tables

S1–S8 in the Supplementary Material. These include the

number of expected peaks, the number of measured peaks,

the amount of artifact peaks (peaks in the measured peak

list which cannot be explained by a chemical shift within

the tolerance), the completeness (the amount of expected

peaks that can be found in the peak list), as well as the

match score to the given reference peak list.

Results and discussion

To evaluate the performance of the algorithm, we artifi-

cially introduced different offsets into the target peak lists
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and back-calculated the offset using the Peakmatch algo-

rithm under various conditions.

The Peakmatch score can be calculated for any number

of corresponding dimensions in two peak lists. Almost

every pair of peak lists contains one corresponding

dimension. Two corresponding dimensions occur mostly

for HSQC planes, and three corresponding dimensions only

for few peak list pairs. The standard application of the

Peakmatch algorithm is to optimize the offsets for two

corresponding dimensions, and this will be the focus of the

presentation. Offset optimization for one and three

corresponding dimensions will be discussed in separate

sections.

Determination of corresponding dimensions

Corresponding dimensions among two peak lists are

determined automatically prior to peak list matching. To

this end, expected peaks are generated for both experiment

types and the expected peak match E of Eq. 1 is used to

evaluate the different possible selections of corresponding

dimensions. For many types of peak list pairs, such as

typical triple-resonance backbone assignment experiments

being matched to a [15N,1H]-HSQC spectrum, there exists

only one solution with an expected peak match larger than

zero. However, for example 3D NOESY spectra usually

have more than one solution. By default, the solution with

the largest expected peak match is chosen. Alternatively, it

is also possible to optimize all solutions in independent

runs. Table 1 shows expected peak match values for all

NOESY spectra. In all cases the expected peak match has a

significantly higher value when using the HSQC-plane for

matching compared to the plane involving the other proton

dimension, which means that the HSQC-plane will be the

first choice for optimization.

Peak list matching for two corresponding dimensions

The performance of the Peakmatch algorithm was assessed

using differently prepared peak lists. Manually generated

peak lists are used as examples of high data quality and are

thus expected to yield good results. Automatically picked

peak lists, on the other hand, contain different levels of

noise depending on the data set and the type of experiment.

Finally, the robustness of the algorithm was evaluated

systematically using a simulated SH2 data set by random

deletion and addition of peaks. Downhill simplex optimi-

zation was used, unless noted otherwise.

Fig. 3 Example output from

the Peakmatch algorithm.

a Summary file of the

application of the Peakmatch
algorithm to automatically

generated peak lists for the

protein ENTH with artificially

introduced offsets of 5 ppm for

heavy atoms and 0.5 ppm for

protons. The reference peak list

and the specified dimensions are

reported in the first line of the

output file. The match result is

given for each target peak list in

a separate line, which includes

the corresponding dimensions,

the offset for each dimension,

and the absolute as well as the

normalized match score prior to

(ini) and after matching (opt).

The absolute match score is the

normalized match score S of

Eq. 2, multiplied by the

expected peak match E of Eq. 1,

and represents the number of

peaks that closely match a peak

in the other peak list. b Example

plot of the optimized HNCA

target peak list, projected on the

HN dimensions (red), and the

corresponding [15N,1H]-HSQC

reference peak list (black)
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Examples for automatically or manually prepared pairs

of peak lists and the corresponding match score functions

are shown in Fig. 4. The match score function for two

corresponding dimensions shows a well-defined and nar-

row optimum at the optimal offset position even in the

presence of many artifact peaks (Fig. 4c, d). This was true

for every pair of peak lists in our test data sets. There might

be exceptions in special cases. For instance, if there are

systematic peak doublings due to very narrow lines in the

spectrum of a small protein at high magnetic field, two

maxima might occur in the match score function. For every

doubled peak, the match score function will show two

narrowly spaced maxima of approximately equal height. If

one maximum is higher, a complete grid search will choose

it, whereas the downhill simplex optimization might select

either of the two maxima.

