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Abstract: Large-scale initiatives for obtaining spatial protein structures by experimental or

computational means have accentuated the need for the critical assessment of protein structure
determination and prediction methods. These include blind test projects such as the critical

assessment of protein structure prediction (CASP) and the critical assessment of protein structure

determination by nuclear magnetic resonance (CASD-NMR). An important aim is to establish
structure validation criteria that can reliably assess the accuracy of a new protein structure.

Various quality measures derived from the coordinates have been proposed. A universal structural

quality assessment method should combine multiple individual scores in a meaningful way, which
is challenging because of their different measurement units. Here, we present a method based on

a generalized linear model (GLM) that combines diverse protein structure quality scores into a

single quantity with intuitive meaning, namely the predicted coordinate root-mean-square deviation
(RMSD) value between the present structure and the (unavailable) ‘‘true’’ structure (GLM-RMSD).

For two sets of structural models from the CASD-NMR and CASP projects, this GLM-RMSD value

was compared with the actual accuracy given by the RMSD value to the corresponding,
experimentally determined reference structure from the Protein Data Bank (PDB). The correlation

coefficients between actual (model vs. reference from PDB) and predicted (model vs. ‘‘true’’)

heavy-atom RMSDs were 0.69 and 0.76, for the two datasets from CASD-NMR and CASP,
respectively, which is considerably higher than those for the individual scores (20.24 to 0.68).

The GLM-RMSD can thus predict the accuracy of protein structures more reliably than individual

coordinate-based quality scores.
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Introduction
Obtaining three-dimensional structures of proteins

is a priority for the biological research community

since several decades. Accurate protein structures

are crucial, for example, for drug design or screening

applications. Protein structures can be obtained by

experimental techniques such as X-ray crystallogra-

phy and nuclear magnetic resonance (NMR) spec-

troscopy, or predicted by computational methods

such as homology modeling, threading, fold recogni-

tion, molecular dynamics simulation, and so forth.1

Generally, the accuracy of a structural model deter-

mines the range of its potential applications. For

example, it would be nearly meaningless to use a

protein structure for structure-based drug design if

we are unsure about the quality of the target protein

model. Many measures have been proposed for the

assessment of structural quality,2 including torsion

angle distributions, steric clashes, three-dimensional

profiles, residue environments, fold prediction, eval-

uations of experimental restraints, and so forth,

which have been implemented in popular structure

validation software packages including Procheck,3

Molprobity,4 WHAT IF,5 Verify3D,6 ProsaII,7 Protein

Structure Validation Software suite (PSVS),8 and so

forth. There have been discussions as to why an

individual assessment score should directly correlate

with a coordinate accuracy metric,9 as well as

attempts to obtain composite quality assessment

scores.10–12 These methods can address global and/or

local accuracy13 and can express these in terms of

root-mean-square deviation (RMSD) values.14 Alter-

natively, a model-specific scoring function can be

constructed by a support vector machine.15

Structural genomics projects aim at experimen-

tally determining three-dimensional structures of

representative members of as many different fold

families as possible, whereas comparative modeling

tries to complement this by providing structural

models of homologues of the representative proteins.

However, for successful predictions it is essential that

the quality of the experimentally determined struc-

tures is adequate. Evaluating NMR protein structure

determination methods is the aim of the critical

assessment project critical assessment of protein

structure determination by nuclear magnetic reso-

nance (CASD-NMR) for NMR solution structures.16 A

similar, large-scale project for the critical assessment

of structure prediction is CASP.17 Evaluating the

quality of NMR structures has always been a

challenging task, and several erroneous structures

were found.18,19 These investigations have shown the

difficulty to evaluate reliably the accuracy of NMR

structures using only traditional quality indicators

based on coordinates or conformational restraint data

and highlighted the need for a tight integration of

more sophisticated structure validation tools in NMR

structure determination projects.

Results

Here, we present the generalized linear model-RMSD

(GLM-RMSD) method to evaluate the quality of pro-

tein models by predicting their RMSDs relative to the

native structure. Originally a simple multiple linear

regression (MLR) method was tested, using several

quality scores2,3,5,6,19 provided by the PSVS server.7

After performing a statistical model selection and sig-

nificance study (as described in ‘‘Model Selection sec-

tion’’) on the initially included scores, a GLM-RMSD

using only four out of the initial eight scores was

found to perform better. We applied the GLM-RMSD

method to two sets of protein structure models from

the CASD-NMR and CASP8 projects, respectively.

