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ABSTRACT

A new program for automatic resonance assignment of nuclear magnetic
Ž . Žresonance NMR spectra of proteins, GARANT General Algorithm for

.Resonance AssignmeNT , is introduced. Three principal elements used in this
Ž .approach are: a representation of resonance assignments as an optimal match

of two graphs describing, respectively, peaks expected from combined
knowledge of the primary structure and the magnetization transfer pathways in

Ž .the spectra used, and experimentally observed peaks; b a scoring scheme able
Ž .to distinguish between correct and incorrect resonance assignments; and c

combination of an evolutionary algorithm with a local optimization routine. The
score that evaluates the match of expected peaks to observed peaks relies on the
agreement of the information available about these peaks, most prominently,
but not exclusively, the chemical shifts. Tests show that the combination of an
evolutionary algorithm and a local optimization routine yields results that are
clearly superior to those obtained when using either of the two techniques
separately in the search for the correct assignments. GARANT is laid out for
assignment problems involving peaks observed in two- and three-dimensional
homonuclear and heteronuclear NMR spectra of proteins. Q 1997 by John
Wiley & Sons, Inc.
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Introduction

Ž .uclear magnetic resonance NMR spec-N troscopy has by now been well established
as a method for three-dimensional structure deter-
mination of biological macromolecules in
solution,1, 2 and much current work is focused on
further improvement of the efficiency of NMR
structure determination. Thereby, the large amount
of data typically encountered calls for extensive
use of computer support. On principal grounds,
programs for automatic resonance assignment
promise to provide particularly efficient, objective
and reliable handling of the large data sets, but in
practice spectral artifacts such as noise bands, ab-
sence of signals because of fast relaxation, or acci-
dental overlap of resonances have limited the use
of such routines.3 To overcome these limitations
the presently proposed General Algorithm for Res-

Ž .onance AssignmeNT GARANT simultaneously
uses the peak positions from multiple experimen-
tal spectra to eliminate influences of spectral arti-
facts in the determination of the resonance assign-
ments. This means, for example, that the spin
system assignments established using correlated
spectroscopy are directly included in the search for
sequential connectivities in the nuclear Overhauser

Ž .effect NOE data sets, and sequential connectivi-
ties observed by nuclear Overhauser spectroscopy
Ž .NOESY are in turn used during the searches for
spin system identification in the J-correlation spec-
tra. In this way, improved robustness against in-
complete or partially corrupted experimental input
data is achieved.

Depending on the size of the protein and on the
isotope labeling strategy, GARANT can be used
for combined analysis of homonuclear and het-

Ž .eronuclear experiments, two-dimensional 2D and
higher spectra, and experiments using COSY-type
mixing as well as TOCSY- or NOESY-type
mixing.4 ] 6

The structure of GARANT is based primarily on
a reliable representation of resonance assignments
by projection of expected assignments onto the
experimental data, a general criterion for evalua-
tion of the quality of preliminary resonance assign-
ments, and an efficient optimization algorithm.
These three elements of the program are explained
in the next section. In the ‘‘Results and Discussion’’
section, the general applicability of GARANT is
substantiated and the functional roles of different
parts of the algorithm are analyzed.

General Algorithm for Resonance
( )Assignment GARANT

REPRESENTATION OF ASSIGNMENTS

The basic information used by the GARANT
program for determination of resonance assign-

Ž .ments consists of: i the primary structure of the
Ž .protein; ii lists of cross peaks observed in the

Ž .experimental spectra; and iii knowledge about
magnetization transfer pathways in the NMR ex-

4 Žperiments used the results obtained with
GARANT can be greatly improved when supple-
mentary information on homologous proteins is
available, for example, the three-dimensional

7.structure or the chemical shifts; see Bartels et al. .
With GARANT, a representation of resonance as-
signments is then obtained by deriving, from the
amino acid sequence and knowledge about the
NMR experiments, the cross peaks that are ex-
pected to be present in the spectra. The expected
cross peaks are correlated with the peaks observed
in the corresponding experimental spectra, and the
best match found between expected and observed
peaks yields the resonance assignment.