The Peakmatch algorithm was applied to all automati-

cally or manually prepared data sets using either [13C,1H]-

HSQC or [15N,1H]-HSQC as reference peak lists. This

resulted in a total of 91 pairs of peak lists (Figs. S1–S8 in

Table 1 Expected peak match values for NOESY peak lists using the respective HSQC peak list as reference

Peak list Dimensions ENTH RHO SH2 Ubiquitin DsbA

3D 15N-resolved NOESY N ? HNa 1,941 1,617 1,466 871 1,495

N ? Hb 270 211 195 150 181

3D 13C-resolved NOESY C ? HCa 4,666 4,242 3,711 1,293 10,215

C ? Hb 1,085 1,002 860 251 2,036

The expected peak match (Eq. 1) for 15N-resolved NOESY and 13C-resolved NOESY was calculated with respect to the respective HSQC peak

list. Both combinations of corresponding dimensions were compared for each pair of peak lists
a H–N or H–C plane including the proton directly bound to the observed heavy atom
b H–N or H–C plane including the distant proton

Fig. 4 Graphical representation of manually and automatically

generated peak lists and the corresponding match score functions

for two corresponding dimensions. Peak lists are taken from the

protein ENTH. The target peak list is 13C-resolved NOESY (red in

a and b) and the reference peak list [13C,1H]-HSQC (black in a and

b). a Peak list from automatic peak picking. b Peak list from manual

peak picking. c Match score function for automatic peak picking.

d Match score function for manual peak picking
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the Supplementary Material). The quality of the automat-

ically prepared peak lists depended strongly on the quality

of the spectra. Especially some of the NOESY peak lists

contained many noise peaks (see, for instance, Fig. 4a).

Several offsets in the range between 0.1 ppm for heavy

atoms and 0.01 ppm for protons and 10 ppm for heavy

atoms and 1 ppm for protons were introduced into each

target peak list and the Peakmatch algorithm was applied.

Each optimization was performed using two different

random starting simplexes and the offset with the highest

match score was taken as the final result. An optimization

result was considered correct if the difference between the

introduced offsets and the calculation result was less than

one-third of the chemical shift tolerance in all corre-

sponding dimensions, i.e. if the offsets were correct within

0.01 ppm for 1H and 0.13 ppm for 13C and 15N dimensions.

Using this criterion, the Peakmatch algorithm found the

correct offsets for all automatically or manually prepared

pairs of peak lists and all four offsets tested for each peak

list pair. In all cases tested the optimal offsets determined

by downhill simplex optimization coincided with the cor-

rect solution. Therefore, also a complete grid search would

certainly find the correct result as long as the initial grid

size is larger than the offset. This shows that the maximum

of the match score function of Eq. 2 describes correctly the

optimal offsets also for peak lists that are far from perfect.

The algorithm works reliably and with high precision over

a large range of offsets for peak lists from a variety of

spectra for backbone and side-chain assignment as well as
13C- and 15N-resolved NOESY experiments from five dif-

ferent proteins. The lower data quality from automatic peak

picking did not have any significant effect on the offset

determination by the Peakmatch algorithm.

The algorithm can match any combination of peak lists

as long as they contain corresponding dimensions. Instead

of using [15N,1H]-HSQC or [13C,1H]-HSQC reference peak

lists, other suitable spectra can be chosen. For instance, we

performed all offset determinations for the protein DsbA

using the HSQC-planes of the (H)CCH-TOCSY and

HNCO spectra as reference peak lists. In all cases the

correct offsets were found.

The robustness of the algorithm was also investigated

systematically with respect to missing peaks, additional

artifact peaks, and small random shift changes for indi-

vidual atoms among different peak lists, as might be caused

for example by temperature or pH changes between the

experiments. Starting from a simulated data set for the

protein SH2 consisting of all expected peaks (see ‘‘Mate-

rials and methods’’), randomly up to 90 % of the peaks in

the reference and/or target peak lists were deleted. An

offset was introduced in each target peak list and the

Peakmatch algorithm was applied in the same way as with

the experimental peak lists (Fig. 5). Deletions of up to

80 % of the peaks in either the reference or target peak list

and deletion of up to 50 % of the peaks in both lists

simultaneously had no effect on the offset determination.