The resulting GLM-RMSD values were correlated

with the actual accuracy of the protein structure mod-

els in terms of the RMSD of the coordinates between

the model and the corresponding reference structure

from the Protein Data Bank (PDB).

MLR predicted RMSD

MLR is a multivariate statistical technique for

examining the linear correlations between two or

more independent variables and a single dependent

variable. Here, we consider a linear model by which

the predicted RMSD values yLMi (LM-RMSD)

between the i-th model structure from the training

set and the corresponding native protein structure

depend linearly on m (normalized) validation scores

(xi1, . . ., xim)

yLMi ¼
Xm
j¼1

bjxij þ a

for proteins i ¼ 1, . . ., n. The LM-RMSD thus repre-

sents an approximation of the (known) accuracy of

the model structure. The value of the j-th validation

score for the model structure i is denoted by xij.

Each score describes a particular aspect of structure

quality. The constants a and bj are determined by a

linear least-squares fit to the actual RMSDi values

from a training set of n known structures that mini-

mizes the v2 value

v2 ¼
Xn
i¼1

RMSDi �
Xm
j¼1

bjxij þ a

 !2

Generalized linear model
A GLM20 is a generalization of the above model,

where the values yGLM
i are assumed to belong to a

distribution from the exponential family with a

mean l > 0 and E(yGLM
i ) ¼ l. In our case the gamma

distribution is chosen from the family as it is non-

negative (like the RMSD values) and showed the

closest similarity in shape to the histogram of the

RMSDi values. The validity of this assumption was

evaluated by fitting a gamma distribution to the
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histograms of RMSD values from the CASD-NMR,

CASP, and Combined datasets by maximum likeli-

hood fitting using the function fitdist() from the R

software environment for statistical computing

(http://www.r-project.org/) package ‘‘fitdistrplus’’

(Supporting Information Fig. S1). A low Kolmo-

gorov–Smirnov statistic value �0.1 in all three cases

quantified the good correspondence between the em-

pirical distribution function of the sample and the

fitted gamma distribution. It is again assumed that

the dependent variables yi depend linearly on the

scores. In addition, a GLM comprises a ‘‘link func-

tion’’ g than connects the linear predictor to the

quantity predicted:

yGLM
i ¼ g

Xm
j¼1

bjxij þ a

 !

We chose the link function g of the GLM model

as the identity operator g(x) ¼ xþ1. The vector of

regression coefficients bj is determined by the func-

tion glm() of the R package, which uses maximum

likelihood estimation by the Fisher-scoring method

or iterative reweighted least squares.

Data sets and validation scores

Two structural datasets were used. The first one

consisted of 65 NMR protein structure bundles

obtained from the CASD-NMR project.16 They are

the results of NMR structure calculations for 16 sin-

gle-domain proteins (65 structures) with 50–172

amino acid residues using different methods and

programs. The second data set comprised 85 protein

structures (all 85 unique sequences) selected from

the CASP8 results as described in ‘‘Methods section.’’

Eight validation scores were calculated for each

of these structures: (i) the Discrimination Power

(DP) score that estimates the ability of NOESY data

to distinguish the structure from a freely rotating

chain.22 (ii) The Verify3D score based on 3D–1D-pro-

files.6,23 (iii) The ProsaII score based on the data-

base-derived probability for two residues to be at a

specific distance from each other.7 (iv) The Procheck-

u/w score (P-u/w) that takes into account the number

of residues in different regions of the Ramachandran

plot.3 (v) The Procheck-All score (P-All) that takes

into account unusual features of the local conforma-

tion.3 (vi) The Molprobity score (MolProb) combining

Ramachandran plot analysis, rotamer analysis, and

all-atom clash analysis.24 (vii) The Gaussian net-

work model (GNM) score obtained by a minimalist,

coarse-grained approach to estimate the average

coordinate fluctuation. GNM scores were reported to

be correlated to protein stability (DG) and to the

RMSD itself.25,26 (viii) The protein size given by the

number of residues (Size), which was included

because NMR structures of larger proteins tend to

have higher RMSD values.27 In addition, we calcu-

lated for each model the heavy-atom RMSD to the

corresponding experimentally determined native

structure in the PDB. We refer to this measure of

true accuracy (provided that the reference structures

are correct) as the RMSD bias.