ŽIn Figure 1A, three expected cross peaks shown
.as boxes labeled with the spectrum types and the

2D COSY and 2D NOESY relations anticipated
among them are represented by a graph. In each

Ž .dimension n s 2 in Fig. 1A each expected peak is
assigned to an atom or a group of spectroscopi-

Žcally equivalent atoms e.g., the hydrogen atoms in
.a methyl group . In a similar graph for representa-

tion of the experimental spectra, the position of
each cross peak defines a chemical shift in each

Ž . Ždimension Fig. 1B . In both graphs Figs. 1A and
.1B cross peaks and atoms, or chemical shifts,

respectively, are identified with vertices, and rela-
tions between cross peaks and atom types, or
chemical shifts, respectively, are represented with
edges of the graph. A match between the two

Ž .graphs defines a resonance assignment Fig. 1C :
Expected peaks and atom types are mapped onto
observed peaks and chemical shifts such that there
are identical connectivities for corresponding ex-
pected and observed cross peaks. The chemical
shifts of the observed cross peaks then define the
resonance frequencies and the atoms assigned to
the expected peaks define the assignments. Due to
imperfections in the lists of observed peaks and
limitations in the derivation of the lists of expected

Žpeaks e.g., long-range NOEs cannot be predicted
without knowledge about the three-dimensional
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( ) ( )FIGURE 1. Schematic representation for 2D n = 2 homonuclear NMR spectra of expected A and observed cross
( ) ( )peaks B , and of the mapping used to describe possible resonance assignments C .

.structure of the protein there will always be some
expected peaks for which no corresponding ob-
served peaks can be found, and vice versa. A
given set of resonance assignments may thus be
consistent with the input data even if some ex-
pected andror observed peaks are not mapped
onto a counterpart.

Formally, a resonance assignment is defined as
follows: Let S and S denote the sets of expectedM D
Ž . Ž .‘‘model’’ and observed ‘‘data’’ cross peaks, re-
spectively, A the set of protein atoms that can beM
involved in cross peaks, and V the set of chemi-D
cal shifts that occur in observed cross peaks. Each
expected cross peak, s g S , connects n atoms,M M
a g A , and each observed cross peak, s g S ,M M D D
correlates n chemical shifts, v g V , where n isD D

Žthe dimensionality of the spectrum in practice,
.n s 1, 2, 3, 4 . Each expected or observed cross peak

has attributed to it the type of spectrum from
Ž . �which it originated, t s g COSY, TOCSY,

4NOESY, . . . . To each atom, a g A , a meanM M
Ž . Ž .value, v a , and the standard deviation, s a ,M M

of the chemical shift determined by a statistical
analysis of chemical shifts in proteins are at-

8, 9 wtributed, alternatively, if available, the chemical

shifts of a homologous protein can be used for
Ž . Ž .v a , and the standard deviation, s a , canM M

then be set to a small value given by the ex-
pected deviation of chemical shifts between the

x 7two proteins .
Assignments of expected cross peaks to atoms

Ž .are described by the attribute, r a , s , whichi M M

takes the value zero if the atom a is assigned toM

the cross peak s in dimension i, and infinityM

otherwise. For observed cross peaks and chemical
shifts, a similar attribute is

Ž .r v , si D D

< Ž . < < Ž . <v y v s if v y v s - 4sD i D D i D p Ž .s 1½ ` otherwise

Ž . Ž .In eq. 1 , v s denotes the chemical shift of thei D

cross peak s in the dimension i, and s is theD p

user-defined standard deviation of the determina-
tion of peak positions, which is typically set to
0.005 ppm for protons. A resonance assignment, R,
is defined as a mapping of expected cross peaks
and atoms onto observed cross peaks and chemical
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shifts:

R : S ª S R : A ª VM D M D
and

U UŽ . Ž .s ª s s R s a ª v s R aM D M M D M

Ž .2

Here, sU and vU denote those observed peaks andD D
chemical shifts, respectively, onto which the corre-
sponding expected quantities, s and a , areM M
mapped.

