Mbolecular Dynamics Simulations on Cray Clusters

using the SCIDDLE-PVM environment

Peter Arbenz!, Martin Billeter®, Peter Guntert?,
Peter Luginbiihl®, MichelaT aufer™?, Ursvon Matt®

August 6, 1999

! Institute of Scientific Computing, ? Universitd degli Studi di Padova,
Swiss Federal Institute of Technology (ETH), Dipartimento di Elettronica ed Informatica,
8092 Ziirich, Switzerland, Via Gradenigo 6/a, Padova, Italy,

email: [arbenz,vonmatt]@inf.ethz.ch email: taufer@dei.unipd.it

3 Institute of Molecular Biology and Biophysics,
Swiss Federal Institute of Technology (ETH),
8093 Ziirich, Switzerland,
email: [billeter,guentert,lugi]@mol.biol.ethz.ch

1 Introduction

The computer simulation of the dynamical behavior of large molecules is an extremely time con-
suming task. Only with today’s high-performance computers has it become possible to integrate
over a realistic time frame of about a nanosecond for relatively small systems with hundreds or
thousands of atoms. The simulation of the motion of very large atoms from biochemistry is still out
of reach. Nevertheless, with every improvement of hardware or software computational chemists
and biochemists are able to attack larger molecules.

In this paper we report on an effort to parallelize OPAL [6], a software package developed at
the Institute of Molecular Biology and Biophysics at ETH Ziirich to perform energy minimizations
and molecular dynamics simulations of proteins and nucleic acids in vacuo and in water. OPAL
uses classical mechanics, i.e., the Newtonian equations of motion, to compute the trajectories 7;(t)
of n atoms as a function of time . Newton’s second law expresses the acceleration as

4
mi g 7i(t) = Fi(t), (1)

where m; denotes the mass of atom 7. The force F;(t) can be written as the negative gradient of

the atomic interaction function V:

A typical function V' has the form [10]

1 1
V() =Y 2 Kp(b—bo)> + > 5Ig@(o —)% +

all bonds all bond angles
1 -
> 5Ke(€ = €0)" + D Ko(1+cos(ng —9)) +
improper dihedrals dihedrals
Ciz(i,5) Csli,) 44,
Z(rlz 6 +47T€€T‘").
all pairs (¢, 7) 3 3 05Ty

The first term models the covalent bond-stretching interaction along bond b. The value of b
denotes the minimum-energy bond length, and the force constant K; depends on the particular
type of bond. The second term represents the bond-angle bending (three-body) interaction. The
(four-body) dihedral-angle interactions consist of two terms: a harmonic term for dihedral angles £
that are not allowed to make transitions, e.g., dihedral angles within aromatic rings or dihedral
angles to maintain chirality, and a sinusoidal term for the other dihedral angles ¢, which may
make 360° turns. The last term captures the non-bonded interactions over all pairs of atoms. It is
composed of the van der Waals and the Coulomb interactions between atoms ¢ and j with charges g;
and ¢; at a distance r;;.

In a numerical simulation the equations (1) are integrated in small time steps At, typically 1-
10 fs for molecular systems. Therefore a realistic simulation of 1000 ps requires up to 10° integration
time steps.

The last term of V, i.e., the sum over all pairs of atoms, consumes most of the computing
time during a simulation. Van Gunsteren and Mark report [10] that in 1992 the evaluation of the
interactions between the pairs of atoms of a 1000-atom system required about 1 s. Therefore at
least 300 h were needed to execute 10° time steps. These order-of-magnitude estimates are still
applicable today.

Fortunately, these calculations also offer a high degree of parallelism. In OPAL we evaluate the
non-bonded interactions in parallel on p processors. Each processor receives the coordinates 7;(t) of
all the atoms, and it computes a subset of the interactions. Thus we can execute O(n?) arithmetic
operations on each server, whereas only O(n) data items need to be communicated. Consequently

we may expect a significant speedup for a large number n of atoms.

2 SCIDDLE

The SCIDDLE environment [2, 3, 9] supports the parallelization of an application according to
the client-server paradigm. It provides asynchronous remote procedure calls (RPCs) as its only
communication primitive. In SCIDDLE, an application is decomposed into a client process and an
arbitrary number of server processes. Servers are special processes that are waiting to execute RPC
requests from their client. Servers can also start other servers themselves. Thus the topology of a
SCIDDLE application can be described by a tree structure.

The interface between client and server processes is described by a SCIDDLE interface definition
(cf. Sect. 3). A compiler translates this interface definition into communication stubs for the client

and server processes. Error checking is performed both at compile-time and at runtime.