The resulting 65 � 8 and 85 � 8 matrices of

validation score values xij and the RMSD bias values

yi constituted the basis for this study (Supporting

Information Tables S1 and S2). The mean values

and standard deviations of the quality scores are

given in Table I.

Cross-correlations between individual

validation scores

The individual quality measures contribute by

varying degrees to the predicted RMSD value. The

complementary behavior of different scores was

investigated by calculating the correlation coefficient

between the quality scores and the RMSD and the

cross-correlation coefficients among the quality

scores (Table II). The first column of Table II shows

the correlation with the RMSD bias. Other columns

show cross-correlations among the scores that indi-

cate the degree of complementarity among the

scores. Some scores correlate highly with each other

in both data sets, for example Procheck-//w and Pro-

check-All, and, in particular, Verify3D and ProsaII.

The latter are highly correlated with each other but

show little correlation with the RMSD bias.

Multilinear correlations and jackknifing

For each dataset of n structures the MLR analysis

was performed n times by removing one row at a

time and performing the regression analysis to

determine the constants a and bj on the remaining

n � 1 rows. This ensured that the prediction for a

given model did not include its actual RMSD. Thus,

for each of the datasets, N sets of weights were

obtained and averaged. The sets of average weights

and their standard deviations obtained after this

jackknifing procedure are given in Table III and

were used to compute the LM-RMSD values for the

two dataset separately and in combination.

Table I. Mean Values (Standard Deviation) of the (Unnormalized) Quality Scores

Dataset
Sequences/
structures DP Verify3D ProsaII P-u/w P-All MolProb GNM Size

CASD-NMR 16/65 0.75 (0.09) �1.42 (2.07) �2.58 (3.06) �1.84 (1.18) �0.62 (0.97) �3.55 (8.18) 0.81 (0.03) 106.15 (29.71)

CASP 85/85 0.39 (0.09) 0.74 (1.33) 0.50 (1.27) �2.19 (1.47) �1.11 (1.12) �18.77 (5.43) 0.51 (0.06) 133.75 (56.77)

Combined 101/150 0.55 (0.20) �0.20 (2.00) �0.83 (2.70) �2.04 (1.37) �0.90 (1.08) �12.17 (10.13) 0.64 (0.16) 121.79 (48.95)
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The predicted RMSDs using the weights from

Table III have correlations to the actual RMSD val-

ues of 0.78 for the CASD-NMR dataset and 0.77 for

the CASP dataset. Apart from assessing the datasets

individually, we also obtained a set of weights for

the combined dataset by normalizing the scores for

all structures simultaneously. In this case, the pre-

dictive power correlation was 0.76. These initial

observations motivated us to perform a more rigor-

ous selection of the model and the scores because

the standard deviations observed for the coefficients

in the jackknifing procedure were high. Also the

high cross-correlation among some of the individual

constituent scores indicated redundancy.

Model selection
On the basis of the predictions performed based on

MLR combination of the eight scores mentioned

above, we proceeded to selecting the scores which

contribute most significantly to the RMSD prediction

to minimize over-fitting. A prediction of the RMSDs

was performed based on fitting to a gamma distribu-

tion function of a GLM combining all eight scores

mentioned above. For all three datasets (CASD-

NMR, CASP, and Combined), the contribution of

each score to the RMSD prediction was judged based

on its P-value and the Akaike Information Criterion

(AIC). A low P-value for an individual score indi-

cates that the probability of this score’s contribution

in the fit being random is low. Similarly, a high

P-value indicates high randomness and unreliability.

AIC, in addition, provides information about the

relative goodness-of-fit of a statistical model.