GENERATION OF EXPECTED PEAKS

Ž .Expected scalar ‘‘through-bond’’ couplings be-
tween atoms of the protein are derived from the
covalent structure of the protein; i.e., all proton
pairs separated by two or three covalent bonds
give rise to a scalar coupling. Expected dipolar
Ž . Ž‘‘through-space’’ couplings nuclear Overhauser

.effects, NOEs are defined using rules based on a
statistics of short proton]proton distances in glob-
ular proteins.10, 11 For example, a NOE is expected
between the amide protons of sequentially neigh-
boring residues, or between the a proton of a
given residue and the amide proton of the follow-
ing residue. In contrast, no medium- or long-range
NOEs will be listed as ‘‘expected’’ unless the 3D
structure of a homologous protein is available.7

Thus, using rules that specify possible magnetiza-
tion transfer pathways for each type of spectrum,
expected cross peaks are derived and assigned to
the corresponding atoms. For example, a proton
with dipolar coupling to another proton and scalar
coupling to a nitrogen atom gives rise to a cross

15 w1 1 xpeak in a 3D N-resolved H, H -NOESY spec-
trum. Each expected cross peak, s , is also at-M

Ž .tributed an empirical weighting factor, q s , toM
express the probability that the expected peak sM
is actually observed.

SCORING SCHEME FOR EVALUATION OF
PRELIMINARY ASSIGNMENTS

To identify correct resonance assignments or to
distinguish correct from incorrect parts of an as-
signment, the program GARANT relies on a scor-
ing function for resonance assignments. If the set
of all expected cross peaks and atoms is denoted

Ž .by M ‘‘model’’ , and the set of all observed cross
Ž .peaks and chemical shifts by D ‘‘data’’ , the con-

ditional probability that a resonance assignment R
Ž .is correct is denoted by p R N M, D . The correct

assignment, R , is assumed to maximize thiscor r

Ž .conditional probability; i.e., p R N M, D scor r
Ž . 12max p R N M, D . Vosselman has shown that,R

under certain conditions, the mapping R alsocor r
maximizes the ‘‘mutual information’’ between the
data and the model, which is defined by:

Ž .p M , D N R
Ž . Ž .I D ; M s log 3R Ž . Ž .p M p D

Ž .p M, D N R denotes the joint probability that,
given a resonance assignment R, the model M
and the data D correspond to the system studied,

Ž . Ž .and p M and p D are the a priori probabilities
that the model M and the data D are appropriate
for the system. Both the model and the experimen-
tal data are characterized by sets of corresponding

w Ž . Ž .attributes i.e., a , t s and r a , s for theM M i M M
Ž . Ž . xmodel, and v , t s and r v , s for the dataD D i D D

for which the resonance assignment R defines a
Ž . Žk .correspondence of the type of eq. 2 . Let a andM

aŽk . denote the corresponding values of the k thD
attribute in the model and in the data, respec-
tively. Assuming that the values of the different
individual attributes are independent of each other,

Ž .the mutual information, I D; M , is given by theR
sum of the mutual informations for the individual
attributes:

Ž . Ž Žk . Žk . .I D ; M s I a ; aÝR R D M
k

Ž Žk . Žk . .p a N aD Ms logÝ Žk .Ž .p aDk

Ž Žk . Žk . .p a N aD M Ž .s log 4Ý Žk . Žk . Žk .Ž . Ž .p a N a p aÝ D M , l M , lk
l

Ž .In eq. 4 k runs over all attributes, and l runs over
w Ž . Ž . xall possible values see eqs. 11 ] 13 below of the

Ž Žk . Žk ..attribute k. p a N a denotes the conditionalD M
probability that, for attribute k, the value aŽk . isD
observed when its expected value is known to be

Žk . Ž Žk ..a , and p a denotes the a priori probabilityM D
that the value aŽk . is observed for attribute k. EachD
of the terms in the summation is a measure for the
agreement between the expected value aŽk . andM
the observed value aŽk . of a given attribute. It isD
positive if the observed attribute value aŽk . con-D
forms well with the expected value aŽk ., and zeroM
or negative otherwise.