3

INTERFACE OPAL_Server;
CONST Max = 10000;
TYPE Matrix = ARRAY [3, Max] OF LONGREAL;

PROCEDURE nbint (IN nval : INTEGER;
IN atcor [1:1:3, 1:1:nval] : Matrix;
OUT atfor [1:1:3, 1:1:nvall: Matrix): ASYNC;

END

Figure 1: Remote Interface Definition

ScIDDLE-PVM uses the PVM system to implement asynchronous RPCs. An application only
needs to use PVM to start the server processes. No explicit message passing is necessary any more
since all the communication is performed through SciDDLE. Thus SCIDDLE applications benefit
from the safety and ease of use of RPCs. They are also exceedingly portable as PVM becomes
available on more and more platforms. In [1] it is shown that the overhead introduced by SCIDDLE
is minimal and can be neglected for applications with large messages.

In recent years, PVM has become a de-facto standard for distributed applications. Its wide
acceptance has lead numerous computer vendors to provide high-performance implementations.
For the Intel Paragon and the IBM SP/2, say, PVM implementations exist that sit directly on
top of the native message passing interface [5]. Cray Research offers a version of PVM tuned for
the Cray J90 SuperCluster [8]. Applications based on ScIDDLE-PVM will be able to exploit these

optimized PVM implementations.

3 Parallelization

SCIDDLE uses a simple declarative language to specify the RPCs exported by a server. In Fig. 1
we present a simplified version for the OPAL server that computes the non-bonded interactions
(nbint).

Constants may be defined and used as symbolic array dimensions. User-defined types may
be constructed from arrays and records. Procedures come in two flavors, synchronous and asyn-
chronous. Each procedure parameter is tagged with a direction attribute. Parameters are always
copied in the respective directions.

As SCIDDLE is designed in particular for parallel distributed numerical applications, it provides
special array handling support for easy distribution of subarrays to multiple servers. A subarray
can be selected by attributing array parameters with views. A view is, like an array section in
MATLAB [7], a triple of the form [begin-index:stride:end-index] (cf. Fig. 1). The view components

are either constants or the names of other integer parameters passed in the same call.

The SCIDDLE stub compiler translates a remote interface definition into the appropriate PVM
communication primitives. In the example of Fig. 1 the procedure nbint is declared asynchronous.

Thus the client stub provides the two subroutines

int invoke_nbint (int nval, Matrix atcor, int sid);

int claim_nbint (Matrix atfor, int cid);

A call of invoke_nbint initiates an asynchronous RPC on the server sid. The input parameters
are sent to the server, and a call identifier cid is returned as the function result. invoke_nbint
returns as soon as the parameters are safely on their way to the server.

As soon as the client is ready to receive the results from an asynchronous RPC it calls the
subroutine claim_nbint. The call identifier obtained from invoke_nbint is consumed, and the
output parameters are retrieved.

If the procedure nbint had been declared synchronous the server stub would only provide the

subroutine
int call_nbint (int nval, Matrix atcor, Matrix atfor, int sid);

A call of call_nbint blocks the client until the results have been returned from the server. Such a
blocking RPC may be useful for quick calculations, but no parallelism can be obtained in this way.

The server process must implement the procedure
void nbint (int nval, Matrix atcor, Matrix atfor);

The server stub receives the input parameters from the client, calls nbint, and sends the results
back to the client.

The SCIDDLE runtime system also offers additional subroutines for starting and terminating
server processes. Multiple ongoing asynchronous RPCs can be managed conveniently by means of

call groups [9].

4 Results

In this section we present the results obtained from a first parallel implementation of OPAL.
Our test case consisted of an abbreviated simulation of the complex between the Antennapedia
homeodomain from Drosophila and DNA immersed in 2714 water molecules [4]. We executed 20
time steps of 2 fs, resulting in a total simulation time of 40 fs.

We conducted our experiments on one and two nodes of the Cray J90 SuperCluster at ETH
Ziirich. Each node features a shared memory of 2 Gigabytes and 8 vector processors. One Cray
CPU delivers a peak performance of 200 Megaflops. The nodes are connected by a fast HIPPI
network with a bandwith of 100 Megabytes/sec.

Table 1 gives an overview of the execution times and speedups obtained from the parallel version
of OPAL using various numbers of servers. The experiments with 6 and 8 servers were executed
on two Cray J90 nodes, whereas all the other results were obtained on a single node. The column

labelled “Execution Time” reports the wall clock time needed for a simulation run, including the

OPAL Version | Number of Servers | Execution Time | Speedup
sequential 432.6 sec
parallel 1 547.4 sec 0.79

2 302.9 sec 1.43

3 241.3 sec 1.79

4 174.6 sec 2.48

6 146.8 sec 2.95

8 144.0 sec 3.00

Table 1: Results on Cray J90 SuperCluster

OPAL Version | Number of Servers | Execution Time | Speedup
sequential 4669 sec
parallel 1 5171 sec 0.90

2 2751 sec 1.70

3 1842 sec 2.53

4 1413 sec 3.30

5 1240 sec 3.77

6 972 sec 4.80

7 882 sec 5.29

Table 2: Results on Network of Silicon Graphics Workstations

time required for reading input files, pre-, and postprocessing. The speedups were computed as the
ratio of the parallel execution time and the sequential execution time.