Several iterations were performed to prune out

one-by-one the scores contributing least or unstably

to the predictions. On performing the first fit, the

contribution of the Procheck-All score showed consis-

tently high P-values and a very low AIC across all

three datasets (CASD-NMR, CASP, and the Com-

bined dataset). The second iteration involved a fit

based on the remaining seven scores (initial eight

without Procheck-All). In the same way, we elimi-

nated the ProsaII, Verify3D, and GNM scores in

second, third, and fourth iteration, respectively. This

finding is consistent with the high correlations

observed in Table II for Procheck-//w versus

Procheck-All, Verify3D versus ProsaII, and both

Procheck scores versus GNM. A high correlation

between each of these pairs suggests that one of

them is likely to be redundant when the other is

present. The iterations to eliminate scores were

continued until we reached a P-value of less than

0.01 for all scores with all three datasets. This

yielded a model based on only four of the eight

scores (DP score, Procheck-//w, Molprobity, and

Size) for the stable working of this method.

GLM-RMSD calculation
These four individual validation scores were taken

into account to calculate the GLM-RMSD value. The

Table II. Cross-Correlations of Normalized Validation Scores

Scores RMSD DP Verify3D ProsaII P-u/w P-All MolProb GNM Size

CASD-NMR structures
DP 0.43 1 �0.36 �0.22 0.27 0.38 �0.01 0.14 �0.11
Verify3D �0.24 1 0.95 �0.08 �0.41 �0.33 �0.09 �0.56
ProsaII �0.13 1 �0.1 �0.39 �0.40 �0.15 �0.17
P-u/w 0.49 1 0.79 �0.20 0.51 �0.22
P-All 0.48 1 �0.03 0.43 �0.20
MolProb 0.07 1 �0.45 0.02
GNM 0.10 1 �0.20
Size 0.23 1

CASP structures
DP 0.68 1 0.04 �0.04 0.37 0.51 0.51 �0.04 0.05
Verify3D 0.05 1 0.90 0.03 �0.19 0.23 �0.08 0.12
ProsaII �0.09 1 �0.11 �0.34 0.04 �0.21 0.19
P-u/w 0.42 1 0.78 0.30 0.65 �0.52
P-All 0.49 1 0.34 0.46 �0.33
MolProb 0.63 1 �0.02 0.06
GNM 0.04 1 �0.88
Size 0.01 1

Table III. Constants a and Weights bi (Standard Deviation) for the Calculation of LM-RMSD Values from the
Normalized Individual Scores

Dataset a DP Verify3D ProsaII P-u/w P-All MolProb GNM Size

CASD-NMR 2.02 (0.01) 0.48 (0.05) �3.24 (0.12) 3.75 (0.13) 1.41 (0.06) 0.37 (0.07) 0.97 (0.03) 0.29 (0.04) 1.26 (0.04)

CASP 2.94 (0.01) 1.49 (0.04) 0.31 (0.11) �0.56 (0.11) 0.63 (0.07) 0.14 (0.07) 1.26 (0.04) �0.25 (0.09) 0.10 (0.07)

Combined 2.52 (0.01) 2.46 (0.04) �1.27 (0.07) 1.71 (0.07) 0.80 (0.04) 0.48 (0.03) 1.63 (0.03) 2.96 (0.05) 1.34 (0.02)
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GLM coefficients were determined for both sets of

structures, separately and combined, and analyzed

by jackknifing (Table IV). GLM-RMSDs are calcu-

lated from the coefficients and the normalized score

values by the same multilinear relationship as for

the LM-RMSD. Figure 1 shows the actual and pre-

dicted GLM-RMSDs of heavy-atom coordinates of

the models from CASD-NMR, CASP, and both data-

sets combined.

The correlation coefficients between actual

(model vs. reference from PDB) and predicted (model

vs. ‘‘true’’) heavy-atom RMSDs were 0.69 and 0.76

for the two datasets from CASD-NMR and CASP,

respectively (Table IV). For the Combined dataset,

this correlation was 0.70. These correlations were

significantly higher than those obtained between

individual scores and the experimental RMSD

(Table II). The correlation graphs in Supporting

Information Figure S2 support this observation. For

all three datasets and particularly in case of the

CASP dataset, we also made an analysis without the

DP score values, because in practice no reference

structure would be available and therefore the calcu-

lation of DP scores on the basis of simulated experi-

mental data in the case of CASP (see ‘‘Methods

section’’) would not be possible. In this case, a

different set of coefficients was obtained, and the

correlation coefficient dropped to 0.69 from 0.76.