The use of the mutual information as a score for
the quality of a resonance assignment has the
advantage over other types of scoring functions
that attributes with unknown values, either in the
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data or in the model, do not contribute to the
score: If, for example, aŽk . is not known, it pro-M
vides no information on possible values for aŽk .,D

Ž Žk . Žk .. Ž Žk .. Ž Žk . Žk ..i.e., p a N a s p a and I a ; a s 0. InD M D R D M
other words, for all entities of the model which are
not mapped onto a corresponding entity of the
data or vice versa, the mutual information is zero.12

Using the mutual information the score of a
resonance assignment, R, is given by:

Ž . Ž U .I D ; M s 9 I v ; aÝR R D M
a gAM M

Ž . Ž Ž U . Ž ..q 9 q s I t s ; t sÝ M R D M
s gSM M

Ž .q 9 9 q s IÝ Ý Ý M R
a gA s gS iM M M M

Ž Ž U U . Ž .. Ž .= r v , s ; r a , s 5i D D i M M

where the prime indicates that the summations
run only over those expected peaks and reso-
nances which are mapped onto observed peaks
and resonances. The expression for the mutual
information of atoms and chemical shifts,
Ž U .I v ; a , is a measure for the agreement of theR D M

Ž .expected chemical shift, v a , with the observedM
chemical shift, vU . To derive this expression weD
assume, for the observed chemical shifts vU , aD

Ž .normal distribution with mean value v a andM
Ž .standard deviation s a , and a uniform a prioriM

probability:

Ž U . Ž U Ž ..p v N a s m v y v aD M s Ža . D MM

Ž U . y1 Ž .and p v s D 6D v

D denotes the width of the range of possiblev

chemical shifts, and:

1 2y1r2Ž x rs .Ž . Ž .m x s e 7s '2p s

is the probability density of the normal distribu-
tion with zero mean and standard deviation s .

Ž . Ž .From eqs. 4 and 6 we obtain:

Ž U .p v N aD MUŽ .I v ; a s logR D M UŽ .p vD

2U Ž .D 1 v y v av D Ms log y ž /' Ž .Ž . 2 s a2p s a MM

Ž .8

Ž .For the spectrum type attribute, t s , we assume:

Ž Ž U . Ž ..p t s N t sD M

Ž . Ž U .1, if t s s t s NM D tŽ s .MŽ Ž ..and p t s ss MU½ NŽ . Ž . tot0, if t s / t sM D

Ž .9

N denotes the number of expected cross peakstŽ s .M
Ž .of spectrum type t s , and N the total numberM tot

Ž . Ž U .of expected cross peaks. The case t s / t s isM D
prevented by the optimization algorithm, which
maps an expected cross peak exclusively on an
observed cross peak from the same type of spec-

Ž . Ž U .trum, and for t s s t s , we obtain:M D

NtotUŽ Ž . Ž .. Ž .I t s ; t s s log 10R D M NtŽ s .M

Ž Ž U U .The m utual inform ation, I r v , s ;R i D D
Ž ..r a , s , of the relation r is crucial for judgingi M M i

the quality of a given resonance assignment, be-
cause it is a measure for the agreement between
the expected and observed peak patterns. To calcu-
late this quantity we use the abbreviations r s
Ž . U Ž U U .r a , s and r s r v , s , and we assumei M M i D D

that, for rU F 4s , we have:p

Ž U .¡m r if r s 0spU ~Ž . Ž .p r N r s 11y1¢D if r s `r i

and

Ny1 if r s 0sŽ . Ž .p r s 12y1½ 1 y N if r s `s

D denotes the range of possible chemical shiftr i w Ž .x Ždifferences eq. 1 approximately the sweep
.width of the spectrum in the ith dimension , and

N is the number of atoms of the type detected ins
Žthe ith dimension e.g., the number of protons for

1 . Uan H dimension . For r F 4s , we obtain:p

Ž U .I r ; rR

¡ y11 y Nsy1ylog N q if r s 0s UŽ .ž /D m r~ r ss i p

Uy1 y1¢ Ž .ylog N D m r q 1 y N if r s `ž /s r s si p

Ž .13

The remaining cases with rU s ` are either explic-
Žitly prevented by the optimization algorithm r s 0
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U .and r s ` or lead to negligibly small contribu-
Ž U .tions r s r s ` .

OPTIMIZATION OF ASSIGNMENTS

The match between the graphs of the expected
Ž .and observed peaks Fig. 1 corresponds to a graph

homomorphism; finding the optimal homomor-
phism is known to be NP-complete.12 Therefore,
the time requirements of any algorithm that would
guarantee finding the optimal solution are expo-
nential in the size of the problem. To avoid such
excessive calculations and yet find nearly optimal
solutions, the GARANT program uses a general
evolutionary algorithm13 ] 16 in conjunction with a
specific local optimization routine. An evolution-
ary algorithm uses the principles of selection and
inheritance to optimize a population of solutions.
From a given generation of solutions, a set of good
‘‘parent’’ solutions is chosen which are combined
to produce the next generation of new, improved
solutions. In the GARANT program, a local opti-
mization algorithm is used to identify suitable
combinations of solutions in the parent generation
that will yield improved solutions in the following
generation.