The experiments on the Cray J90 were performed during the normal operation of the system.
Therefore the execution times include overhead due to the operating system and the timesharing
environment. If the experiments were run on a dedicated system we would obtain faster and better
reproducible execution times.

We also ran the same benchmarks on a set of Silicon Graphics Indy workstations at ETH in
Ziirich. These workstations are connected by an Ethernet, and they were also used by other jobs
during our benchmarks. However we performed our tests during times when the machines were
only lightly loaded. Table 2 summarizes the results for this environment.

The sequential version of OPAL performs extremely well on a vector computer like the Cray.
The most time-consuming calculations during the evaluation of the non-bonded interactions can be
entirely vectorized. This explains the performance advantage of the Cray over the Silicon Graphics
workstations.

The slowdown of the parallel version with one server compared to the sequential version can
be explained by the overhead of the parallelization. This includes the time necessary to start the

server processes as well as the communication time between UNIX processes. Some of this overhead

only occurs during the initialization of the simulation, and thus is less significant for longer runs.

On the Cray the efficiency of the parallel version drops significantly if more than four servers
are used. To a large extent this can be attributed to the timesharing operating system which does
not offer gang scheduling for a set of PVM processes. But the Cray also loses some efficiency due
to shorter vector lengths.

On the other hand the parallel implementation of OPAL scales very well on the network of
workstations. This confirms that the computation is the main bottleneck of an OPAL simulation
and not the communication between the client and its servers. We could expect an even higher per-
formance if the server program were better tuned to the pipelined arithmetic and to the hierarchical
memory structure of modern workstations.

The current version of OPAL uses a static load balancing scheme where each server receives
tasks of equal size. This works well if all the processors in the network provide the same computing

power. A moreScSc dynamic approach will be necessary if the machines are loaded very unevenly.

References

[1] P. Arbenz, W. Gander, H. P. Liithi, and U. von Matt: Sciddle 4.0, or, Remote Procedure Calls
in PVM. In High-Performance Computing and Networking, Proceedings of the International
Conference and Exhibition, ed. H. Liddell, A. Colbrook, B. Hertzberger and P. Sloot, Lecture
Notes in Computer Science, Vol. 1067, Springer, Berlin, 1996, pp. 820-825.

[2] P. Arbenz, H. P. Liithi, J. E. Mertz, and W. Scott: Applied Distributed Supercomputing in
Homogeneous Networks. International Journal of High Speed Computing, 4 (1992), pp. 87-108.

[3] P. Arbenz, H. P. Liithi, Ch. Sprenger, and S. Vogel: Sciddle: A Tool for Large Scale Distributed
Computing. Concurrency: Practice and Experience, 7 (1995), pp. 121-146.

[4] M. Billeter, P. Giintert, P. Luginbiihl, and K. Wiithrich: Hydration and DNA recognition by
homeodomains, Cell, 85 (1996), pp. 1057-1065.

[5] H. Casanova, J. Dongarra, and W. Jiang: The Performance of PVM on Massively Parallel
Processing Systems. Tech. Report CS-95-301, University of Tennessee, Computer Science De-
partment, Knoxville, TN, August 1995,
http://www.cs.utk.edu/ " library/TechReports/1995/ut-cs-95-301.ps.Z.

[6] P.Luginbiihl, P. Giintert, M. Billeter, and K. Wiithrich: The new program OPAL for molecular
dynamics simulations and energy refinements of biological macromolecules, J. Biomol. NMR,
(1996), in press.

[7] The MathWorks Inc., MATLAB, High-Performance Numeric Computation and Visualization
Software, Natick, Massachusetts, 1992.

[8] H. Poxon and L. Costello: Network PVM Performance. Cray Research Inc., Software Division,
Eagan, MN, unpublished manuscript, June 1995.

[9] Ch. Sprenger: User’s Guide to Sciddle Version 3.0, Tech. Report 208, ETH Ziirich, Computer
Science Department, December 1993,
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/208.ps.

[10] W. F. van Gunsteren and A. E. Mark: On the interpretation of biochemical data by molecular
dynamics computer simulation. Eur. J. Biochem., 204 (1992), pp. 947-961.