Considering a structure with less than 2 Å RMSD to

the reference as ‘‘correct’’ and others as ‘‘erroneous,’’

we found for the Combined dataset that 86% of the

structures with a GLM-RMSD < 2 Å were correct,

and 74% of the structures with GLM-RMSD > 2 Å

were erroneous.

The DP score was found to be most important

among the individual scores and contributed equally

well for all datasets, whether considered individually

or combined. Although all four selected scores in our

model were designated as significant, removal of

this particular score (DP), caused a considerable

drop in the correlation coefficient for all three data-

sets, that is, from 0.69 to 0.61, 0.76 to 0.69, and 0.70

to 0.67 for CASD-NMR, CASP, and the Combined

dataset, respectively. Nevertheless, the DP score

alone would not be sufficient to provide the same

information as our GLM-RMSD (Tables II and IV).

Example evaluation
The GLM-RMSD method predicts the quality of a

protein structure in terms of the heavy-atom RMSD

from its native structure. This is a quantitative mea-

sure. The overall quality of a structure can be

judged qualitatively, for example, by checking the

correctness of its fold or the presence/absence of its

secondary structure elements. As an example,

Figure 2 illustrates the correspondence between the

Table IV. Constants a and weights bi (Standard Deviation) for the Calculation of GLM-RMSD Values from the
Normalized Individual Scores, and Correlation Coefficient Between GLM-RMSD and Actual RMSD from the
Reference Structure

Dataset a DP P-u/w Molprobity Size Correlation

CASD-NMR 1.99 (0.01) 0.94 (0.07) 0.87 (0.04) 0.38 (0.02) 0.93 (0.03) 0.69
CASD-NMR (without DP) 1.98 (0.01) — 1.25 (0.04) 0.42 (0.02) 1.05 (0.04) 0.61
CASP 2.92 (0.01) 1.07 (0.03) 0.61 (0.05) 1.41 (0.03) �0.07 (0.03) 0.76
CASP (without DP) 2.94 (0.01) — 1.16 (0.05) 1.95 (0.03) 0.31 (0.04) 0.69
Combined 2.50 (0.01) 0.92 (0.02) 1.30 (0.02) 0.58 (0.02) 0.70 (0.02) 0.70
Combined (without DP) 2.51 (0.01) — 1.57 (0.02) 1.21 (0.02) 0.90 (0.02) 0.67

Figure 1. Actual RMSD and predicted GLM-RMSDs for the heavy-atom coordinates of the models from (A) CASD-NMR, (B)

CASP and (C) both datasets combined. Each data point corresponds to an individual structure bundle.
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quality scores, the predicted RMSDs, and the true

RMSDs for structures of the protein AtT13 from the

CASD-NMR dataset. The model on the left had the

correct secondary structure and fold with an actual

RMSD of 1.10 Å (1.67 Å predicted GLM-RMSD) to

the reference structure, whereas the two model

structures on the right had distorted folds with high

actual RMSDs of 3.73 and 5.12 Å to the reference

structure (2.41 and 3.31 Å predicted GLM-RMSD).

The scores of the two ‘‘bad’’ structures are remark-

ably similar and different from those of the ‘‘good’’

structure. The GLM-RMSD correctly yields a low

value for the good structure, an intermediate value

for the intermediate structure, and a high value for

the bad structure.

The human DLC2A protein affords another test

case for the GLM-RMSD method because an errone-

ous monomer (PDB 1TGF) and a correct dimer (2B95)

NMR structure are available. The PSVS scores for the

two DLC2A structures were calculated and

normalized to calculate the GLM-RMSD. Figure 3

illustrates that the GLM-RMSDmethod correctly pre-

dicted a smaller RMSD to the ‘‘true’’ structure for the

dimer than for the monomer. The same trend as in

the two examples illustrated in Figures 2 and 3 is

present for many other cases, for which the numerical

values of the predicted GLM-RMSD and the actual

RMSD are given in Supporting Information Tables

S1–S3. Overview plots of the correspondence between

the two RMSD values are afforded by Figure 1.