The percentage of incorrect offset determinations increased

up to 4 % for deletion of 90 % of the peaks in the target

peak list (Fig. 5, rhomboids), up to 20 % for 90 % deletion

in the reference peak list (Fig. 5, circles), and up to 76 %

for 90 % deletion in both lists simultaneously (Fig. 5,

stars). The effect of noise was evaluated by adding artifact

peaks at random positions up to ten times the amount of

peaks in the original peak list. The addition of randomly

placed artifact peaks had no effect on the offset determi-

nation up to 500 % the original number of peaks (4 times

more artifact peaks than real ones), independent of whether

the peaks were added to the reference peak list, the target

peak list, or to both peak lists simultaneously. Adding more

artifact peaks to the reference peak list, or to both peak lists

simultaneously, yielded incorrect offsets in up to 16 or

47 % of the cases, respectively, for 1,100 % peaks, i.e.

with 10 times more artifact peaks than real ones (Fig. 5).

Addition of artifact peaks to the target peak list had no

effect on the offset determination up to 1,100 % peaks.

The effect of small random shift changes for individual

atoms among different peak lists was investigated starting

from the same simulated data set for the protein SH2 that

was also used for investigating the effect of missing peaks

and artifact peaks. The chemical shift value of each atom

was shifted by a normally distributed random number with

Fig. 5 Robustness of the Peakmatch algorithm with respect to

missing peaks as well as additional artifact peaks. Starting from a

simulated data set for the protein SH2 consisting of all expected peaks

(see ‘‘Materials and methods’’), randomly up to 90 % of the peaks

were deleted, or artifact peaks were added at random positions up to

ten times the amount of peaks in the original peak list in either the

reference peak list (circles), the target peak list (rhomboids), or both

peak lists simultaneously (stars). An offset was introduced into each

target peak list, the Peakmatch algorithm was applied, and the

percentage of incorrect offset determinations was measured. Every

deletion or addition of artifact peaks was repeated five times using a

different random number generator seed and results were averaged
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a standard deviation of half the chemical shift tolerance of

the respective atom type. Random shift changes were

limited to a maximum of twice the respective chemical

shift tolerance value. Each peak list was then generated

using a different chemical shift file. A constant overall

offset was introduced in each target peak list before

applying the Peakmatch algorithm. It was found in all

cases that random atom chemical shift changes up to twice

the tolerance had no effect on the Peakmatch results. These

investigations show that the algorithm is very robust with

respect to data imperfections.

The number of independent downhill simplex optimi-

zation runs with different random start simplexes can be

specified by the user. All optimizations mentioned were

performed using two independent runs and the fact that no

offset errors occurred indicates that in general two runs are

sufficient. To calculate the probability that the correct

offsets are found when performing n independent runs, we

performed 100 runs for each optimization and took the

fraction of successful runs as the probability P1 to find the

correct offsets in a single run. Assuming that individual

runs are mutually independent, the probability to find the

correct offsets in n runs is Pn ¼ 1� ð1� P1Þn. Using

manually prepared peak lists, the percentage of correct

optimizations was on average 99 % and in all cases above

95 %. This corresponds to an average probability of

99.99 % and a minimum probability of 99.75 % that two

independent runs will yield the correct result. When using

peak lists from automatic peak picking, the percentage of

correct optimizations was on average 97 %, and the min-

imal percentage was 88 %. This leads to an average

probability of 99.91 % and a minimal probability of

98.56 % that two independent runs will yield the correct

result.

The match score S of Eq. 2 is normalized by the

expected match score E of Eq. 1. For a perfect match of

two ideal peak lists one thus obtains S ¼ 1. The optimal

match score for experimental peak lists, however, depends

strongly on the quality of the peak lists. Missing peaks

decrease and additional peaks potentially increase the

score, which makes it difficult to judge the result of an

offset determination simply by the match score value. The

normalized match score values of all individual calcula-

tions performed with manually prepared peak lists were

0.19–1.08 (average 0.70) for the correct results and

0.04–0.14 (average 0.11) for the optimizations yielding

incorrect results. The corresponding score values for the

automatically prepared peak lists were 0.27–1.62 (average

0.89) for the correct results and 0.08–0.85 (average 0.21)