EVOLUTIONARY OPTIMIZATION ALGORITHM

Details of the evolutionary algorithm used by
the GARANT program are shown in Figure 2. The
mutation rate, i.e., the degree by which new solu-
tions are allowed to differ from the parent solu-
tions, is reduced during the optimization. To mon-
itor the mutation rate, a ‘‘temperature’’ is used by

Žthe local optimization algorithm see the following
.section which is adjusted according to a user-

defined temperature schedule. To calculate the
selection probabilities for resonance assignments,
the solutions in the parent generation are ranked
according to their score. A given resonance
assignment is selected with a probability of

Ž .''rrn y r y 1 rn , where r denotes its rank
and n is the number of resonance assignments in
the given parent generation. It turns out that peaks
and chemical shifts for which the mutual informa-
tion increases significantly in subsequent genera-

Žtions ‘‘significantly’’ when compared with the
.fluctuations within a given generation are most

important for an adequate selection of resonance
assignments. Therefore, a special score is used to

Ž .rank the resonance assignments in eq. 5 with
Ž .modified weighting factors, q s , for expected

peaks and associated atoms. For this purpose, the

FIGURE 2. Evolutionary algorithm used by the
GARANT program for the global optimization of
resonance assignments. The standard temperature

( )schedule, T s , consists of s = 21 steps as follows:max
( )T s = 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 0.92, 0.83, 0.75, 0.67,

0.58, 0.5, 0.42, 0.33, 0.25, 0.17, 0.08, 0.0, 0.0, 0.0, 0.0.
n is the number of resonance assignments in a
population. R denotes at any instant the resonancebest

( )assignment, R, with the highest score, I R , that was
found up to that instant.

mean value and the standard deviation of the
individual contributions of expected peaks and

Ž .atoms to the score of the new generation, M t , are
determined and compared to those from the ances-
tor generations using Student’s t-test.17 The signif-
icance of the resulting differences, which are num-

Ž .bers between 0 and 1, is used to scale the q sM
Ž .values in eq. 5 . As a result, contributions from

peaks and atoms, which fluctuate within one gen-
eration but do not change significantly from one
generation to the next, are largely suppressed.

LOCAL OPTIMIZATION ALGORITHM

In GARANT, a local optimization algorithm
generates new consistent resonance assignments
on the basis of the information contained in se-
lected parent solutions. The algorithm first tries to
map all expected peaks onto observed peaks. Each
time an expected peak is mapped onto an ob-
served peak, the corresponding atoms and ob-
served chemical shifts are also mapped onto each
other. To maintain the consistency of the resonance
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assignment, the choice of the frequency range from
which observed peaks are selected is of crucial
importance, and for each dimension of a given
expected peak the definition of the frequency range
will depend on whether or not the corresponding
expected chemical shift has already been mapped
onto another cross peak. In the instances of previ-
ous mapping, the allowed range is limited to close

Ž .proximity "4s of the assigned chemical shift.p
Otherwise, a much larger range, centered about
the statistically expected frequency, is considered.

In the cases in which the resonance frequencies
of a given expected peak are not precisely defined
by previous mappings, multiple observed peaks
will usually be within the allowed frequency range.
Appropriate selection of one of these peaks is used
to pass information from the parent resonance
assignments to the new resonance assignment, as
well as to control the mutation rate. Thereby, pref-
erence is always given to observed peaks that had
been mapped to the given expected peak in one of
the ancestor assignments. If no such peak exists,
observed peaks that are mapped onto any peak
that is ‘‘equivalent’’ to the given expected peak in
one of the ancestor assignments are considered
with a probability of 0.51r T, where T is the ‘‘tem-

Ž . Žperature’’ see also legend to Fig. 2 . Two ex-
pected peaks are considered to be ‘‘equivalent’’ if
they are assigned to the same type of atoms in
amino acid residues of the same spin system type;
e.g., the H a}H N COSY peak of Cys 20 is equiva-

a N .lent to the H }H COSY peak of Asp 55. With
this largely extended set of possible mappings,
sequence-specific parent assignments are lost, but
parent spin system assignments are preserved. Fi-
nally, if no appropriate observed peak exists, even
in this extended set, all observed peaks present in
the allowed frequency range are considered with a
probability of 0.31r T.