Comparison of CASD-NMR and CASP data sets
We noted considerable differences between the

CASD-NMR and CASP data sets. The CASP project

is rather oriented towards correct fold prediction,

whereas CASD-NMR aims also at atomic level

details derived from experimental data. The differ-

ences may be due to varying software, force fields,

Figure 2. Examples of structural quality prediction for the CASD-NMR target AtT13. Three models of decreasing accuracy

are shown in ribbon style from left to right. The values of the normalized validation scores, the predicted GLM-RMSDs, and

the actual RMSDs to the reference structure are indicated. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 3. Comparison of erroneous monomeric (PDB 1TGF; left) and correct dimeric (2B95; right) structures of human

DLC2A.19 The GLM-RMSD method correctly predicts for the dimer a better RMSD to the reference than for the monomer.

The values of the normalized validation scores, the predicted GLM-RMSDs, and the actual RMSDs to the reference structure

are indicated. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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or simulation protocols (with or without explicit sol-

vent, etc.), and could also be due to differences in

protein structures measured experimentally in

liquids (fluctuating ensemble) or crystals (tight pack-

ing).28 The differences are apparent from the score

values of both datasets, especially for the Molprobity

and GNM score values. In general, a higher value of

the GNM score for the CASD-NMR dataset indicates

a higher degree of fluctuation of the atomic coordi-

nates. The difference is also apparent in the DP

scores (Table I). The DP scores for the CASP struc-

tures were calculated based on simulated NOEs (see

‘‘Methods section’’), and exhibited lower values than

the DP scores for CASD-NMR calculated from the

experimental NMR data. This behavior was previ-

ously noted in the distribution graphs of PSVS

Z-scores of X-ray and NMR protein datasets,8 where

it was also argued that NMR structures have on

average lower quality scores because of different

conformational preferences in crystalline and solu-

tion environments. The difference in the scores may

in part be attributable to protein dynamics in solu-

tion, as well as to differences in the mathematical

treatment of experimental results for the two meth-

ods.28 These observations may explain differences

between the set of weights obtained for the CASD-

NMR and CASP datasets by the simple LM-RMSD

method (Table III). These differences are strongly

reduced for the GLM-RMSD model (Table IV), as

expected. Notably, the protein size is a significant

parameter for the CASD-NMR data set but not for

CASP. This may reflect the fact that larger protein

structures are more difficult to solve by NMR, espe-

cially by the chemical shift-based methods29,30 that

were included in CASD-NMR.

Discussion

Most structure validation methods aim at evaluating

structural quality objectively and are designed to be

applicable to any (folded) protein structure. How-

ever, in practice a bias is often unavoidable and less

general validation methods that are adapted to par-

ticular types of structures can be powerful. For

example, for structures obtained using NMR, it is

important to evaluate how well they fit to the exper-

imental data.22 Nonetheless, many structural

aspects used in validations are general and can be

analyzed both for predicted and experimental struc-

tures: core packing, stereochemistry, bond lengths,

steric clashes, and so forth. Obviously, to have effec-

tive predictions it is necessary but not sufficient to

have good scores for packing, stereochemistry, and

so forth. Thus, it is logical to use many scores, espe-

cially those having noticeable correlation with struc-

tural accuracy. Ideally, these parameters would

cover all complementary aspects of structural qual-

ity. The optimal combination of such scores was our

aim in this study.

A typical study of this kind might lead into

results which are prone to an over-fit. This was a

major concern in the case of CASD-NMR dataset.

However, here, the protein folds are very different

across the targets and it would be difficult to fit them

to one common parameter. Further, inclusion of jack-

knifing (leave one out, train on the rest and test on

the one excluded) considerably reduces the possibility

of an over-fit. We admit that the presence of an over-

fit cannot be excluded completely and because we

introduce this work as a proof of concept, the model

would get better as more datasets are made available.

When compared with the structure validation

methods reviewed in ‘‘Introduction section’’, the

GLM-RMSD method provides a quality assessment

in terms of the RMSD, which makes it easier to com-

prehend how good or bad a model actually is than

by interpreting individual scores of varying magni-

tude and signs. Additionally, we used a quality mea-

sure that accounts for the agreement with experi-

mental data (DP score) which is clearly useful for

NMR models. We also attempted to use this score

for the predicted models for a more meaningful com-

parison of the two datasets and their combination.