for the optimizations yielding incorrect results. On average

the correct results have thus much higher score values than

the incorrect ones. Nevertheless, correct and incorrect

results cannot be separated clearly by their individual

match score values. In particular, the results for automati-

cally prepared peak lists include correct results with match

scores as low as 0.27 as well as incorrect results with match

scores up to 0.85. Since it is not straightforward to dis-

tinguish correct from incorrect results by the match score

value, the overlay of the peaks (projected onto the corre-

sponding dimensions, if necessary) in the reference peak

list and the optimally shifted target peak list is visualized

(Fig. 3b). Based on this diagram the user can evaluate the

result and decide whether to use the optimized peak lists or

not.

The runtime of the algorithm depends on the number of

peaks in the reference and target peak lists, and on the

number of evaluations of the match score function of Eq. 2.

The number of function evaluations differs for the different

optimization procedures. We compared the runtime for

downhill simplex optimization, a grid search with a limited

grid size of 2 ppm for heavy atoms and 0.15 ppm for

protons, and a grid search with a larger grid of 10 ppm for

heavy atoms and 0.75 ppm for protons using an Intel E5-

2690 2.9 GHz processor. The shortest average runtime of

3.9 s occurred for the grid search with limited grid size

(281 function evaluations). The average calculation time

using the downhill simplex optimization procedure was

5.2 s (on average 500 function evaluations), and the largest

average calculation time of 33.5 s was required for the

larger grid search (2,731 function evaluations). Except in

the case of small expected offsets, it is thus most efficient

to use downhill simplex optimization.

Peak list matching for one corresponding dimension

There are target peak lists that have only one corresponding

dimension in common with the reference peak list. This

makes the correct matching more difficult than with two or

more corresponding dimensions. We tested the perfor-

mance of the Peakmatch algorithm using only one corre-

sponding dimension. The match score function for one

corresponding dimension does in general not show a single

narrow maximum, but instead a larger number of local

optima (Fig. 6c, d). Since the downhill simplex optimiza-

tion might be trapped in local optima and the calculation

time is not an issue for one-dimensional optimization, we

limited the optimization procedure to a full grid search. We

used again the aforementioned manually or automatically

prepared peak lists and [13C,1H]-HSQC or [15N,1H]-HSQC

as reference peak lists and performed a one-dimensional

grid search to determine the optimal chemical shift offset,

which was considered correct if it was within the chemical

shift tolerance D1 for the corresponding dimension, i.e.

0.03 ppm for 1H and 0.4 ppm for 13C and 15N.
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When using manually prepared peak lists, the match

score function showed in all cases a global optimum at the

correct solution (Fig. 6c). However, there are many local

optima with match score values of similar magnitude,

which makes it difficult to distinguish the correct from

incorrect solutions based on the match score value. The

superposition of the one-dimensional projections of the

peak lists (Fig. 6a) shows that the peak lists overlay nicely,

which explains the fact that all match score functions have

their global maximum at the correct offset. In the case of

automatically picked peak lists, however, the global opti-

mum does in many cases not represent the correct solution.

One example is shown in Fig. 6d. The graphical repre-

sentation of the one-dimensional projections of the peak

lists (Fig. 6b) show that it is difficult to see how the two

peak lists should be overlayed correctly, reflecting the fact

that the match score function has multiple maxima of

similar size.

These results indicate that the Peakmatch algorithm can

also be used with only one corresponding dimension if

good quality input data is available but results are much

less reliable than with two or more corresponding dimen-

sions and should be corroborated by visually checking the

superposition of the one-dimensional projections of the

peak lists.