Once no further expected peaks can be mapped,
poor individual resonance assignments are identi-
fied on the basis of a local score which is calcu-
lated for each expected atom, a , and which in-M

wcludes those terms of the mutual information eq.
Ž .x5 that involve the atom a . To decide whether aM
given assignment is ‘‘poor,’’ a threshold value is
determined such that 20% of the atoms have a
local score smaller than the threshold. For poor
assignments the allowed frequency range from
which observed chemical shifts are selected is en-
larged to the value that it would have had without
previous mapping of the given atom. Usually,
chemical shifts will thus be found that can be
mapped onto the expected peak. Inconsistencies

arising from this procedure are subsequently re-
moved by resetting previous mappings which are
inconsistent with the new result.

Special consideration has to be given to chemi-
cal shift degeneracies of two or more cross peaks.
In general, there will be many cases in which
different expected peaks among the parent assign-
ments are mapped onto the same observed peak.
Random recombination of parent resonance as-
signments would thus lead to many more degen-
eracies than are actually present in the spectra. To
reduce the number of degeneracies, the probability
of selecting an observed peak that is already
mapped is lowered by preferential selection of
observed peaks that have not been yet mapped. If
no such peaks exist, the remaining peaks are con-

Ž .sidered with a probability of q s r3. FurtherM
reduction of degeneracies is achieved by selecting
30 rather than only 2 parent resonance assign-
ments for the recombination with the evolutionary

Ž .algorithm Fig. 2 . This increases the probability
for a given expected peak that there exists a possi-
ble mapping in one of the parent assignments that
does not lead to degeneracies. Finally, to increase
the probability that degeneracies are removed dur-
ing the local optimization, degeneracies are penal-
ized when calculating the local score of a given
resonce assignment by scaling the weighting fac-

Ž .tors, q s , with the inverse of the number ofM
expected peaks that are mapped onto the same
observed peak.

Results and Discussion

CHARACTERISTICS OF OPTIMIZATION
ALGORITHM

In Figure 3, the mutual information is plotted
with solid lines, and the percentage of new peak
mappings, which is a measure of the mutation
rate, is shown with dashed lines. In Figure 3A the
course of an optimization using the default tem-
perature schedule described in the legend to Fig-

Ž .ure 2 curve I is compared to the case in which the
temperature is held constant at the initial high

Ž . Ž .value curve II or the final low value curve III of
the default temperature schedule. First it can be

w Ž .xseen that the mutual information eq. 5 increases
in the course of the optimization, demonstrating
that knowledge about good resonance assignments
implicitly present in the parent generation is effi-
ciently used when producing a new generation of
assignments. The run with the default temperature
schedule produces the best resonance assignments,
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FIGURE 3. Analysis of the behavior of the optimization
algorithm. Plotted with solid lines is the mutual

[ ( )]information, I eq. 5 , divided by the number ofR
resonances and averaged over all resonance

( )assignments of the population left scale versus the
( )step, s, in the temperature schedule A and B or versus

( )the number of performed local optimization steps C . In
( ) ( )A and B , the dashed lines and the scale on the right
show the average percentage of peak mappings in one
resonance assignment of the current generation which

( )differ from the peak mappings in all of its parents. A
Influence of the temperature schedule. Curve I, default

( )temperature schedule see legend to Fig. 2 ; curve II, the
temperature is kept constant at the high starting value of
the default schedule; curve III, the temperature is kept
constant at the low final value of the default schedule.
( )B Influence of the local optimization algorithm; curve I,

[use of local and evolutionary optimization same as
( )]curve I in A ; curve II, only evolutionary optimization

( )performed. C Influence of the evolutionary algorithm;
[curve I, use of local and evolutionary optimization same

( )]computation as curve I in A ; curve II, only local
optimization performed.

showing that the adaptation of the temperature in
the course of the optimization is important. At
constant high temperature the algorithm fails to
converge because too many new mappings are

Žexplored toward the end of the optimization curve
.II . At constant low temperature the population of

solutions converges rapidly to a small set of sub-
optimal resonance assignments and cannot escape
from this local minimum in the search space.