For much less than 1% of the millions of known

protein sequences has the corresponding structure

been solved experimentally. Thus, it is easy to

understand the need to fill the void at least with

predicted models. Predicting accurate protein struc-

tures is a challenging task. Approaches have been

improving over time and so are the methods for vali-

dating these predictions.18,19 Due to the enormity of

the conformational space search problem, prediction

methods often suffer from insufficient data for sta-

tistical parameter estimation. Our method, too, has

a scope of improvement by inclusion of more diverse

protein structure datasets and by adding new qual-

ity scores that are complementary and cover better

all aspects of protein structure quality. Here, we

used the RMSD of a model from its native structure

as the accuracy measure because the RMSD contin-

ues to be the most basic and widely used criterion to

assess protein structure quality when comparing to

a known ‘‘correct’’ structure.

Our method is not limited to the quality assess-

ment of protein structures. It may, in principle, also

be applied as a structure selection filter in protein

structure modeling. For example, the approach could

support CS-Rosetta,30,31 a structure calculation tool

based on NMR chemical shift data, to filter out

potentially wrong structure leads at early stages

and thereby reduce its large computational time

requirements. Good success has been reported using

the DP score to direct a CS-Rosetta trajectory,32 and

this performance could potentially be improved

using the GLM-RMSD measure.

The accurate selection of homologues is crucial

for the template-based modeling of protein structures.
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Many homology-modeling applications rely on fold

prediction. Estimating the accuracy of homology

based models directly from the sequence alignment

has been attempted using multivariate regression

using only primary structure information.9,33 Experi-

mental information has been used to generate tem-

plate protein structures for homology modeling of pro-

teins.34 Our method could be used as an alternative to

evaluate and rank the accuracy and quality of homol-

ogy models.

Materials and Methods

Preparation of the CASD-NMR and CASP

datasets

The CASD-NMR dataset consisted of structures for

16 different single-domain proteins targets (http://

www.wenmr.eu/wenmr/casd-nmr). Ten of the 16

experimental NMR data sets were provided by the

Northeast Structural Genomics consortium (www.

nesg.org), which also determined the reference struc-

tures. For each target protein structures were calcu-

lated separately by different NMR research groups in

a ‘‘blind test,’’ meaning that the ‘‘correct’’ structure

was released by the PDB only after the models were

computed. The remaining six experimental NMR

data sets were provided by various groups as ‘‘non-

blind’’ data sets.16 The CASD-NMR data set com-

prised a total of 65 protein NMR structure bundles

for the 16 proteins. Each bundle comprised 10–30

conformers (Supporting Information Table S1).

Similarly, in the CASP project, participating

groups performed a ‘‘blind’’ prediction of the tertiary

structure of target proteins whose experimentally

determined structures were released after the predic-

tions were completed. The CASP dataset used in this

study consists of proteins ranging from 45 to 275

amino acid residues. We selected only those proteins

for which a minimum of 50 models had atom types

and numbers consistent with its respective target

structure. The 20 model structures with the lowest

RMSD to the target structure were selected to form a

structure bundle, similar to an NMR structure bun-

dle. Models with more than 10 Å RMSD to the refer-

ence structure were excluded. This cutoff was intro-

duced because the PSVS server (see below) required a

minimal amount of ordered residues for proper opera-

tion. Excluding models with residue type or number

mismatch errors and several other coordinate file

parsing inconsistencies reduced the CASP dataset to

85 protein structure bundles, each with a unique

sequence (Supporting Information Table S2).

Heavy-atom RMSD to the target structure

The RMSDs to the reference structure were calcu-

lated with CYANA between the heavy-atom coordi-

nates of the mean structure of the model bundle and

the respective reference structure deposited in the

PDB. The ranges of well-structured residues for the

RMSD calculations were determined from the

ensemble of coordinates with the CYRANGE algo-

rithm35 for the CASD-NMR structures. For the

CASP dataset, those residues were chosen for the

RMSD calculation for which the B-factor of the Ca

atoms in the target X-ray structure was within three

standard deviations from its mean value.

Calculation of validation scores

The datasets were submitted, protein by protein, to

the PSVS server,8 to obtain the values of each of the

validation scores described below. Residues that are

not well defined in the NMR ensembles are filtered

from these coordinate sets using the dihedral angle

order parameter36, with a cutoff S(/) þ S(w) < 1.8.