Peak list matching for three corresponding dimensions

The Peakmatch algorithm can match any number of cor-

responding dimensions, even though in practice more than

two corresponding dimensions occur rarely. One applica-

tion is adapting the data from two three-dimensional

spectra of the same type recorded under slightly different

experimental conditions. As an example, we tested a pair of

automatically picked peak lists for ENTH with three cor-

responding dimensions, CBCANH and CBCACONH, and

performed a grid search as well as downhill simplex opti-

mization. Both optimization strategies yielded the correct

solution. The computation time for the grid search was 60 s

due to a large number of function evaluations. In contrast,

Fig. 6 Graphical representation of manually and automatically

generated peak lists and corresponding match score functions for

one corresponding dimension. a Peak density for manually prepared

peak lists from HBHACONH (black) and [13C,1H]-HSQC (red)

spectra of the protein ENTH, obtained by plotting a Gaussian

lineshape of unit height and standard deviation 0.03 ppm at the 1H

position of each peak. b Peak density for automatically picked peak

lists from HC(CO)NH (black) and [13C,1H]-HSQC (red) spectra of

the protein RHO. c Match score function for the manually prepared

peak lists from (a). d Match score function for the peak lists from

automatic peak picking in (b)
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the computation time for the downhill simplex optimiza-

tion increased only to 11.4 s. Compared to the two-

dimensional case, the number of function evaluations by

the downhill simplex algorithm did not increase signifi-

cantly and the increased runtime resulted mainly from the

longer computation time for a single function evaluation.

Peak list matching against a chemical shift list

The Peakmatch algorithm can also be used to find the

optimal offsets to match a peak list to a given chemical

shifts list. For instance, NOESY peak lists can be matched

to a chemical shift list obtained from through-bond spectra

prior to automated NOE assignment and structure calcu-

lation. To this end, a reference peak list of the same

spectrum type as the target peak list is simulated on the

basis of the sequence and the chemical shift list, and then

used as input to the Peakmatch algorithm treating all

spectral dimensions as corresponding dimensions. Again,

this approach has the advantage that it can be applied to

unassigned peak lists.

Example Peakmatch application

Automatic chemical shift assignment is a possible appli-

cation of the Peakmatch algorithm. We used the automat-

ically picked data sets of the proteins ENTH, SH2, and

RHO for automatic chemical shift assignment using the

FLYA algorithm (Schmidt and Güntert 2012). To illustrate

the consequences of chemical shift referencing inconsis-

tencies among different peak lists of the same data set, we

artificially introduced random constant offsets into each

peak list prior to automatic chemical shift assignment.

Offsets were introduced within either 1.0 or 1.5 times the

assignment tolerance (0.03 ppm for protons and 0.4 ppm

for heavy atoms), and assignment results were compared to

those for the optimized input data set, which was obtained

using the Peakmatch algorithm. A summary of results is

presented in Table 2. In the presence of uncorrected offsets

within the assignment tolerance the FLYA automated

assignment algorithm yielded 88.0–89.8 % correct assign-

ments for all atoms (first column in Table 2). Using peak

lists with larger chemical shift referencing offsets of up to

1.5 times the tolerance, the amount of correct assignments

decreased to 74.4–85.2 % (second column in Table 2). The

latter results can be improved to 90.1–90.8 % when opti-

mizing the offsets with the Peakmatch algorithm (third

column in Table 2). This demonstrates the significant

improvement of assignment results that can be achieved by

applying the Peakmatch program prior to automatic

chemical shift assignment with the FLYA algorithm.

Conclusions

In this paper we have presented a new algorithm that

determines the optimal offset between two multidimen-

sional peak lists that contain corresponding dimensions.

The algorithm identifies corresponding dimensions auto-

matically based on the expected peaks for the given

experiments and then optimizes a match score function for

the experimental peak lists. Extensive tests showed that the

algorithm works very reliably also with input peak lists that

are far from ideal, e.g. those generated by automatic peak

picking programs, provided that there are at least two

corresponding dimensions. Principal advantages of the

algorithm are that (1) it can be applied to unassigned peak

lists, (2) it is highly tolerant against the common imper-

fections of experimental peak lists, (3) the criterion for

optimal matching is mathematically simple and largely

captures what an experienced spectroscopist would do

manually, and (4) its application is straightforward and

quick.

The optimization can be performed using a complete

grid search or a downhill simplex optimization procedure.