To compare the relative importance of the evo-
lutionary algorithm and the local optimization
routine for the automatic determination of reso-
nance assignments, two test calculations are ana-
lyzed in Figures 3B and 3C. In the first test, no
local optimization was used; i.e., when generating
new resonance assignments no mappings were re-
set and the local score was not used. As can be

Ž .seen from Figure 3B curve II , this results in a
higher mutation rate and lower average mutual
information than when the local optimization is
also activated. In the second test, only the local

Ž .optimization was used Fig. 3C, curve II . Al-
though the local optimization algorithm is capable
of finding reasonable resonance assignments, it
fails to converge to the correct population of as-
signments. This analysis shows that use of the
combination of the evolutionary algorithm with
the local optimization algorithm results in signifi-
cantly better resonance assignments than would be
obtained with any of the two algorithms alone.

EXAMPLES OF AUTOMATIC RESONANCE
ASSIGNMENTS

Figure 4 shows the resonance assignment of
Ž .Tendamistat R19L , which was obtained using

w1 1 xhomonuclear 2D H, H -COSY, -TOCSY, and
-NOESY spectra. The lists of peak positions origi-
nating from an earlier manual analysis of these
spectra were used as input for GARANT.18 Ten-
damistat is a 74-residue protein consisting mainly
of b-sheets. The peak list contains a total of 4314
peaks. The peak picking accuracy, 4s , was set top
0.02 ppm. From a total of 393 proton resonance
frequencies, 320 were correctly assigned by
GARANT. Problems arose mainly due to missing

Žpeaks e.g., there are no observed sequential peaks
.from residues 1 through 3 and chemical shift

Ždegeneracies e.g., the amide proton resonances of
.residues 19 and 20 are degenerate .

In Figure 5A, the result of the automatic reso-
nance assignment of cyclophilin A using peak po-

13 w1 1 xsitions from a 3D C-resolved H, H -NOESY
spectrum recorded in D O, and a 3D 15N-resolved2
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FIGURE 4. Automatically determined resonance
( )assignments for Tendamistat R19L obtained with

[1 1 ]GARANT. 2D homonuclear H, H -COSY, -TOCSY, and
-NOESY spectra recorded in H O at 508C with a 4mM2
sample of the protein on a Bruker AM 600-MHz
spectrometer were used to collect the observed NMR
data. An ‘‘ideal’’ peak list obtained from complete
interactive spectral analysis was used as input. In the
upper part, the percentage of correctly determined 1H
resonance frequencies for each residue is plotted against
the amino acid sequence. In the lower part, the positions
of the small dots indicate whether the individual HN, Ha,
and H b frequencies are correctly assigned: high position
of the dot, correct assignment; low position, incorrect
assignment; middle position, one of two methylene
protons correctly assigned; no dot, no peak is expected

( N )for this atom e.g., H of proline .

w1 1 x Ž .H, H -NOESY spectrum and a CBCA CO NHN
spectrum, both recorded in H O, is presented.2
Cyclophilin A is a 165-amino acid residue protein
consisting mainly of b-sheets.19 The lists of peak
positions obtained by previous interactive analysis
of these spectra were used as input for GARANT
ŽM. Ottiger, O. Zerbe, and K. Wuthrich, unpub-¨

.lished results . These lists contained a total of 9350
Ž .peak positions; i.e., 271 from the CBCA CO NHN

spectrum, 2957 from the 3D 15N-resolved
w1 1 xH, H -NOESY spectrum, and 6122 from the 3D
13 w1 1 xC-resolved H, H -NOESY spectrum. The peak
picking accuracy, 4s , for the NOESY spectra wasp
set to 0.02 ppm in the proton dimensions, and to
0.3 ppm in the 13C or 15N dimension, respectively,

Ž .and for the CBCA CO NHN spectrum to 0.03 ppm
for the H N dimension and to 0.5 ppm for the 13C
and 15N dimensions. With this input, the backbone
amide nitrogen and proton frequencies were cor-
rectly determined by GARANT for all residues

Ž .except Val 2, His 70, and Glu 81 Fig. 5A . These
residues are located in flexibly disordered regions
and are represented by very weak signals; e.g., for
Val 2 no peaks are observed in the 3D 15 N-re-

w1 1 xsolved H, H -NOESY, and for His 70 and Glu 81
only diagonal peaks are present. Considering that,

in this analysis, the side-chain proton assignments
were inferred exclusively from the two heteronu-
clear-resolved NOESY spectra, it is impressive that
the large majority of the side-chain atoms were
also correctly assigned. Overall, GARANT was able
to correctly assign 1353 chemical shifts from a total
of 1613 1H, 13C, and 15N frequencies.