The DP score was obtained via the web-services

hosted at the RPF (Recall, Precision, and F-measure)

scores server (http://nmr.cabm.rut gers.edu/rpf/). In-

house software was used to obtain the GNM score.

The size of the protein was determined by counting

the number of residues in the PDB file. Details of

the scores are described in the following.

DP score

The DP score22 estimates the difference in F-mea-

sure scores between the query structure and random

coil structures as an indicator of the correctness of

the overall fold. This is based on a rapid approach to

calculate RPF scores between experimentally deter-

mined unassigned NOESY peak lists and simulated

NOESY peaks lists predicted from the query struc-

ture and experimental resonance assignment lists,

based on true/false negative and true/false positive

metrics. The DP score measures the ability of

NOESY data to distinguish the structure from a

freely rotating chain model by normalizing the data

for its completeness. The experimental data were

available for the CASD-NMR models but not for the

CASP data set. However, it is important for the cali-

bration of our method to have a sufficiently large set

of wrong structures that deviate severely from the

correct native conformation of the protein but no

large set of wrong NMR protein structures with the

corresponding experimental NOESY peak lists was

available. Therefore, we created NOESY data for the

structures in the CASP data set. For each of the

CASP targets, 13C- and 15N-resolved NOESY peak

lists and chemical shift lists were simulated with

CYANA36 on the basis of reference structures using

an interatomic distance cutoff of 4.0 Å for the gener-

ation of NOESY cross peaks, and assuming complete

resonance assignments.

Verify3D

Verify3D6,23 is based on 3D–1D-profiles and assigns

an environmental class to each residue in a protein.

The environments are divided into 18 classes based
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on the secondary structure, buried area, and the

fraction of polar contacts. Next, the probability for

each amino acid type to be assigned to each type of

environment is calculated. During evaluation of a

model, the sum of probabilities over a window, or

over the entire protein, is calculated. If the probabil-

ity is low, it is likely that the model is incorrect.

ProsaII
The ProsaII score7 is based on the probability for

two residues to be at a specific distance from each

other. In this the amino acid types, the distance, as

well as the sequence separations are used.

Procheck

The Procheck software3 takes into account the num-

ber of residues in allowed/disallowed areas of Rama-

chandran plot, the number of unusual bond lengths

or bond angles, and so forth. Correlations between

the accuracy of a protein structure and these criteria

were found for experimentally determined struc-

tures. However, these criteria are less useful to eval-

uate theoretically constructed models because nowa-

days many modeling programs are able to build

models with very good stereochemistry even when

the resulting tertiary structure is wrong.

Molprobity

The Molprobity program24 calculates a score based

on a number of validations including all-residue

Ramachandran analysis, rotamer analysis, and all-

atom clash analysis.

Gaussian network model

The GNM25,26 is a minimalist, coarse-grained

approach to study biological macromolecules. The

protein is represented by nodes corresponding to the

a-carbons of the amino acid residues, and the spatial

interactions between nodes (amino acids) are mod-

eled with a uniform harmonic spring. The GNM

algorithm outputs the average fluctuation range for

each Ca atom, which is averaged over the whole pro-

tein to obtain an average protein fluctuation. Mobile

residues with GNM fluctuations that exceeded the

average fluctuation by more than two standard

deviations were excluded from the calculation of the

average fluctuation of the protein.

Normalization of validation scores

All validation scores were normalized separately for

the two data sets and simultaneously for both data

sets such that for each column in Supporting Informa-

tion Tables S1–S3 the average value was zero, and

the standard deviation 1/3. The latter was chosen to

keep almost all normalized score values in the range

[�1, þ1]. In addition, the sign was changed for all

scores that are expected to anti-correlate with the

RMSD, that is, DP, Procheck-//w, Procheck-All, and
MolProb.

Multiple linear regression
Linear least-squares fits were made by singular

value decomposition of the matrix xij using the modi-

fied Golub–Reinsch SVD algorithm with column

scaling to improve the accuracy of the singular

values. Any components with a zero singular value

(to machine precision) were discarded from the fit.

We used the MLR routines from the GSL version

1.14 free numerical library for Cþþ programming.

GLM calculations

GLM calculations were performed with the R soft-

ware environment for statistical computing and

graphics (http://www.r-project.org/).
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