In all test cases, both procedures performed equally well

when using two corresponding dimensions. When using a

single corresponding dimension a complete grid search is

recommended as the downhill simplex algorithm has a

higher chance of getting trapped in a local optimum and

computation time is no issue in the one-dimensional case.

For more than two corresponding dimensions both methods

are equally reliable. However, the complete grid search can

be time consuming depending on the grid size, whereas the

computation time for the downhill simplex procedure rises

Table 2 Results of automatic chemical shift assignment using peak

lists with artificial random offsets

Protein Correct chemical shift assignments for backbone/

all atoms (%)

Small offsetsa Large offsetsb Optimized data setc

ENTH 94.4/88.4 81.6/76.4 95.5/90.8

RHO 93.6/88.0 88.4/74.4 96.2/90.1

SH2 97.7/89.8 96.9/85.2 98.4/90.8

Each of the automatically picked input peak list for the FLYA

automated chemical shift assignment algorithm {Schmidt, 2012

#2030} was shifted independently by a uniformly distributed random

number within the specified range
a Small offsets in a range of ±0.03 ppm for protons and ±0.4 ppm

for heavy atoms. The Peakmatch algorithm was not used
b Large offsets in a range of ±0.045 ppm for protons and ±0.6 ppm

for heavy atoms. The Peakmatch algorithm was not used
c The data set with large offsets was subjected to offset correction

with the Peakmatch algorithm prior to automatic chemical shift

assignment. All results are given as the percentage of correctly

assigned atoms with respect to the reference assignment for either the

backbone atoms (first number) or all atoms (second number)
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only slightly with increasing number of corresponding

dimensions.
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Pantoja-Uceda D, López-Méndez B, Koshiba S, Kigawa T, Shirouzu

M, Terada T, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T,

Hirota H, Yoshida M, Tanaka A, Osanai T, Seki M, Shinozaki K,

Yokoyama S, Güntert P (2004) NMR assignment of the

hypothetical rhodanese domain At4g01050 from Arabidopsis
thaliana. J Biomol NMR 29:207–208

Pantoja-Uceda D, López-Méndez B, Koshiba S, Inoue M, Kigawa T,

Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K,

Yokoyama S, Güntert P (2005) Solution structure of the

rhodanese homology domain At4g01050(175–295) from Ara-

bidopsis thaliana. Protein Sci 14:224–230

Schmidt E, Güntert P (2012) A new algorithm for reliable and general

NMR resonance assignment. J Am Chem Soc 134:12817–12829

Schmucki R, Yokoyama S, Güntert P (2009) Automated assignment

of NMR chemical shifts using peak-particle dynamics simulation

with the DYNASSIGN algorithm. J Biomol NMR 43:97–109

Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T,

Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P

(2004) NMR assignment of the SH2 domain from the human

feline sarcoma oncogene FES. J Biomol NMR 30:463–464

Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T,

Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P

(2005) Solution structure of the Src homology 2 domain from

the human feline sarcoma oncogene Fes. J Biomol NMR

31:357–361

Wang YJ, Wishart DS (2005) A simple method to adjust inconsis-

tently referenced 13C and 15N chemical shift assignments of

proteins. J Biomol NMR 31:143–148

Wang LY, Eghbalnia HR, Bahrami A, Markley JL (2005) Linear

analysis of carbon-13 chemical shift differences and its appli-

cation to the detection and correction of errors in referencing and

spin system identifications. J Biomol NMR 32:13–22

Williamson MP, Craven CJ (2009) Automated protein structure

calculation from NMR data. J Biomol NMR 43:131–143

J Biomol NMR (2013) 55:267–277 277

123


	Peakmatch: a simple and robust method for peak list matching
	Abstract
	Introduction
	Materials and methods
	Determination of corresponding dimensions
	Match score
	Optimization procedures
	Grid search

	Downhill simplex optimization algorithm
	Algorithm input and output
	Test data sets

	Results and discussion
	Determination of corresponding dimensions
	Peak list matching for two corresponding dimensions
	Peak list matching for one corresponding dimension
	Peak list matching for three corresponding dimensions
	Peak list matching against a chemical shift list
	Example Peakmatch application

	Conclusions
	Acknowledgments
	References