IMPORTANCE OF RELIABLE PEAK PICKING

The quality of the resonance assignments deter-
mined by GARANT depends critically on the qual-
ity of the input lists. This was confirmed by run-
ning GARANT with lists of peak positions which
were generated from the spectra of cyclophilin A
using an automatic peak picking program that
simply identifies all local maxima in the recorded
spectra. These lists contain numerous artifacts, and
many peaks are missing. For example, in the list

13 w1 1 xfrom the 3D C-resolved H, H -NOESY spec-
trum, 4774 of the 8966 picked peaks are artifacts
Ži.e., there is no corresponding entry in the list
resulting from the manual interactive spectral

.analysis , and 1641 peaks are missing which are
present in the list resulting from the manual analy-
sis of this spectrum. With these automatically
picked lists, GARANT is only capable of determin-

Ž .ing parts of the resonance assignment Fig. 5B . As
will be described elsewhere, an incomplete set of
NMR peaks, as it is typically obtained with cur-
rently available peak picking routines, can be suc-
cessfully supplemented with information on the
chemical shifts orrand the three-dimensional
structure of homologous proteins. With these sup-
plemented input data, assignment results compa-
rable to those with a manually obtained, ‘‘ideal’’
peak list can again be obtained from GARANT.7

FUTURE EXTENSIONS OF GARANT

The methodology used by GARANT is general
and open for extensions. It is possible to include
such additional features as cross peak multiplet
structures, peak intensities, or line widths by intro-

Žducing suitable attributes e.g., peak intensities or
.scalar coupling constants, J into the representa-

tions used for the matching of expected and ob-
Ž .served peaks. Furthermore, eq. 4 provides guid-

ance for extending the scoring scheme to account
for other aspects of the observed spectra. Examples

Ž .include peak intensities: once the probability p x
that a peak has intensity x and the conditional

Ž .probability p x N y that intensity x is measured
for a peak with expected intensity y have been
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FIGURE 5. Automatically determined resonance assignment of cyclophilin A using peak lists derived from 3D
13 15 [1 1 ] ( )C-resolved and 3D N-resolved H, H -NOESY spectra and a CBCA CO NHN spectrum as input for GARANT. All

13 [1 1 ]spectra were recorded at 268C with a 1.5 mM protein sample at pH 6.5. The 3D C-resolved H, H -NOESY in D O2
15 [1 1 ]and the 3D N-resolved H, H -NOESY in H O were recorded in 4 days each on a 750-MHz Varian spectrometer, and2

( )the CBCA CO NHN spectrum in 3 days on a 600 MHz Bruker AMX spectrometer. The same conventions are used as for
1 13 15 ( )Figure 4, except that, in addition to H, the C and N resonances were also considered. A An ‘‘ideal’’ peak list

( )resulting from complete interactive analysis of the above spectra was used as input. B A peak list obtained with a
simple automatic peak picking routine implemented in the program package XEASY was used as input.

defined, either from statistical analysis of peak
intensities or from suitable models, these probabil-
ities permit the addition of information on the
peak intensities to the mutual information in eq.
Ž .5 .

Conclusions

The representation of assignments used in
GARANT and the scoring scheme capture the fea-
tures which are most important for the resonance
assignment of protein NMR spectra, and the opti-
mization algorithm implemented in the program
makes efficient use of this information. The main
advantage of GARANT is the high quality of the
resonance assignments obtained and its ability to
include multiple different sets of spectra into the
analysis. The generality of the method allows in-

clusion of other types of information, such as line-
shapes, peak intensities, or 3D structures and
chemical shifts of homologous proteins, which can
greatly enhance resonance assignments made on
the basis of otherwise poor input data.7
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